1
|
Dong M, Yin T, Gao J, Zhang H, Yang F, Wang S, Long C, Fu X, Liu H, Guo L, Zhou D. Transcriptome differential expression analysis of defoliation of two different lemon varieties. PeerJ 2024; 12:e17218. [PMID: 38685937 PMCID: PMC11057431 DOI: 10.7717/peerj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2023] [Accepted: 03/20/2024] [Indexed: 05/02/2024] Open
Abstract
'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits. However, it suffers from severe winter defoliation that leads to a large loss of organic nutrients and seriously affects the tree's growth and development as well as the yield of the following year, and the mechanism of its response to defoliation is still unclear. In order to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemon, two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials. The petiole abscission zone (AZ) was collected at three different defoliation stages, namely, the pre-defoliation stage (CQ), the mid-defoliation stage (CZ), and the post-defoliation stage (CH). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 898, 4,856, and 3,126 differentially expressed genes (DEGs) were obtained in CQ, CZ, and CH, respectively, and the number of DEGs in CZ was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to oxidoreductase, hydrolase, DNA binding transcription factor, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in CZ and involved plant hormone signal transduction, phenylpropanoid biosynthesis, glutathione metabolism, and alpha-linolenic acid metabolism. The expression trends of some DEGs suggested their roles in regulating defoliation in lemon. Eight gene families were obtained by combining DEG clustering analysis and weighted gene co-expression network analysis (WGCNA), including β-glucosidase, AUX/IAA, SAUR, GH3, POD, and WRKY, suggesting that these genes may be involved in the regulation of lemon leaf abscission. The above conclusions enrich the research related to lemon leaf abscission and provide reliable data for the screening of lemon defoliation candidate genes and analysis of defoliation pathways.
Collapse
Affiliation(s)
- Meichao Dong
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tuo Yin
- The Key Laboratory of Biodiversity Conservation of Southwest China, National Forestry and Grassland Administration, College of Forestry, Southwest Forestry University, Kunming, China
| | - Junyan Gao
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Hanyao Zhang
- The Key Laboratory of Biodiversity Conservation of Southwest China, National Forestry and Grassland Administration, College of Forestry, Southwest Forestry University, Kunming, China
| | - Fan Yang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Chunrui Long
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Xiaomeng Fu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Hongming Liu
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Lina Guo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Dongguo Zhou
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| |
Collapse
|
2
|
Sarwar M, Saleem MF, Ullah N, Ali A, Collins B, Shahid M, Munir MK, Chung SM, Kumar M. Superior leaf physiological performance contributes to sustaining the final yield of cotton ( Gossypium hirsutum L.) genotypes under terminal heat stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:739-753. [PMID: 37363422 PMCID: PMC10284769 DOI: 10.1007/s12298-023-01322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/17/2022] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023]
Abstract
This study aimed to optimize methods for identifying heat-tolerant and heat-susceptible cotton plants by examining the relationship between leaf physiology and cotton yield. Cotton accessions were exposed to elevated temperatures through staggered sowing and controlled growth conditions in a glasshouse. Based on their yield performance, leaf physiology, cell biochemistry, and pollen germination, the accessions were categorized as heat-tolerant, moderately tolerant, or susceptible. High temperatures had a significant impact on various leaf physiological and biochemical factors, such as cell injury, photosynthetic rate, stomatal conductance, transpiration rate, leaf temperature, chlorophyll fluorescence, and enzyme activities. The germination of flower pollen and seed cotton yield was also affected. The study demonstrated that there was a genetic variability for heat tolerance among the tested cotton accessions, as indicated by the interaction between accession and environment. Leaf gas exchange, cell biochemistry, pollen germination, and cotton yield were strongly associated with heat-sensitive accessions, but this association was negligible in tolerant accessions. Principal component analysis was used to classify the accessions based on their performance under heat stress conditions. The findings suggest that leaf physiological traits, cell biochemistry, pollen germination, and cotton yield can be effective indicators for selecting heat-tolerant cotton lines. Future research could explore additional genetic traits for improved selection and development of heat-tolerant accessions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01322-8.
Collapse
Affiliation(s)
- Muhammad Sarwar
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Najeeb Ullah
- Agricultural Research Station, Office of VP for Research and Graduate Studies, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Asjad Ali
- Queensland Department of Agriculture and Fisheries, PO Box 1054, Mareeba, QLD 4880 Australia
| | - Brian Collins
- College of Science and Engineering, James Cook University, Townsville, QLD 4814 Australia
| | | | - Muhammad Kashif Munir
- Agronomic Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Sang-Min Chung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, 10326 Korea
| | - Manu Kumar
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University, Seoul, 10326 Korea
| |
Collapse
|
3
|
Dervisi I, Valassakis C, Koletti A, Kouvelis VN, Flemetakis E, Ouzounis CA, Roussis A. Evolutionary Aspects of Selenium Binding Protein (SBP). J Mol Evol 2023:10.1007/s00239-023-10105-4. [PMID: 37039856 DOI: 10.1007/s00239-023-10105-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Accepted: 03/21/2023] [Indexed: 04/12/2023]
Abstract
Selenium-binding proteins represent a ubiquitous protein family and recently SBP1 was described as a new stress response regulator in plants. SBP1 has been characterized as a methanethiol oxidase, however its exact role remains unclear. Moreover, in mammals, it is involved in the regulation of anti-carcinogenic growth and progression as well as reduction/oxidation modulation and detoxification. In this work, we delineate the functional potential of certain motifs of SBP in the context of evolutionary relationships. The phylogenetic profiling approach revealed the absence of SBP in the fungi phylum as well as in most non eukaryotic organisms. The phylogenetic tree also indicates the differentiation and evolution of characteristic SBP motifs. Main evolutionary events concern the CSSC motif for which Acidobacteria, Fungi and Archaea carry modifications. Moreover, the CC motif is harbored by some bacteria and remains conserved in Plants, while modified to CxxC in Animals. Thus, the characteristic sequence motifs of SBPs mainly appeared in Archaea and Bacteria and retained in Animals and Plants. Our results demonstrate the emergence of SBP from bacteria and most likely as a methanethiol oxidase.
Collapse
Affiliation(s)
- Irene Dervisi
- Section of Botany, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Chrysanthi Valassakis
- Section of Botany, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Aikaterini Koletti
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Vassilis N Kouvelis
- Section of Genetics and Biotechnology, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Emmanouil Flemetakis
- Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Christos A Ouzounis
- Biological Computation & Process Laboratory, Centre for Research & Technology Hellas, Chemical Process & Energy Resources Institute, 54124, Thessaloníki, Greece
- Biological Computation & Computational Biology Group, AIIA Lab, School of Informatics, Aristotle University of Thessalonica, 57001, Thessaloníki, Greece
| | - Andreas Roussis
- Section of Botany, Department of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
4
|
Pandey V, Tiwari DC, Dhyani V, Bhatt ID, Rawal RS, Nandi SK. Physiological and metabolic changes in two Himalayan medicinal herbs under drought, heat and combined stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1523-1538. [PMID: 34366594 PMCID: PMC8295442 DOI: 10.1007/s12298-021-01027-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/14/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 05/15/2023]
Abstract
UNLABELLED Valeriana jatamansi Jones and Hedychium spicatum Ham-ex-Smith are important medicinal herbs of the Himalayan region, which are highly demanded by pharmaceutical industries. Climatic variability especially increasing temperature and water deficit affects the growth and productivity of these species. In addition, increased temperature and water deficit may trigger the biosynthesis of medicinally important bioactive metabolites, which influence the quality of raw plant material and finished products. Therefore, V. jatamansi and H. spicatum plants were undertaken and subjected to different levels of drought (no irrigation), heat (35 °C), and combined stresses for investigating their physiological and metabolic responses. Both the treatments (individually and in combination) reduced relative water content, photosynthesis, carboxylation efficiency, chlorophyll content, while increased intracellular CO2, malondialdehyde and H2O2 content in both the species. Transpiration and stomatal conductance increased under heat and reduced under drought stress as compared to control. Water use efficiency was found to be increased under drought, while reduced under heat stress. Protein, proline, carotenoid content and antioxidant enzymes activities (superoxide dismutase, peroxidise, catalase) initially increased and thereafter decreased during late stages of stress. Exposure of plants to combined stress was more detrimental than individual stress. In V. jatamansi, exposure to drought stress significantly (p < 0.05) increased valerenic acid content in all plant parts (1.0-6.9 fold) with maximum increase after 20 days of exposure, while under heat stress, valerenic acid content increased (1.0-1.2 fold) in belowground part of V. jatamansi, and decreased (1.1-1.3 fold) in aerial part as compared to control. In H. spicatum, exposure of individual heat stress for 25-30 days and combined stress for 5-15 days significantly (p < 0.05) increased linalool content to 6.2-6.5 fold and 8.3-19.6 fold, respectively, as compared to control. Higher accumulation of bioactive compounds after exposure to mild stress provides encouraging prospects for enhancing pharmaceutical properties of these Himalayan herbs. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01027-w.
Collapse
Affiliation(s)
- Veena Pandey
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Deep C. Tiwari
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Vibhash Dhyani
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Indra D. Bhatt
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Ranbeer S. Rawal
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Shyamal K. Nandi
- G. B. Pant National Institute of Himalayan Environment (GBPNIHE), Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| |
Collapse
|
5
|
Liao X, Rao S, Yu T, Zhu Z, Yang X, Xue H, Gou Y, Cheng S, Xu F. Selenium yeast promoted the Se accumulation, nutrient quality and antioxidant system of cabbage ( Brassica oleracea var. capitata L.). PLANT SIGNALING & BEHAVIOR 2021; 16:1907042. [PMID: 33818289 PMCID: PMC8143226 DOI: 10.1080/15592324.2021.1907042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 05/31/2023]
Abstract
The application of Se yeast as a Se source to cultivate Se-rich cabbage has a significant effect on cabbage growth and quality indices. Results showed that total plant weight, head weight, and head size in cabbage were notably increased by 48.4%, 88.3%, and 25.4% under 16 mg/kg Se yeast treatment, respectively. Compare with the control, a high proportion of 3874% of Se accumulation in cabbage head was also detected in 16 mg/kg Se yeast treatment. Selenocystine (SeCys2) and Methyl-selenocysteine (MeSeCys) were the main Se speciations in the cabbage head. Application of 8 mg/kg Se yeast improved cabbage quality and antioxidant system indices, including free amino acid, soluble sugar, ascorbic acid, phenolic acid, glucosinolates, and SOD activity, which had 81.6%, 46.5%, 34.9%, 12.3%, 44.8%, 25.2% higher than that of the control, respectively. In summary, considering 8 mg/kg Se yeast as the appropriate level of Se enrichment during cabbage cultivation. These findings enhanced our understanding of the effects of Se yeast on the growth and quality of cabbage and provided new insights into Se-enrichment vegetable cultivation.
Collapse
Affiliation(s)
- Xiaoli Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shen Rao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Tian Yu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
- Enshi Se-Run Health Tech Development Co., Ltd, Enshi, 445000, China
| | - Zhenzhou Zhu
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Xiaoyan Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Hua Xue
- National Selenium Rich Product Quality Supervision and Inspection Center, Enshi, Hubei, 445000, China
| | - Yuanyuan Gou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Shuiyuan Cheng
- National R&D for Se-rich Agricultural Products Processing Technology, Wuhan Polytechnic University, Wuhan, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| |
Collapse
|
6
|
Szparaga A, Kocira S, Kocira A, Czerwińska E, Świeca M, Lorencowicz E, Kornas R, Koszel M, Oniszczuk T. Modification of Growth, Yield, and the Nutraceutical and Antioxidative Potential of Soybean Through the Use of Synthetic Biostimulants. FRONTIERS IN PLANT SCIENCE 2018; 9:1401. [PMID: 30467507 PMCID: PMC6236065 DOI: 10.3389/fpls.2018.01401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/25/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
Improvement of crop cultivation technologies is focused on increasing crop productivity and improving yield quality, and at the same time on minimizing risks posed to the natural environment. The use of biostimulants contributes to the increase in the productivity of plants, especially under their exposure to stress induced by negative environmental stimuli. A field experiment was conducted in three growing seasons (2014-2016). Seeds of soybean of the Atlanta cultivar were sown in the third decade of April. Two synthetic biostimulants were used in the growing period in the form of single (stage BBCH 13-15) or double (stage BBCH 13-15, BBCH 61) spraying: Atonik (in concentrations of 0.1 and 0.2%) and Tytanit (in concentrations of 0.07 and 0.13%). Atonik, the first tested biostimulant, contained three phenolic compounds: sodium p-nitrophenolate, sodium o-nitrophenolate, and sodium 5-nitroguaiacolate. The Tytanit preparation contained a titanium complex, magnesium oxide, and sulfur (VI) oxide. This work presents a complex study addressing the action of the biostimulants Atonik and Tytanit and demonstrates their effect on the physiological traits, plant productivity, and seed yield quality of Glycine max L. The conducted experiment proved that the biostimulant type, as well as the number of its applications and its concentration, modified the biometric traits, crop productivity, as well as yield quality and the nutraceutical and antioxidative potential of soybean seeds. It was also found that by positively affecting plant growth and seed yield, the Atonik and Tytanit also resulted biostimulants decreased the protein and lipid contents in seeds. A double application of these preparations in their higher concentrations had a more positive impact on soybean seed number and soybean seed yield. The use of both Atonik and Tytanit resulted also in an increased antioxidative activity of soybean seeds. The greatest increase in this activity was observed after the application of the Tytanit preparation. Dietary fiber fraction analysis demonstrated an increase in the acid-detergent fiber, lignin, and cellulose contents in soybean seeds as a result of biostimulant application; however, the increase was greater upon the use of Tytanit. In contrast, the neutral-detergent fiber, cellulose, and hemicellulose contents were observed to decrease in all analyzed combinations of crops treated with the tested preparations.
Collapse
Affiliation(s)
- Agnieszka Szparaga
- Department of Agrobiotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology, Koszalin, Poland
| | - Sławomir Kocira
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Kocira
- Institute of Agricultural Sciences, State School of Higher Education in Chelm, Chelm, Poland
| | - Ewa Czerwińska
- Department of Biomedical Engineering, Faculty of Technology and Education, Koszalin University of Technology, Koszalin, Poland
| | - Michał Świeca
- Department of Biochemistry and Food Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Edmund Lorencowicz
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Rafał Kornas
- Institute of Agricultural Sciences, State School of Higher Education in Chelm, Chelm, Poland
| | - Milan Koszel
- Department of Machinery Exploitation and Management of Production Processes, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| | - Tomasz Oniszczuk
- Department of Thermal Technology and Food Process Engineering, Faculty of Production Engineering, University of Life Sciences in Lublin, Lublin, Poland
| |
Collapse
|
7
|
Djanaguiraman M, Perumal R, Ciampitti IA, Gupta SK, Prasad PVV. Quantifying pearl millet response to high temperature stress: thresholds, sensitive stages, genetic variability and relative sensitivity of pollen and pistil. PLANT, CELL & ENVIRONMENT 2018; 41:993-1007. [PMID: 28173611 DOI: 10.1111/pce.12931] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/30/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 05/19/2023]
Abstract
The objectives were to (1) quantify high temperature (HT) stress impacts at different growth stages (season long, booting to seed-set and booting to maturity) on various yield components; (2) identify the most sensitive stage(s) to short episodes of HT stress during reproductive development; (3) understand the genetic variations for HT stress tolerance based on cardinal temperatures for pollen germination; and (4) determine relative sensitivity of pollen and pistil to HT stress and associated tolerance or susceptible mechanisms in pearl millet. High temperature stress (≥36/26°C) imposed at different stages and durations caused decrease in number of seeds, individual seed weight and seed yield. Two periods (10-12 days and 2-0 days before anthesis) were identified as most sensitive to short episodes of stress, causing maximum decreases in pollen germination percentage and seeds numbers. HT stresses of ≥36/26°C results in floret sterility. Pistils were relatively more sensitive than pollen grains, causing decreased number of seeds and seed yield. HT stress increased the reactive oxygen species contents and decreased the activity of the antioxidant enzymes in both pollen and pistils. Under HT stress, pistils had relatively higher reactive oxygen species and lower antioxidant enzymes activity compared with pollen grains, which explains greater susceptibility of pistils.
Collapse
Affiliation(s)
- M Djanaguiraman
- Department of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, USA
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - R Perumal
- Department of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, USA
- Kansas State University, Agricultural Research Center, Hays, KS, USA
| | - I A Ciampitti
- Department of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, USA
| | - S K Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - P V V Prasad
- Department of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
8
|
Cheng C, Zhang L, Yang X, Zhong G. Profiling gene expression in citrus fruit calyx abscission zone (AZ-C) treated with ethylene. Mol Genet Genomics 2015; 290:1991-2006. [PMID: 25948248 DOI: 10.1007/s00438-015-1054-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2014] [Accepted: 04/20/2015] [Indexed: 02/06/2023]
Abstract
On-tree storage and harvesting of mature fruit account for a large proportion of cost in the production of citrus, and a reduction of the cost would not be achieved without a thorough understanding of the mechani sm of the mature fruit abscission. Genome-wide gene expression changes in ethylene-treated fruit calyx abscission zone (AZ-C) of Citrus sinensis cv. Olinda were therefore investigated using a citrus genome array representing up to 33,879 citrus transcripts. In total, 1313 and 1044 differentially regulated genes were identified in AZ-C treated with ethylene for 4 and 24 h, respectively. The results showed that mature citrus fruit abscission commenced with the activation of ethylene signal transduction pathway that led to the activation of ethylene responsive transcription factors and the subsequent transcriptional regulation of a large set of ethylene responsive genes. Significantly down-regulated genes included those of starch/sugar biosynthesis, transportation of water and growth promoting hormone synthesis and signaling, whereas significantly up-regulated genes were those involved in defense, cell wall degradation, and secondary metabolism. Our data unraveled the underlying mechanisms of some known important biochemical events occurring at AZ-C and should provide informative suggestions for future manipulation of the events to achieve a controllable abscission for mature citrus fruit.
Collapse
Affiliation(s)
- Chunzhen Cheng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Guangzhou, Guangdong, 510640, People's Republic of China. .,College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing, 400715, People's Republic of China. .,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture Guangzhou, Guangdong, 510640, People's Republic of China. .,Key Laboratory of Tropical and Subtropical Fruit tree Researches, Guangdong Province Guangzhou, Guangdong, 510640, People's Republic of China.
| | - Lingyun Zhang
- School of Geographic and Environmental Sciences, Guizhou Normal University Guizhou, Guiyang, 550001, People's Republic of China
| | - Xuelian Yang
- College of Agriculture, Guizhou University Guiyang, Guizhou, 550025, People's Republic of China
| | - Guangyan Zhong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences Guangzhou, Guangdong, 510640, People's Republic of China. .,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization Ministry of Agriculture Guangzhou, Guangdong, 510640, People's Republic of China. .,Key Laboratory of Tropical and Subtropical Fruit tree Researches, Guangdong Province Guangzhou, Guangdong, 510640, People's Republic of China.
| |
Collapse
|
9
|
Valero D, Zapata PJ, Martínez-Romero D, Guillén F, Castillo S, Serrano M. Pre-harvest treatments of pepper plants with nitrophenolates increase crop yield and enhance nutritive and bioactive compounds in fruits at harvest and during storage. FOOD SCI TECHNOL INT 2014; 20:265-74. [PMID: 23751541 DOI: 10.1177/1082013213483137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023]
Abstract
Pepper plants (Capsicum annuum L. cv Lamuyo) were treated with a mix of nitrophenolates either by foliar spray or in the irrigation system, and its effect on crop yield and the content of nutritive and bioactive compounds in fruit were analysed at harvest and after post-harvest storage. Treatments were applied at 2-week intervals from the development of first floral bunch (1 March) to end of August. Pepper fruits were harvested at commercial ripening stage (red surface colour) along the growth cycle (from May to September). Total yield (cumulative kilogram per plant) was increased ( 4.5% more) by nitrophenolate treatments due to significant increases in fruit mass, although the number of fruits per plant was unaffected. Pepper fruit quality (weight, firmness and pericarp thickness), its content in nutritive (sugars and organic acids) and bioactive compounds (vitamin C and total phenolics) and antioxidant activity were also enhanced by nitrophenolate treatments at the three harvested dates assayed (end May, mid July and end August). In addition, all these parameters were maintained at higher levels in treated peppers during storage, while diminutions in these parameters occurred generally in control fruit. Thus, nitrophenolate treatments were able to improve crop yield as well as the nutritional value and antioxidant properties of peppers at harvest and after fruit storage.
Collapse
|
10
|
Djanaguiraman M, Prasad PVV, Seppanen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:999-1007. [PMID: 20951054 DOI: 10.1016/j.plaphy.2010.09.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/19/2010] [Revised: 09/21/2010] [Accepted: 09/22/2010] [Indexed: 05/03/2023]
Abstract
Oxidative stress is commonly induced when plants are grown under high temperature (HT) stress conditions. Selenium often acts as an antioxidant in plants; however, its role under HT-induced oxidative stress is not definite. We hypothesize that selenium application can partly alleviate HT-induced oxidative stress and negative impacts of HT on physiology, growth and yield of grain sorghum [Sorghum bicolor (L.) Moench]. Objectives of this study were to investigate the effects of selenium on (a) leaf photosynthesis, membrane stability and antioxidant enzymes activity and (b) grain yield and yield components of grain sorghum plants grown under HT stress in controlled environments. Plants were grown under optimal temperature (OT; 32/22°C daytime maximum/nighttime minimum) from sowing to 63 days after sowing (DAS). All plants were foliar sprayed with sodium selenate (75mgL(-1)) at 63 DAS, and HT stress (40/30°C) was imposed from 65 DAS through maturity. Data on physiological, biochemical and yield traits were measured. High temperature stress decreased chlorophyll content, chlorophyll a fluorescence, photosynthetic rate and antioxidant enzyme activities and increased oxidant production and membrane damage. Decreased antioxidant defense under HT stress resulted in lower grain yield compared with OT. Application of selenium decreased membrane damage by enhancing antioxidant defense resulting in higher grain yield. The increase in antioxidant enzyme activities and decrease in reactive oxygen species (ROS) content by selenium was greater in HT than in OT. The present study suggests that selenium can play a protective role during HT stress by enhancing the antioxidant defense system.
Collapse
Affiliation(s)
- M Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan 66506, KS, USA
| | | | | |
Collapse
|