1
|
Xu B, Lin C, Wang Y, Wang H, Liu Y, Wang X. Using Dual-Target rTMS, Single-Target rTMS, or Sham rTMS on Post-Stroke Cognitive Impairment. J Integr Neurosci 2024; 23:161. [PMID: 39207080 DOI: 10.31083/j.jin2308161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The clinical application of 10 Hz repetitive transcranil magnetic stimulation (rTMS) remains limited despite its demonstrated effectiveness in enhancing cortical excitability and improving cognitive function. The present study used a novel stimulus target [left dorsolateral prefrontal cortex + primary motor cortex] to facilitate the enhancement of cognitive function through the bidirectional promotion of cognitive and motor functions; Methods: Post-stroke cognitive impairment patients (n = 48) were randomly assigned to receive either dual-target, single-target, or sham rTMS for 4 weeks. Before and after 4 weeks of treatment, participants were asked to complete the Montreal Cognitive Assessment (MoCA) test, the Modified Barthel Index (MBI), the Trail-making Test (TMT), and the Digital Span Test (DST). In addition, the levels of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) in serum were also measured. RESULTS After adjusting for pre-intervention (baseline) MoCA scores, the post-intervention MoCA scores varied significantly. After post-hoc analysis, differences existed between the post-treatment scores of the dual-target rTMS group and the sham rTMS group (the experimental group scores were significantly higher), and between those of the dual-target rTMS group and the single-target rTMS group (the dual-target rTMS scores were significantly higher). The serum VEGF levels of the dual-target rTMS group were significantly higher those that of the sham rTMS group. CONCLUSIONS The present study presented data showing that a dual-target rTMS therapy is effective for Post-stroke cognitive impairment (PSCI). The stimulation exhibited remarkable efficacy, suggesting that dual-target stimulation (left dorsolateral prefrontal cortex+motor cortex (L-DLPFC+M1)) holds promise as a potential target for TMS therapy in individuals with cognitive impairment after stroke. CLINICAL TRIAL REGISTRATION No: ChiCTR220066184. Registered 26 November, 2022, https://www.chictr.org.cn.
Collapse
Affiliation(s)
- Bingshan Xu
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Chunrong Lin
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Yiwen Wang
- Rehabilitation Department, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), 201620 Shanghai, China
| | - Hong Wang
- College of Rehabilitation Sciences, Shanghai University of Medicine & Health Sciences, 201318 Shanghai, China
| | - Yao Liu
- Neuromodulation Therapy Department, Shanghai Health Rehabilitation Hospital, 201615 Shanghai, China
| | - Xiaojun Wang
- Medical Research and Education Department, Shanghai Health Rehabilitation Hospital, 201615 Shanghai, China
| |
Collapse
|
2
|
Pecsok MK, Mordy A, Cristancho MA, Oathes D, Roalf DR. The Glutamatergic Effects of Clinical Repetitive Transcranial Magnetic Stimulation in Depressed Populations: A Preliminary Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Psychopathology 2024; 57:1-16. [PMID: 39004073 PMCID: PMC11724939 DOI: 10.1159/000538690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/25/2024] [Indexed: 07/16/2024]
Abstract
INTRODUCTION Repetitive transcranial magnetic stimulation (rTMS) alleviates symptoms of major depressive disorder, but its neurobiological mechanisms remain to be fully understood. Growing evidence from proton magnetic resonance spectroscopy (1HMRS) studies suggests that rTMS alters excitatory and inhibitory neurometabolites. This preliminary meta-analysis aims to quantify current trends in the literature and identify future directions for the field. METHODS Ten eligible studies that quantified Glutamate (Glu), Glu+Glutamine (Glx), or GABA before and after an rTMS intervention in depressed samples were sourced from PubMed, MEDLINE, PsychInfo, Google Scholar, and primary literature following PRISMA guidelines. Data were pooled using a random-effects model, Cohen's d effect sizes were calculated, and moderators, such as neurometabolite and 1HMRS sequence, were assessed. It was hypothesized that rTMS would increase cortical neurometabolites. RESULTS Within-subjects data from 224 cases encompassing 31 neurometabolite effects (k) were analyzed. Active rTMS in clinical responders (n = 128; k = 22) nominally increased glutamatergic neurometabolites (d = 0.15 [95% CI: -0.01, 0.30], p = 0.06). No change was found in clinical nonresponders (p = 0.8) or sham rTMS participants (p = 0.4). A significant increase was identified in Glx (p = 0.01), but not Glu (p = 0.6). Importantly, effect size across conditions were associated with the number of rTMS pulses patients received (p = 0.05), suggesting dose dependence. CONCLUSIONS Clinical rTMS is associated with a nominal, dose-dependent increase in glutamatergic neurometabolites, suggesting rTMS may induce Glu-dependent neuroplasticity and upregulate neurometabolism. More, larger scale studies adhering to established acquisition and reporting standards are needed to further elucidate the neurometabolic mechanisms of rTMS.
Collapse
Affiliation(s)
- Maggie K Pecsok
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA,
| | - Arianna Mordy
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario A Cristancho
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Desmond Oathes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R Roalf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Gonsalves MA, White TL, Barredo J, DeMayo MM, DeLuca E, Harris AD, Carpenter LL. Cortical glutamate, Glx, and total N-acetylaspartate: potential biomarkers of repetitive transcranial magnetic stimulation treatment response and outcomes in major depression. Transl Psychiatry 2024; 14:5. [PMID: 38184652 PMCID: PMC10771455 DOI: 10.1038/s41398-023-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for individuals with major depressive disorder (MDD) who have not improved with standard therapies. However, only 30-45% of patients respond to rTMS. Predicting response to rTMS will benefit both patients and providers in terms of prescribing and targeting treatment for maximum efficacy and directing resources, as individuals with lower likelihood of response could be redirected to more suitable treatment alternatives. In this exploratory study, our goal was to use proton magnetic resonance spectroscopy to examine how glutamate (Glu), Glx, and total N-acetylaspartate (tNAA) predict post-rTMS changes in overall MDD severity and symptoms, and treatment response. Metabolites were measured in a right dorsal anterior cingulate cortex voxel prior to a standard course of 10 Hz rTMS to the left DLPFC in 25 individuals with MDD. MDD severity and symptoms were evaluated via the Inventory of Depression Symptomatology Self-Report (IDS-SR). rTMS response was defined as ≥50% change in full-scale IDS-SR scores post treatment. Percent change in IDS-SR symptom domains were evaluated using principal component analysis and established subscales. Generalized linear and logistic regression models were used to evaluate the relationship between baseline Glu, Glx, and tNAA and outcomes while controlling for age and sex. Participants with baseline Glu and Glx levels in the lower range had greater percent change in full scale IDS-SR scores post-treatment (p < 0.001), as did tNAA (p = 0.007). Low glutamatergic metabolite levels also predicted greater percent change in mood/cognition symptoms (p ≤ 0.001). Low-range Glu, Glx, and tNAA were associated with greater improvement on the immuno-metabolic subscale (p ≤ 0.003). Baseline Glu predicted rTMS responder status (p = 0.025) and had an area under the receiving operating characteristic curve of 0.81 (p = 0.009), demonstrating excellent discriminative ability. Baseline Glu, Glx, and tNAA significantly predicted MDD improvement after rTMS; preliminary evidence also demonstrates metabolite association with symptom subdomain improvement post-rTMS. This work provides feasibility for a personalized medicine approach to rTMS treatment selection, with individuals with Glu levels in the lower range potentially being the best candidates.
Collapse
Affiliation(s)
- Meghan A Gonsalves
- Neuroscience Graduate Program, Brown University, Providence, RI, USA.
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA.
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA.
| | - Tara L White
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA
- Carney Institute for Brain Sciences, Brown University, Providence, RI, USA
| | - Jennifer Barredo
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
- Providence VA Medical Center, Providence, RI, USA
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Emily DeLuca
- Clinical Neuroimaging Research Core, Brown University, Providence, RI, USA
| | - Ashley D Harris
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Linda L Carpenter
- Butler Hospital Neuromodulation Research Facility, Providence, RI, USA
- Center of Biomedical Research Excellence (COBRE) for Neuromodulation, Butler Hospital, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
5
|
Dębowska W, Więdłocha M, Dębowska M, Kownacka Z, Marcinowicz P, Szulc A. Transcranial magnetic stimulation and ketamine: implications for combined treatment in depression. Front Neurosci 2023; 17:1267647. [PMID: 37954877 PMCID: PMC10637948 DOI: 10.3389/fnins.2023.1267647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023] Open
Abstract
Drug-resistant mental disorders, particularly treatment-resistant depression, pose a significant medical and social problem. To address this challenge, modern psychiatry is constantly exploring the use of novel treatment methods, including biological treatments, such as transcranial magnetic stimulation (TMS), and novel rapid-acting antidepressants, such as ketamine. While both TMS and ketamine demonstrate high effectiveness in reducing the severity of depressive symptoms, some patients still do not achieve the desired improvement. Recent literature suggests that combining these two methods may yield even stronger and longer-lasting results. This review aims to consolidate knowledge in this area and elucidate the potential mechanisms of action underlying the increased efficacy of combined treatment, which would provide a foundation for the development and optimization of future treatment protocols.
Collapse
Affiliation(s)
- Weronika Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Więdłocha
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Marta Dębowska
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Zuzanna Kownacka
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- KeyClinic, Warsaw, Poland
| | - Agata Szulc
- Department of Psychiatry, Faculty of Health Sciences, Medical University of Warsaw, Warsaw, Poland
- MindHealth, Warsaw, Poland
| |
Collapse
|
6
|
Pu Z, Hou Q, Yan H, Lin Y, Guo Z. Efficacy of repetitive transcranial magnetic stimulation and agomelatine on sleep quality and biomarkers of adult patients with mild to moderate depressive disorder. J Affect Disord 2023; 323:55-61. [PMID: 36435397 DOI: 10.1016/j.jad.2022.11.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mild to moderate depressive disorder (DD), which accounts for much larger patient population, has been largely neglected in previous studies exploring the sleep quality of DD patients; in addition, most of these patients had comorbid insomnia. Thus, this study aimed to explore the effect of repetitive transcranial magnetic stimulation (rTMS) and agomelatine on sleep quality of adult patients with mild to moderate DD. METHODS 100 participants were randomly divided into high-frequency rTMS group and sham rTMS group (n = 50 each). All patients were administered agomelatine simultaneously. Hamilton Depression Scale-17 Items (HAMD-17), Pittsburgh Sleep Index (PSQI), and polysomnography were used to evaluate the efficacy. Serum norepinephrine (NE), 5-hydroxytryptamine, brain-derived neurotrophic factor (BDNF), and melatonin were also determined. RESULTS The HAMD-17 and PSQI scores in high-frequency rTMS group were lower than those in sham rTMS group at the 4th and 8th weekend after treatment (P < 0.05). Post-treatment total sleep time, sleep efficiency, and N3 percentage in high-frequency rTMS group were better than those in sham rTMS group (P < 0.05); while post-treatment sleep latency, awakening time, micro-awakening times, and N1 percentage were significantly less than those in sham rTMS group (P < 0.01). Post-treatment serum levels of NE and BDNF in high-frequency rTMS group were higher than those in sham rTMS group (P < 0.05). LIMITATIONS Small sample size and short follow-up duration. CONCLUSION The combination of high-frequency rTMS and agomelatine is effective in the treatment of mild to moderate DD, which can improve the sleep quality and increase the levels of some neurotransmitters and neurotrophic factors.
Collapse
Affiliation(s)
- Zhengping Pu
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, China; Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Xuhui 200030, Shanghai, China.
| | - Qingmei Hou
- Department of Clinical Psychology, Second Specialized Hospital of Hegang, Hegang 154102, Heilongjiang, China
| | - Hui Yan
- Department of Psychiatry, Second People's Hospital of Taizhou, Tiantai 317200, Zhejiang, China
| | - Yong Lin
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, China
| | - Zilei Guo
- Department of Psychiatry, Kangci Hospital of Jiaxing, Tongxiang 314500, Zhejiang, China
| |
Collapse
|
7
|
Lynch CJ, Elbau IG, Ng TH, Wolk D, Zhu S, Ayaz A, Power JD, Zebley B, Gunning FM, Liston C. Automated optimization of TMS coil placement for personalized functional network engagement. Neuron 2022; 110:3263-3277.e4. [PMID: 36113473 PMCID: PMC11446252 DOI: 10.1016/j.neuron.2022.08.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is used to treat multiple psychiatric and neurological conditions by manipulating activity in particular brain networks and circuits, but individual responses are highly variable. In clinical settings, TMS coil placement is typically based on either group average functional maps or scalp heuristics. Here, we found that this approach can inadvertently target different functional networks in depressed patients due to variability in their functional brain organization. More precise TMS targeting should be feasible by accounting for each patient's unique functional neuroanatomy. To this end, we developed a targeting approach, termed targeted functional network stimulation (TANS). The TANS approach improved stimulation specificity in silico in 8 highly sampled patients with depression and 6 healthy individuals and in vivo when targeting somatomotor functional networks representing the upper and lower limbs. Code for implementing TANS and an example dataset are provided as a resource.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Tommy H Ng
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, 413 East 69th Street, Box 204, New York, NY 10021, USA.
| |
Collapse
|
8
|
Weigand A, Gärtner M, Scheidegger M, Wyss PO, Henning A, Seifritz E, Stippl A, Herrera-Melendez A, Bajbouj M, Aust S, Grimm S. Predicting Antidepressant Effects of Ketamine: the Role of the Pregenual Anterior Cingulate Cortex as a Multimodal Neuroimaging Biomarker. Int J Neuropsychopharmacol 2022; 25:1003-1013. [PMID: 35948274 PMCID: PMC9743970 DOI: 10.1093/ijnp/pyac049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Growing evidence underscores the utility of ketamine as an effective and rapid-acting treatment option for major depressive disorder (MDD). However, clinical outcomes vary between patients. Predicting successful response may enable personalized treatment decisions and increase clinical efficacy. METHODS We here explored the potential of pregenual anterior cingulate cortex (pgACC) activity to predict antidepressant effects of ketamine in relation to ketamine-induced changes in glutamatergic metabolism. Prior to a single i.v. infusion of ketamine, 24 patients with MDD underwent functional magnetic resonance imaging during an emotional picture-viewing task and magnetic resonance spectroscopy. Changes in depressive symptoms were evaluated using the Beck Depression Inventory measured 24 hours pre- and post-intervention. A subsample of 17 patients underwent a follow-up magnetic resonance spectroscopy scan. RESULTS Antidepressant efficacy of ketamine was predicted by pgACC activity during emotional stimulation. In addition, pgACC activity was associated with glutamate increase 24 hours after the ketamine infusion, which was in turn related to better clinical outcome. CONCLUSIONS Our results add to the growing literature implicating a key role of the pgACC in mediating antidepressant effects and highlighting its potential as a multimodal neuroimaging biomarker of early treatment response to ketamine.
Collapse
Affiliation(s)
| | | | - Milan Scheidegger
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| | - Patrik O Wyss
- Department of Radiology, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Anke Henning
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Switzerland
| | - Anna Stippl
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ana Herrera-Melendez
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Malek Bajbouj
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sabine Aust
- Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simone Grimm
- Correspondence: Simone Grimm, PhD, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany ()
| |
Collapse
|
9
|
Spurny-Dworak B, Godbersen GM, Reed MB, Unterholzner J, Vanicek T, Baldinger-Melich P, Hahn A, Kranz GS, Bogner W, Lanzenberger R, Kasper S. The Impact of Theta-Burst Stimulation on Cortical GABA and Glutamate in Treatment-Resistant Depression: A Surface-Based MRSI Analysis Approach. Front Mol Neurosci 2022; 15:913274. [PMID: 35909445 PMCID: PMC9328022 DOI: 10.3389/fnmol.2022.913274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Theta burst stimulation (TBS) belongs to one of the biological antidepressant treatment options. When applied bilaterally, excitatory intermittent TBS (iTBS) is commonly targeted to the left and inhibitory continuous TBS (cTBS) to the right dorsolateral prefrontal cortex. TBS was shown to influence neurotransmitter systems, while iTBS is thought to interfere with glutamatergic circuits and cTBS to mediate GABAergic neurotransmission. Objectives: We aimed to expand insights into the therapeutic effects of TBS on the GABAergic and glutamatergic system utilizing 3D-multivoxel magnetic resonance spectroscopy imaging (MRSI) in combination with a novel surface-based MRSI analysis approach to investigate changes of cortical neurotransmitter levels in patients with treatment-resistant depression (TRD). Methods: Twelve TRD patients (five females, mean age ± SD = 35 ± 11 years) completed paired MRSI measurements, using a GABA-edited 3D-multivoxel MEGA-LASER sequence, before and after 3 weeks of bilateral TBS treatment. Changes in cortical distributions of GABA+/tNAA (GABA+macromolecules relative to total N-acetylaspartate) and Glx/tNAA (Glx = mixed signal of glutamate and glutamine), were investigated in a surface-based region-of-interest (ROI) analysis approach. Results: ANCOVAs revealed a significant increase in Glx/tNAA ratios in the left caudal middle frontal area (p corr. = 0.046, F = 13.292), an area targeted by iTBS treatment. Whereas, contralateral treatment with cTBS evoked no alterations in glutamate or GABA concentrations. Conclusion: This study demonstrates surface-based adaptions in the stimulation area to the glutamate metabolism after excitatory iTBS but not after cTBS, using a novel surface-based analysis of 3D-MRSI data. The reported impact of facilitatory iTBS on glutamatergic neurotransmission provides further insight into the neurobiological effects of TBS in TRD.
Collapse
Affiliation(s)
- Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | | | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Vanicek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Georg S. Kranz
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Moxon-Emre I, Croarkin PE, Daskalakis ZJ, Blumberger DM, Lyon RE, Tani H, Truong P, Lai MC, Desarkar P, Sailasuta N, Szatmari P, Ameis SH. NAA/Glu Ratio Associated with Suicidal Ideation in Pilot Sample of Autistic Youth and Young Adults. Brain Sci 2022; 12:785. [PMID: 35741670 PMCID: PMC9220790 DOI: 10.3390/brainsci12060785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Suicidality is increased in autism spectrum disorder (ASD), yet effective interventions are lacking. Developing biologically based approaches for preventing and treating suicidality in ASD hinges on the identification of biomarkers of suicidal ideation (SI). Here, we assessed magnetic resonance spectroscopy (MRS) markers of glutamatergic neurotransmission in ASD youth and young adults. Twenty-eight ASD participants (16-33 years) underwent 1H-MRS, and metabolites were quantified using LCModel. N-acetylaspartate (NAA), glutamate (Glu), and the NAA/Glu ratio from the left dorsolateral prefrontal cortex were compared between ASD SI+ (n = 13) and ASD SI- (n = 15) participants. We found that ASD SI+ participants had a higher NAA/Glu ratio compared ASD SI- participants. The NAA/Glu ratio also predicted SI and significantly discriminated between ASD SI+/SI- participants. All analyses including NAA and Glu alone were non-significant. Here, we provide preliminary evidence for the importance of NAA/Glu in ASD with SI, with implications for biomarker discovery. Further mechanistic research into risk and interventional approaches to address SI in ASD are needed.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Division of Child and Adolescent Psychiatry, Mayo Clinic, Rochester, MN 55905, USA;
| | - Zafiris J. Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada; (Z.J.D.); (D.M.B.); (P.D.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Daniel M. Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada; (Z.J.D.); (D.M.B.); (P.D.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Rachael E. Lyon
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
| | - Hideaki Tani
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (N.S.)
| | - Meng-Chuan Lai
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Research Institute, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | - Pushpal Desarkar
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H1, Canada; (Z.J.D.); (D.M.B.); (P.D.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (P.T.); (N.S.)
| | - Peter Szatmari
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Research Institute, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Stephanie H. Ameis
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada; (I.M.-E.); (R.E.L.); (H.T.); (M.-C.L.); (P.S.)
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5T 1R8, Canada
- Research Institute, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
11
|
Repetitive Transcranial Magnetic Stimulation-Associated Changes in Neocortical Metabolites in Major Depression: A Systematic Review. Neuroimage Clin 2022; 35:103049. [PMID: 35738081 PMCID: PMC9233277 DOI: 10.1016/j.nicl.2022.103049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/01/2022] [Accepted: 05/12/2022] [Indexed: 11/23/2022]
Abstract
We reviewed 12 studies that measured metabolites pre and post rTMS in MDD. Frontal lobe Glu, Gln, NAA, and GABA increased after rTMS. Increases in metabolites were often associated with MDD symptom improvement. We propose novel intracellular mechanisms by which metabolites are altered by rTMS.
Introduction Repetitive Transcranial magnetic stimulation (rTMS) is an FDA approved treatment for major depressive disorder (MDD). However, neural mechanisms contributing to rTMS effects on depressive symptoms, cognition, and behavior are unclear. Proton magnetic resonance spectroscopy (MRS), a noninvasive neuroimaging technique measuring concentrations of biochemical compounds within the brain in vivo, may provide mechanistic insights. Methods This systematic review summarized published MRS findings from rTMS treatment trials to address potential neurometabolic mechanisms of its antidepressant action. Using PubMed, Google Scholar, Web of Science, and JSTOR, we identified twelve empirical studies that evaluated changes in MRS metabolites in a within-subjects, pre- vs. post-rTMS treatment design in patients with MDD. Results rTMS protocols ranged from four days to eight weeks duration, were applied at high frequency to the left dorsolateral prefrontal cortex (DLPFC) in most studies, and were conducted in patients aged 13-to-70. Most studies utilized MRS point resolved spectroscopy acquisitions at 3 Tesla in the bilateral anterior cingulate cortex and DLPFC. Symptom improvements were correlated with rTMS-related increases in the concentration of glutamatergic compounds (glutamate, Glu, and glutamine, Gln), GABA, and N-acetylated compounds (NAA), with some results trend-level. Conclusions This is the first in-depth systematic review of metabolic effects of rTMS in individuals with MDD. The extant literature suggests rTMS stimulation does not produce changes in neurometabolites independent of clinical response; increases in frontal lobe glutamatergic compounds, N-acetylated compounds and GABA following high frequency left DLPFC rTMS therapy were generally associated with clinical improvement. Glu, Gln, GABA, and NAA may mediate rTMS treatment effects on MDD symptomatology through intracellular mechanisms.
Collapse
|
12
|
Asgharian Asl F, Vaghef L. The effectiveness of high-frequency left DLPFC-rTMS on depression, response inhibition, and cognitive flexibility in female subjects with major depressive disorder. J Psychiatr Res 2022; 149:287-292. [PMID: 35313201 DOI: 10.1016/j.jpsychires.2022.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND The purpose of the present study was to investigate the effect of high-frequency repetitive transcranial magnetic stimulation on depression severity, response inhibition, and cognitive flexibility in subjects with major depressive disorder. METHODS Twenty-eight female subjects with major depressive disorder were randomly divided into experimental and control groups. High frequency (20 Hz) rTMS stimulation at 85% of the MT consisted of 25 trains of 5 s duration, a total of 2500 pulses/session or sham stimulation was applied over the left DLPFC for five consecutive days per week, for two weeks. Depression severity, response inhibition, and cognitive flexibility of subjects were assessed by Beck Depression Inventory, Go/NoGo, and Wisconsin sort cards (WCST) tests, respectively, pre- and post-TMS intervention. RESULTS rTMS over the left DLPFC significantly decreased the depression severity at the Beck Depression Inventory, enhanced accuracy, and decreased reaction time at the Go/NoGo task. In the Wisconsin Card Sort Test, perseverative and non-perseverative errors and failure to maintain a set index significantly decreased following rTMS treatment. CONCLUSIONS Findings indicate that 20-Hz rTMS treatment on the left DLPFC has a positive effect on depression severity, response inhibition, and cognitive flexibility in depressed subjects.
Collapse
Affiliation(s)
- Fatemeh Asgharian Asl
- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Ladan Vaghef
- Department of Psychology, Faculty of Education & Psychology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
13
|
Chen D, Lei X, Du L, Long Z. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study. J Psychiatr Res 2022; 148:88-94. [PMID: 35121273 DOI: 10.1016/j.jpsychires.2022.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, safe, and efficacious treatment for major depressive disorder (MDD). However, the antidepressant efficacy of rTMS greatly varies across individual patients. Thus, markers that can be used to predict the outcome of rTMS treatment at the individual level must be identified. Thalamo-cortical connectivity was abnormal in patients with MDD, and was normalized after rTMS treatment. In the current study, we investigated whether the resting-state functional and structural thalamo-cortical connectivity could be utilized to predict the rTMS treatment efficacy by employing support vector machine regression analysis. Results showed that the Hamilton Depression Scale scores of patients with MDD decreased after rTMS treatment. The functional connectivity of mediodorsal nucleus with prefrontal cortex predicted the rTMS treatment improvement, whereas the functional connectivity of other thalamic nuclei with cerebral cortex did not predict the treatment efficacy. The brain areas that contributed the most to the prediction were dorsal lateral prefrontal cortex, ventral lateral, and orbital and medial prefrontal areas. The improvement in the outcome of rTMS treatment could also be predicted by the thalamo-prefrontal structural connectivity. No statistically significantly difference in thalamo-cortical connectivity was observed between early improvers and early non-improvers. These results suggested that the thalamo-prefrontal connectivity can predict the rTMS treatment improvement. This study highlighted the crucial role of the thalamo-prefrontal connectivity as a neuroimaging marker in the treatment of depression via rTMS.
Collapse
Affiliation(s)
- Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China.
| |
Collapse
|
14
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Cotovio G, Rodrigues da Silva D, Real Lage E, Seybert C, Oliveira-Maia AJ. Hemispheric asymmetry of motor cortex excitability in mood disorders - Evidence from a systematic review and meta-analysis. Clin Neurophysiol 2022; 137:25-37. [PMID: 35240425 DOI: 10.1016/j.clinph.2022.01.137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mood disorders have been associated with lateralized brain dysfunction, on the left-side for depression and right-side for mania. Consistently, asymmetry of cortical excitability, as measured by transcranial magnetic stimulation (TMS) has been reported. Here, we reviewed and summarized work assessing such measures bilaterally in mood disorders. METHODS We performed a systematic review and extracted data to perform meta-analyses of interhemispheric asymmetry of motor cortex excitability, assessed with TMS, across different mood disorders and in healthy subjects. Additionally, potential predictors of interhemispheric asymmetry were explored. RESULTS Asymmetry of resting motor threshold (MT) among healthy volunteers was significant, favoring lower right relative to left-hemisphere excitability. MT was also significantly asymmetric in major depressive disorder (MDD), but with lower excitability of the left -hemisphere, when compared to the right, no longer observed in recovered patients. Findings on intracortical facilitation were similar. The few trials including bipolar depression revealed similar trends for imbalance, but with lower right hemisphere excitability, relative to the left. CONCLUSIONS There is interhemispheric asymmetry of motor cortical excitability in MDD, with lower excitability on left when compared to right-side. Interhemispheric asymmetry, with lower right relative to left-sided excitability, was found for bipolar depression and was also suggested for healthy volunteers, in a pattern that is clearly distinct from MDD. SIGNIFICANCE Mood disorders display asymmetric motor cortical excitability that is distinct from that found in healthy volunteers, supporting the presence of lateralized brain dysfunction in these disorders.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal; Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Lisboa, Portugal
| | | | - Estela Real Lage
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal
| | - Carolina Seybert
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisboa, Portugal; NOVA Medical School, NMS , Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
16
|
Godfrey KEM, Muthukumaraswamy SD, Stinear CM, Hoeh N. Effect of rTMS on GABA and glutamate levels in treatment-resistant depression: An MR spectroscopy study. Psychiatry Res Neuroimaging 2021; 317:111377. [PMID: 34479176 DOI: 10.1016/j.pscychresns.2021.111377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
Alterations in levels of neurotransmitters γ-aminobutyric acid (GABA) and glutamate may underlie the mechanism by which repetitive transcranial magnetic stimulation (rTMS) has efficacy as a treatment for major depressive disorder (MDD). This study used proton magnetic resonance spectroscopy (H1MRS) to investigate the effect of rTMS on levels of GABA and combined glutamate/glutamine measure (Glx). Treatment-resistant, currently depressed individuals participated in a naturalistic open-label study with rTMS treatment administered at 10 Hz and 120% of resting motor threshold to the left dorsolateral prefrontal cortex (DLPFC) for 20 sessions. H1 MRS measures were collected at baseline and after four weeks of daily treatment. GABA and Glx were measured from both the left DLPFC and a control region (right motor cortex). Twenty-seven participants completed the study and were included in the analysis. Contrary to previous studies, no difference in GABA was observed following treatment. Glx levels were found to significantly increase in both the left DLPFC and right motor cortex voxels but this increase did not correlate with antidepressant response. Glx levels were found to increase following rTMS, not only underlying the site of stimulation but also at a distant control voxel suggesting a degree of non-specificity in response to therapy.
Collapse
Affiliation(s)
- Kate E M Godfrey
- School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| | | | - Cathy M Stinear
- School of Medicine, The University of Auckland, Auckland, New Zealand
| | - Nicholas Hoeh
- Department of Psychological Medicine, The University of Auckland, Auckland, New Zealand; Auckland District Health Board, Auckland, New Zealand
| |
Collapse
|
17
|
Moxon-Emre I, Daskalakis ZJ, Blumberger DM, Croarkin PE, Lyon RE, Forde NJ, Tani H, Truong P, Lai MC, Desarkar P, Sailasuta N, Szatmari P, Ameis SH. Modulation of Dorsolateral Prefrontal Cortex Glutamate/Glutamine Levels Following Repetitive Transcranial Magnetic Stimulation in Young Adults With Autism. Front Neurosci 2021; 15:711542. [PMID: 34690671 PMCID: PMC8527173 DOI: 10.3389/fnins.2021.711542] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Altered excitatory and inhibitory neurotransmission has been implicated in autism spectrum disorder (ASD). Interventions using repetitive transcranial magnetic stimulation (rTMS) to enhance or inhibit cortical excitability are under study for various targets, though the mechanistic effects of rTMS have yet to be examined in ASD. Here, we examined whether an excitatory rTMS treatment course modulates glutamatergic (Glx) or γ-aminobutyric acid (GABA) metabolite levels in emerging adults with ASD. Twenty-eight participants with ASD and executive function impairment [23.3 ± 4.69 years; seven-female] underwent two magnetic resonance spectroscopy (MRS) scans of the left dorsolateral prefrontal cortex (DLPFC). MRS scans were acquired before and after participants with ASD were randomized to receive a 20-session course of active or sham rTMS to the DLPFC. Baseline MRS data was available for 19 typically developing controls [23.8 ± 4.47 years; six-female]. Metabolite levels for Glx and GABA+ were compared between ASD and control groups, at baseline, and metabolite level change, pre-to-post-rTMS treatment, was compared in ASD participants that underwent active vs. sham rTMS. Absolute change in Glx was greater in the active vs. sham-rTMS group [F(1,19) = 6.54, p = 0.02], though the absolute change in GABA+ did not differ between groups. We also examined how baseline metabolite levels related to pre/post-rTMS metabolite level change, in the active vs. sham groups. rTMS group moderated the relation between baseline Glx and pre-to-post-rTMS Glx change, such that baseline Glx predicted Glx change in the active-rTMS group only [b = 1.52, SE = 0.32, t(18) = 4.74, p < 0.001]; Glx levels increased when baseline levels were lower, and decreased when baseline levels were higher. Our results indicate that an interventional course of excitatory rTMS to the DLPFC may modulate local Glx levels in emerging adults with ASD, and align with prior reports of glutamatergic alterations following rTMS. Interventional studies that track glutamatergic markers may provide mechanistic insights into the therapeutic potential of rTMS in ASD. Clinical Trial Registration:Clinicaltrials.gov (ID: NCT02311751), https://clinicaltrials.gov/ct2/show/NCT02311751?term=ameis&rank=1; NCT02311751.
Collapse
Affiliation(s)
- Iska Moxon-Emre
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Rachael E Lyon
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Natalie J Forde
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands
| | - Hideaki Tani
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Truong
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter Szatmari
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stephanie H Ameis
- Cundill Centre for Child and Youth Depression, The Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
18
|
Wong YK, Wu JM, Zhou G, Zhu F, Zhang Q, Yang XJ, Qin Z, Zhao N, Chen H, Zhang ZJ. Antidepressant Monotherapy and Combination Therapy with Acupuncture in Depressed Patients: A Resting-State Functional Near-Infrared Spectroscopy (fNIRS) Study. Neurotherapeutics 2021; 18:2651-2663. [PMID: 34431029 PMCID: PMC8804104 DOI: 10.1007/s13311-021-01098-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Depression is a common psychiatric illness affecting over 300 million people globally. Acupuncture has been reported to be a safe complementary treatment for depression. This study is aimed to investigate the efficacy and mechanism of combining acupuncture with antidepressants in treating depression compared to the sole use of antidepressants. Seventy depression patients were randomly assigned to the treatment group (n = 50) and control group (n = 20). The treatment group received acupuncture combined antidepressants treatment for 3 weeks, while the control group took antidepressants monotherapy for 3 weeks. Among the 70 patients, 40 participants (20 control; 20 treatment) were randomized for studying functional connectivity (FC) of the dorsolateral prefrontal cortex (DLPFC) measured by the functional near-infrared spectroscopy. The primary outcome was HAMD-17 and secondary outcomes were PHQ-9, and the relationships of resting-state FC (rsFC) with the depression severity. PHQ-9 and HAMD-17 scores in the treatment group were significantly lower than those in the control group at Week 3 (p = 0.01) with effect sizes of -0.4 and -0.61 respectively. The rsFC in F1, F3, AF3, AF7, FC3, FC5 (left DLPFC, 10-20 system), AF8, and F6 (right DLPFC) in the treatment group had significant temporal correlation (p < 0.05, FDR corrected) in DLPFC compared to the channels in the control group. No significant correlation was found between the changes of rsFC and depression severity. In conclusion, depressed patients receiving acupuncture combined with antidepressants have improvement of depressive symptoms and the stronger rsFC in the DLPFC compared to those using antidepressants alone.
Collapse
Affiliation(s)
- Yat Kwan Wong
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Jun Mei Wu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
- Acupucture and Tuina college, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guodong Zhou
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Frank Zhu
- Unique Mind Centre, Central, Hong Kong, China
| | - Quan Zhang
- Neural Systems Group, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Xin Jing Yang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Zongshi Qin
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Haiyong Chen
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, China.
| |
Collapse
|
19
|
Abstract
Transcranial direct current stimulation (tDCS) is a novel treatment option for major depression which could be provided as a first-line treatment. tDCS is a non-invasive form of transcranial stimulation which changes cortical tissue excitability by applying a weak (0.5-2 mA) direct current via scalp electrodes. Anodal and cathodal stimulation leads to depolarisation and hyperpolarisation, respectively, and cumulative effects are observed with repeated sessions. The montage in depression most often involves anodal stimulation to the left dorsolateral prefrontal cortex. Rates of clinical response, remission, and improvements in depressive symptoms following a course of active tDCS are greater in comparison to a course of placebo sham-controlled tDCS. In particular, the largest treatment effects are evident in first episode and recurrent major depression, while minimal effects have been observed in treatment-resistant depression. The proposed mechanism is neuroplasticity at the cellular and molecular level. Alterations in neural responses have been found at the stimulation site as well as subcortically in prefrontal-amygdala connectivity. A possible mediating effect could be cognitive control in emotion dysregulation. Additional beneficial effects on cognitive impairments have been reported, which would address an important unmet need. The tDCS device is portable and can be used at home. Clinical trials are required to establish the efficacy, feasibility and acceptability of home-based tDCS treatment and mechanisms.
Collapse
Affiliation(s)
- Rachel Woodham
- School of Psychology, University of East London, London, UK
| | | | - Julian Mutz
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Cynthia H Y Fu
- School of Psychology, University of East London, London, UK.,Centre for Affective Disorders, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
20
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
21
|
Padberg F, Bulubas L, Mizutani-Tiebel Y, Burkhardt G, Kranz GS, Koutsouleris N, Kambeitz J, Hasan A, Takahashi S, Keeser D, Goerigk S, Brunoni AR. The intervention, the patient and the illness - Personalizing non-invasive brain stimulation in psychiatry. Exp Neurol 2021; 341:113713. [PMID: 33798562 DOI: 10.1016/j.expneurol.2021.113713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/09/2021] [Accepted: 03/28/2021] [Indexed: 02/08/2023]
Abstract
Current hypotheses on the therapeutic action of non-invasive brain stimulation (NIBS) in psychiatric disorders build on the abundant data from neuroimaging studies. This makes NIBS a very promising tool for developing personalized interventions within a precision medicine framework. NIBS methods fundamentally vary in their neurophysiological properties. They comprise repetitive transcranial magnetic stimulation (rTMS) and its variants (e.g. theta burst stimulation - TBS) as well as different types of transcranial electrical stimulation (tES), with the largest body of evidence for transcranial direct current stimulation (tDCS). In the last two decades, significant conceptual progress has been made in terms of NIBS targets, i.e. from single brain regions to neural circuits and to functional connectivity as well as their states, recently leading to brain state modulating closed-loop approaches. Regarding structural and functional brain anatomy, NIBS meets an individually unique constellation, which varies across normal and pathophysiological states. Thus, individual constitutions and signatures of disorders may be indistinguishable at a given time point, but can theoretically be parsed along course- and treatment-related trajectories. We address precision interventions on three levels: 1) the NIBS intervention, 2) the constitutional factors of a single patient, and 3) the phenotypes and pathophysiology of illness. With examples from research on depressive disorders, we propose solutions and discuss future perspectives, e.g. individual MRI-based electrical field strength as a proxy for NIBS dosage, and also symptoms, their clusters, or biotypes instead of disorder focused NIBS. In conclusion, we propose interleaved research on these three levels along a general track of reverse and forward translation including both clinically directed research in preclinical model systems, and biomarker guided controlled clinical trials. Besides driving the development of safe and efficacious interventions, this framework could also deepen our understanding of psychiatric disorders at their neurophysiological underpinnings.
Collapse
Affiliation(s)
- Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany
| | - Lucia Bulubas
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Yuki Mizutani-Tiebel
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany
| | - Gerrit Burkhardt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Nikolaos Koutsouleris
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Max-Planck Institute of Psychiatry, Munich, Germany
| | - Joseph Kambeitz
- Department of Psychiatry, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937, Germany
| | - Alkomiet Hasan
- Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, BKH Augsburg, Dr.-Mack-Str. 1, 86156 Augsburg, Germany; Department of Clinical Radiology, LMU Hospital, Munich, Germany
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, 811-1 Kimiidera, 6410012 Wakayama, Japan
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany
| | - Stephan Goerigk
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; Center for Non-invasive Brain Stimulation Munich-Augsburg (CNBS(MA)), Germany; Department of Psychological Methodology and Assessment, Ludwig-Maximilians-University, Leopoldstraße 13, 80802 Munich, Germany; Hochschule Fresenius, University of Applied Sciences, Infanteriestraße 11A, 80797 Munich, Germany
| | - Andre R Brunoni
- Laboratory of Neurosciences (LIM-27), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Department and Institute of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo & Hospital Universitário, Universidade de São Paulo, Av. Prof Lineu Prestes 2565, 05508-000 São Paulo, Brazil
| |
Collapse
|
22
|
Systematic review of biological markers of therapeutic repetitive transcranial magnetic stimulation in neurological and psychiatric disorders. Clin Neurophysiol 2021; 132:429-448. [DOI: 10.1016/j.clinph.2020.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/16/2020] [Accepted: 11/08/2020] [Indexed: 01/05/2023]
|
23
|
Henigsberg N, Savić A, Radoš M, Radoš M, Šarac H, Šečić A, Bajs Janović M, Foro T, Ozretić D, Erdeljić Turk V, Hrabač P, Kalember P. Choline elevation in amygdala region at recovery indicates longer survival without depressive episode: a magnetic resonance spectroscopy study. Psychopharmacology (Berl) 2021; 238:1303-1314. [PMID: 31482202 PMCID: PMC8062352 DOI: 10.1007/s00213-019-05303-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 06/11/2019] [Indexed: 02/02/2023]
Abstract
RATIONALE Depression, with variable longitudinal patterns, recurs in one third of patients. We lack useful predictors of its course/outcome, and proton magnetic resonance spectroscopy (1H-MRS) of brain metabolites is an underused research modality in finding outcome correlates. OBJECTIVES To determine if brain metabolite levels/changes in the amygdala region observed early in the recovery phase indicate depression recurrence risk in patients receiving maintenance therapy. METHODS Forty-eight patients on stable-dose antidepressant (AD) maintenance therapy were analyzed from recovery onset until (i) recurrence of depression or (ii) start of AD discontinuation. Two 1H-MRS scans (6 months apart) were performed with a focus on amygdala at the beginning of recovery. N-acetylaspartate (NAA), choline-containing metabolites (Cho), and Glx (glutamine/glutamate and GABA) were evaluated with regard to time without recurrence, and risks were assessed by Cox proportional hazard modeling. RESULTS Twenty patients had depression recurrence, and 23 patients reached AD discontinuation. General linear model repeated measures analysis displayed three-way interaction of measurement time, metabolite level, and recurrence on maintenance therapy, in a multivariate test, Wilks' lambda = 0.857, F(2,40) = 3.348, p = 0.045. Cho levels at the beginning of recovery and subsequent changes convey the highest risk for earlier recurrence. Patients experiencing higher amygdala Cho after recovery are at a significantly lower risk for depression recurrence (hazard ratio = 0.32; 95% confidence interval 0.13-0.77). CONCLUSION Cho levels/changes in the amygdala early in the recovery phase correlate with clinical outcome. In the absence of major NAA fluctuations, changes in Cho and Glx may suggest a shift towards reduction in (previously increased) glutamatergic neurotransmission. Investigation of a larger sample with greater sampling frequency is needed to confirm the possible predictive role of metabolite changes in the amygdala region early in the recovery phase.
Collapse
Affiliation(s)
- Neven Henigsberg
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- University Psychiatric Hospital Vrapče, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Aleksandar Savić
- University Psychiatric Hospital Vrapče, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marko Radoš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Milan Radoš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Helena Šarac
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Šečić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- University Hospital Centre 'Sestre Milosrdnice', Zagreb, Croatia
| | - Maja Bajs Janović
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Tamara Foro
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - David Ozretić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Viktorija Erdeljić Turk
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Pero Hrabač
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
- "Andrija Štampar" School of Public Health, School of Medicine University of Zagreb, Zagreb, Croatia
| | - Petra Kalember
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Centre of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia.
- Polyclinic Neuron, Zagreb, Croatia.
| |
Collapse
|
24
|
Bhattacharyya P, Anand A, Lin J, Altinay M. Left Dorsolateral Prefrontal Cortex Glx/tCr Predicts Efficacy of High Frequency 4- to 6-Week rTMS Treatment and Is Associated With Symptom Improvement in Adults With Major Depressive Disorder: Findings From a Pilot Study. Front Psychiatry 2021; 12:665347. [PMID: 34925079 PMCID: PMC8677827 DOI: 10.3389/fpsyt.2021.665347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 11/08/2021] [Indexed: 12/05/2022] Open
Abstract
About 20-40% of estimated 121 million patients with major depressive disorder (MDD) are not adequately responsive to medication treatment. Repetitive transcranial magnetic stimulation (rTMS), a non-invasive, non-convulsive neuromodulation/neurostimulation method, has gained popularity in treatment of MDD. Because of the high cost involved in rTMS therapy, ability to predict the therapy effectiveness is both clinically and cost wise significant. This study seeks an imaging biomarker to predict efficacy of rTMS treatment using a standard high frequency 10-Hz 4- to 6-week protocol in adult population. Given the significance of excitatory and inhibitory neurotransmitters glutamate (Glu) and gamma aminobutyric acid (GABA) in the pathophysiology of MDD, and the involvement of the site of rTMS application, left dorsolateral prefrontal cortex (lDLPFC), in MDD, we explored lDLPFC Glx (Glu + glutamine) and GABA levels, measured by single voxel magnetic resonance spectroscopy (MRS) with total creatine (tCr; sum of creatine and phosphocreatine) as reference, as possible biomarkers of rTMS response prediction. Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) MRS data from 7 patients (40-74 y) were used in the study; 6 of these patients were scanned before and after 6 weeks of rTMS therapy. Findings from this study show inverse correlation between pretreatment lDLPFC Glx/tCr and (i) posttreatment depression score and (ii) change in depression score, suggesting higher Glx/tCr as a predictor of treatment efficacy. In addition association was observed between changes in depression scores and changes in Glx/tCr ratio. The preliminary findings did not show any such association between GABA/tCr and depression score.
Collapse
Affiliation(s)
- Pallab Bhattacharyya
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States.,Department of Radiology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, United States
| | - Amit Anand
- Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| | - Jian Lin
- Cleveland Clinic, Imaging Institute, Cleveland, OH, United States
| | - Murat Altinay
- Cleveland Clinic, Neurological Institute, Cleveland, OH, United States
| |
Collapse
|
25
|
Lu QB, Sun JF, Yang QY, Cai WW, Xia MQ, Wu FF, Gu N, Zhang ZJ. Magnetic brain stimulation using iron oxide nanoparticle-mediated selective treatment of the left prelimbic cortex as a novel strategy to rapidly improve depressive-like symptoms in mice. Zool Res 2020; 41:381-394. [PMID: 32400977 PMCID: PMC7340515 DOI: 10.24272/j.issn.2095-8137.2020.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Magnetic brain stimulation has greatly contributed to the advancement of neuroscience. However, challenges remain in the power of penetration and precision of magnetic stimulation, especially in small animals. Here, a novel combined magnetic stimulation system (c-MSS) was established for brain stimulation in mice. The c-MSS uses a mild magnetic pulse sequence and injection of superparamagnetic iron oxide (SPIO) nanodrugs to elevate local cortical susceptibility. After imaging of the SPIO nanoparticles in the left prelimbic (PrL) cortex in mice, we determined their safety and physical characteristics. Depressive-like behavior was established in mice using a chronic unpredictable mild stress (CUMS) model. SPIO nanodrugs were then delivered precisely to the left PrL cortex using in situ injection. A 0.1 T magnetic field (adjustable frequency) was used for magnetic stimulation (5 min/session, two sessions daily). Biomarkers representing therapeutic effects were measured before and after c-MSS intervention. Results showed that c-MSS rapidly improved depressive-like symptoms in CUMS mice after stimulation with a 10 Hz field for 5 d, combined with increased brain-derived neurotrophic factor (BDNF) and inactivation of hypothalamic-pituitary-adrenal (HPA) axis function, which enhanced neuronal activity due to SPIO nanoparticle-mediated effects. The c-MSS was safe and effective, representing a novel approach in the selective stimulation of arbitrary cortical targets in small animals, playing a bioelectric role in neural circuit regulation, including antidepressant effects in CUMS mice. This expands the potential applications of magnetic stimulation and progresses brain research towards clinical application.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jian-Fei Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| | - Qu-Yang Yang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China
| | - Wen-Wen Cai
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Meng-Qin Xia
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Fang-Fang Wu
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated Zhongda Hospital, School of Medicine, Institution of Neuropsychiatry, Southeast University, Nanjing, Jiangsu 210009, China. E-mail:
| |
Collapse
|
26
|
Cuypers K, Marsman A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage 2020; 224:117394. [PMID: 32987106 DOI: 10.1016/j.neuroimage.2020.117394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Over the last decade, there has been an increasing number of studies combining transcranial magnetic stimulation (TMS) and magnetic resonance spectroscopy (MRS). MRS provides a manner to non-invasively investigate molecular concentrations in the living brain and thus identify metabolites involved in physiological and pathological processes. Particularly the MRS-detectable metabolites glutamate, the major excitatory neurotransmitter, and gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter, are of interest when combining TMS and MRS. TMS is a non-invasive brain stimulation technique that can be applied either as a neuromodulation or neurostimulation tool, specifically targeting glutamatergic and GABAergic mechanisms. The combination of TMS and MRS can be used to evaluate alterations in brain metabolite levels following an interventional TMS protocol such as repetitive TMS (rTMS) or paired associative stimulation (PAS). MRS can also be combined with a variety of non-interventional TMS protocols to identify the interplay between brain metabolite levels and measures of excitability or receptor-mediated inhibition and facilitation. In this review, we provide an overview of studies performed in healthy and patient populations combining MRS and TMS, both as a measurement tool and as an intervention. TMS and MRS may reveal complementary and comprehensive information on glutamatergic and GABAergic neurotransmission. Potentially, connectivity changes and dedicated network interactions can be probed using the combined TMS-MRS approach. Considering the ongoing technical developments in both fields, combined studies hold future promise for investigations of brain network interactions and neurotransmission.
Collapse
Affiliation(s)
- Koen Cuypers
- Department of Movement Sciences, Group Biomedical Sciences, Movement Control & Neuroplasticity Research Group, KU Leuven, 3001 Heverlee, Belgium; REVAL Research Institute, Hasselt University, Agoralaan, Building A, 3590 Diepenbeek, Belgium
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Section 714, Kettegård Allé 30, 26500 Hvidovre, Denmark.
| |
Collapse
|
27
|
Kubota M, Moriguchi S, Takahata K, Nakajima S, Horita N. Treatment effects on neurometabolite levels in schizophrenia: A systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Schizophr Res 2020; 222:122-132. [PMID: 32505446 DOI: 10.1016/j.schres.2020.03.069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/29/2020] [Accepted: 03/29/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although there is growing evidence of alterations in the neurometabolite status associated with the pathophysiology of schizophrenia, how treatments influence these metabolite levels in patients with schizophrenia remains poorly studied. METHODS We conducted a literature search using Embase, Medline, and PsycINFO to identify proton magnetic resonance spectroscopy studies that compared neurometabolite levels before and after treatment in patients with schizophrenia. Six neurometabolites (glutamate, glutamine, glutamate + glutamine, gamma-aminobutyric acid, N-acetylaspartate, myo-inositol) and six regions of interest (frontal cortex, temporal cortex, parieto-occipital cortex, thalamus, basal ganglia, hippocampus) were investigated. RESULTS Thirty-two studies (n = 773 at follow-up) were included in our meta-analysis. Our results demonstrated that the frontal glutamate + glutamine level was significantly decreased (14 groups; n = 292 at follow-up; effect size = -0.35, P = 0.0003; I2 = 22%) and the thalamic N-acetylaspartate level was significantly increased (7 groups; n = 184 at follow-up; effect size = 0.47, P < 0.00001; I2 = 0%) after treatment in schizophrenia patients. No significant associations were found between neurometabolite changes and age, gender, duration of illness, duration of treatment, or baseline symptom severity. CONCLUSIONS The current results suggest that glutamatergic neurometabolite levels in the frontal cortex and neuronal integrity in the thalamus in schizophrenia might be modified following treatment.
Collapse
Affiliation(s)
- Manabu Kubota
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Psychiatry, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Sho Moriguchi
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T1R8, Canada
| | - Keisuke Takahata
- Department of Functional Brain Imaging, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; Department of Neuropsychiatry, Keio University Graduate School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shinichiro Nakajima
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T1R8, Canada; Department of Neuropsychiatry, Keio University Graduate School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Nobuyuki Horita
- Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
28
|
Effects and Mechanisms of Electroacupuncture on Chronic Inflammatory Pain and Depression Comorbidity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4951591. [PMID: 32565863 PMCID: PMC7275955 DOI: 10.1155/2020/4951591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/14/2020] [Accepted: 05/12/2020] [Indexed: 01/22/2023]
Abstract
Comorbidity of chronic pain and major depression disorder (MDD) are common diseases. However, the mechanisms of electroacupuncture (EA) and the responses of N-methyl-D-aspartate receptors in the brain remain unclear. Three injections of complete Freund's adjuvant (CFA) were administered to induce chronic inflammatory pain (CIP). EA was then performed once every other day from days 14 to 28. Behavior tests of chronic pain and depression were evaluated to make sure of the successful induction of comorbidity. We used Western blotting to analyze brain tissue from the prefrontal cortex (PFC), hippocampus, and hypothalamus for levels of phosphorylated N-methyl-D-aspartate receptor subunit 1 (pNR1), NR1, pNR2B, NR2B, and calcium/calmodulin-dependent protein kinase type II alpha isoform (pCaMKIIα). The mechanical hyperalgesia, thermal hyperalgesia, and depression were observed in the CIP group. Furthermore, decreased levels of N-methyl-D-aspartate receptors (NMDARs) were also noted. Not Sham EA but EA reversed chronic pain and depression as well as the decreased levels of NMDA in the signaling pathway. The CFA injections successfully induced a significant comorbidity model. EA treated the comorbidity by upregulating the NMDA signaling pathway in the PFC, hippocampus, and hypothalamus. Our results indicated significant mechanisms of comorbidity of chronic pain and MDD and EA-analgesia that involves the regulation of the NMDAR signaling pathway. These findings may be relevant to the evaluation and treatment of comorbidity of chronic pain and MDD.
Collapse
|
29
|
Kang SG, Cho SE. Neuroimaging Biomarkers for Predicting Treatment Response and Recurrence of Major Depressive Disorder. Int J Mol Sci 2020; 21:ijms21062148. [PMID: 32245086 PMCID: PMC7139562 DOI: 10.3390/ijms21062148] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
The acute treatment duration for major depressive disorder (MDD) is 8 weeks or more. Treatment of patients with MDD without predictors of treatment response and future recurrence presents challenges and clinical problems to patients and physicians. Recently, many neuroimaging studies have been published on biomarkers for treatment response and recurrence of MDD using various methods such as brain volumetric magnetic resonance imaging (MRI), functional MRI (resting-state and affective tasks), diffusion tensor imaging, magnetic resonance spectroscopy, near-infrared spectroscopy, and molecular imaging (i.e., positron emission tomography and single photon emission computed tomography). The results have been inconsistent, and we hypothesize that this could be due to small sample size; different study design, including eligibility criteria; and differences in the imaging and analysis techniques. In the future, we suggest a more sophisticated research design, larger sample size, and a more comprehensive integration including genetics to establish biomarkers for the prediction of treatment response and recurrence of MDD.
Collapse
|
30
|
Vlcek P, Bares M, Novak T, Brunovsky M. Baseline Difference in Quantitative Electroencephalography Variables Between Responders and Non-Responders to Low-Frequency Repetitive Transcranial Magnetic Stimulation in Depression. Front Psychiatry 2020; 11:83. [PMID: 32174854 PMCID: PMC7057228 DOI: 10.3389/fpsyt.2020.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for depressive disorder, with outcomes approaching 45-55% response and 30-40% remission. Eligible predictors of treatment outcome, however, are still lacking. Few studies have investigated quantitative electroencephalography (QEEG) parameters as predictors of rTMS treatment outcome and none of them have addressed the source localization techniques to predict the response to low-frequency rTMS (LF rTMS). We investigated electrophysiological differences based on scalp EEG data and inverse solution method, exact low-resolution brain electromagnetic tomography (eLORETA), between responders and non-responders to LF rTMS in resting brain activity recorded prior to the treatment. Twenty-five unmedicated depressive patients (mean age of 45.7 years, 20 females) received a 4-week treatment of LF rTMS (1 Hz; 20 sessions per 600 pulses; 100% of the motor threshold) over the right dorsolateral prefrontal cortex. Comparisons between responders (≥50% reduction in Montgomery-Åsberg Depression Rating Scale score) and non-responders were made at baseline for measures of eLORETA current density, spectral absolute power, and inter-hemispheric and intra-hemispheric EEG asymmetry. Responders were found to have lower current source densities in the alpha-2 and beta-1 frequency bands bilaterally (with predominance on the left side) in the inferior, medial, and middle frontal gyrus, precentral gyrus, cingulate gyrus, anterior cingulate, and insula. The most pronounced difference was found in the left middle frontal gyrus for alpha-2 and beta-1 bands (p < 0.05). Using a spectral absolute power analysis, we found a negative correlation between the absolute power in beta and theta frequency bands on the left frontal electrode F7 and the change in depressive symptomatology. None of the selected asymmetries significantly differentiated responders from non-responders in any frequency band. Pre-treatment reduction of alpha-2 and beta-1 sources, but not QEEG asymmetry, was found in patients with major depressive disorder who responded to LF rTMS treatment. Prospective trials with larger groups of subjects are needed to further validate these findings.
Collapse
Affiliation(s)
- Premysl Vlcek
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Bares
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomas Novak
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Brunovsky
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
31
|
Zhang F, Qin Y, Xie L, Zheng C, Huang X, Zhang M. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer's disease. J Neural Transm (Vienna) 2019; 126:1081-1094. [PMID: 31292734 DOI: 10.1007/s00702-019-02022-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/25/2019] [Indexed: 12/16/2022]
Abstract
Various studies report discordant results regarding the efficacy, parameters, and underlying mechanisms of repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training (CT) on Alzheimer's disease (AD). The objective of the study was to assess the effect of rTMS-CT on cognition, the activities of daily life, neuropsychiatric behavioral symptoms, and metabolite levels beneath the stimulated areas of the brain in patients with AD and to investigate the correlation of metabolic changes (measured with proton magnetic resonance spectroscopy [1H-MRS]) with clinical outcomes after treatment. Thirty consecutive patients with mild or moderate AD were enrolled and randomly divided into one of the two intervention groups: (1) real rTMS with CT (i.e., real group) and (2) sham rTMS with CT (i.e., sham group). 10 Hz rTMS was used to stimulate the left dorsolateral prefrontal cortex (DLPFC) and then to stimulate the left lateral temporal lobe (LTL) for 20 min each day for 4 weeks. Each patient underwent neuropsychological assessment at baseline (T0), immediately after treatment (T1), and 4 weeks after treatment (T2). The ratios of N-acetylaspartate/creatine (NAA/Cr), myoinositol/creatine (mI/Cr), and choline/creatine (Cho/Cr) in the stimulated cortex were measured using 1H-MRS at T0 and T1. Twenty-eight patients were treated with rTMS-CT for 4 weeks. Two patients in the sham group withdrew after being treated several times. Compared with the sham group, the cognitive function and behavior in the real rTMS group improved significantly at T1 and T2. In the real group, compared with the sham group, the NAA/Cr ratio in the left DLPFC was significantly elevated (p = 0.045); however, in the left LTL, it only showed a tendency toward increase (p = 0.162). The change in the NAA/Cr ratio in the left DLPFC was negatively correlated with the change in the cognitive scales of the Alzheimer's Disease Assessment Scale (ADAS-cog). This study indicated a possible modest effect of rTMS-CT on preventing clinical and neuronal functional deterioration in the left DLPFC of patients with AD. The left DLPFC is a better candidate area than the left LTL.
Collapse
Affiliation(s)
- Fengxia Zhang
- Department of Rehabilitation, Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yuanyuan Qin
- Department of Radiology, Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Lingfeng Xie
- Department of Rehabilitation, Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Caixia Zheng
- Department of Rehabilitation, Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaolin Huang
- Department of Rehabilitation, Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Min Zhang
- Department of Neurology, Medicine Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
32
|
Frequency-specific effects of low-intensity rTMS can persist for up to 2 weeks post-stimulation: A longitudinal rs-fMRI/MRS study in rats. Brain Stimul 2019; 12:1526-1536. [PMID: 31296402 DOI: 10.1016/j.brs.2019.06.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/23/2019] [Accepted: 06/26/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Evidence suggests that repetitive transcranial magnetic stimulation (rTMS), a non-invasive neuromodulation technique, alters resting brain activity. Despite anecdotal evidence that rTMS effects wear off, there are no reports of longitudinal studies, even in humans, mapping the therapeutic duration of rTMS effects. OBJECTIVE Here, we investigated the longitudinal effects of repeated low-intensity rTMS (LI-rTMS) on healthy rodent resting-state networks (RSNs) using resting-state functional MRI (rs-fMRI) and on sensorimotor cortical neurometabolite levels using proton magnetic resonance spectroscopy (MRS). METHODS Sprague-Dawley rats received 10 min LI-rTMS daily for 15 days (10 Hz or 1 Hz stimulation, n = 9 per group). MRI data were acquired at baseline, after seven days and after 14 days of daily stimulation and at two more timepoints up to three weeks post-cessation of daily stimulation. RESULTS 10 Hz stimulation increased RSN connectivity and GABA, glutamine, and glutamate levels. 1 Hz stimulation had opposite but subtler effects, resulting in decreased RSN connectivity and glutamine levels. The induced changes decreased to baseline levels within seven days following stimulation cessation in the 10 Hz group but were sustained for at least 14 days in the 1 Hz group. CONCLUSION Overall, our study provides evidence of long-term frequency-specific effects of LI-rTMS. Additionally, the transient connectivity changes following 10 Hz stimulation suggest that current treatment protocols involving this frequency may require ongoing "top-up" stimulation sessions to maintain therapeutic effects.
Collapse
|
33
|
Gellersen HM, Kedzior KK. Antidepressant outcomes of high-frequency repetitive transcranial magnetic stimulation (rTMS) with F8-coil and deep transcranial magnetic stimulation (DTMS) with H1-coil in major depression: a systematic review and meta-analysis. BMC Psychiatry 2019; 19:139. [PMID: 31064328 PMCID: PMC6505129 DOI: 10.1186/s12888-019-2106-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The current study aims to systematically assess and compare the antidepressant outcomes of repetitive transcranial magnetic stimulation (rTMS) with the figure-of-eight (F8)-coil and deep transcranial magnetic stimulation (DTMS) with the H1-coil in studies matched on stimulation frequency in unipolar major depressive disorder (MDD). METHODS Electronic search of Medline and PsycInfo identified 19 studies with stimulation frequency of 18-20 Hz using F8-coil (k = 8 randomised sham-controlled trials, RCTs, k = 3 open-label; n = 168 patients) or H1-coil (k = 1 RCT, k = 7 open-label; n = 200). Depression severity (the primary outcome) and response/remission rates (the secondary outcomes) were assessed at session 10. RESULTS Effects pooled with random-effects meta-analysis showed a large reduction in depression severity, 29% response, and 15% remission rates after 10 sessions of active stimulation with either coil relative to baseline. Reduction in depression severity was greater in studies with younger patients using either coil. The comparison between coils showed a larger reduction in depression severity in H1-coil vs. F8-coil studies (independent of the study design or the concurrent pharmacotherapy) and a trend towards higher remission rates in F8-coil vs. H1-coils studies. These effects are based on a low volume of studies, are not controlled for placebo, and may not be clinically-relevant. The stimulation protocols differed systematically because stimulation was more focal but less intense (80-110% of the resting motor threshold, MT) in the F8-coil studies and less focal but more intense (120% MT) in the H1-coil studies. Two seizures occurred in the H1-coil studies relative to none in the F8-coil studies. CONCLUSION When matched on frequency, the higher-intensity and less focal stimulation with the H1-coil reduces depression more than the lower-intensity and more focal stimulation with the F8-coil. Head-to-head trials should compare the antidepressant outcomes of F8-coil and H1-coil to identify the most optimal stimulation protocols for acute and longer-lasting efficacy.
Collapse
Affiliation(s)
- Helena M. Gellersen
- 0000000121885934grid.5335.0Department of Psychology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
34
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The use of transcranial magnetic stimulation as a treatment for movement disorders: A critical review. Mov Disord 2019; 34:769-782. [PMID: 31034682 DOI: 10.1002/mds.27705] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation is a safe and painless non-invasive brain stimulation technique that has been largely used in the past 30 years to explore cortical function in healthy participants and, inter alia, the pathophysiology of movement disorders. During the years, its use has evolved from primarily research purposes to treatment of a large variety of neurological and psychiatric diseases. In this article, we illustrate the basic principles on which the therapeutic use of transcranial magnetic stimulation is based and review the clinical trials that have been performed in patients with movement disorders. METHODS A search of the PubMed database for research and review articles was performed on therapeutic applications of transcranial magnetic stimulation in movement disorders. The search included the following conditions: Parkinson's disease, dystonia, Tourette syndrome and other chronic tic disorders, Huntington's disease and choreas, and essential tremor. The results of the studies and possible mechanistic explanations for the relatively minor effects of transcranial magnetic stimulation are discussed. Possible ways to improve the methodology and achieve greater therapeutic efficacy are discussed. CONCLUSION Despite the promising and robust rationales for the use of transcranial magnetic stimulations as a treatment tool in movement disorders, the results taken as a whole are not as successful as were initially expected. There is encouraging evidence that transcranial magnetic stimulation may improve motor symptoms and depression in Parkinson's disease, but the efficacy in other movement disorders is unclear. Possible improvements in methodology are on the horizon but have yet to be implemented in large clinical studies. © 2019 International Parkinson and Movement Disorder Society © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Isernia, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology University College London, London, UK
| |
Collapse
|
35
|
Kar SK. Predictors of Response to Repetitive Transcranial Magnetic Stimulation in Depression: A Review of Recent Updates. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:25-33. [PMID: 30690937 PMCID: PMC6361049 DOI: 10.9758/cpn.2019.17.1.25] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 12/29/2022]
Abstract
Transcranial magnetic stimulation (TMS) has been increasingly used in the treatment of various neuropsychiatric disorders including depression over the past two decades. The responses to treatment with TMS are variable as found in the recent studies. Evidences suggest that various factors influence the outcome of depression treated with TMS. Understanding the predictors of response to TMS treatment in depression will guide the clinician in appropriate selection of patients for TMS treatment as well as needful modification in the TMS technique and protocol to have a better clinical outcome. This article comprehensively reviews the factors that predict the outcome of TMS treatment in depression.
Collapse
Affiliation(s)
- Sujita Kumar Kar
- Department of Psychiatry, King George's Medical University, Lucknow, India
| |
Collapse
|
36
|
Peng D, Yao Z. Neuroimaging Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:59-83. [DOI: 10.1007/978-981-32-9271-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
37
|
Fonseka TM, MacQueen GM, Kennedy SH. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J Affect Disord 2018; 233:21-35. [PMID: 29150145 DOI: 10.1016/j.jad.2017.10.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/26/2017] [Accepted: 10/30/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Current practice for selecting pharmacological and non-pharmacological antidepressant treatments has yielded low response and remission rates in Major Depressive Disorder (MDD). Neuroimaging biomarkers of brain structure and function may be useful in guiding treatment selection by predicting response vs. non-response outcomes. METHODS In this review, we summarize data from studies examining predictors of treatment response using structural and functional neuroimaging modalities, as they pertain to pharmacotherapy, psychotherapy, and stimulation treatment strategies. A literature search was conducted in OVID Medline, EMBASE, and PsycINFO databases with coverage from January 1990 to January 2017. RESULTS Several imaging biomarkers of therapeutic response in MDD emerged: frontolimbic regions, including the prefrontal cortex, anterior cingulate cortex, hippocampus, amygdala, and insula were regions of interest. Since these sub-regions are implicated in the etiology of MDD, their association with response outcomes may be the result of treatments having a normalizing effect on structural or activation abnormalities. LIMITATIONS The direction of findings is inconsistent in studies examining these biomarkers, and variation across 'biotypes' within MDD may account for this. Limitations in sample size and differences in methodology likely also contribute. CONCLUSIONS The identification of accurate, reliable neuroimaging biomarkers of treatment response holds promise toward improving treatment outcomes and reducing burden of illness for patients with MDD. However, before these biomarkers can be translated into clinical practice, they will need to be replicated and validated in large, independent samples, and integrated with data from other biological systems.
Collapse
Affiliation(s)
- Trehani M Fonseka
- Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, Calgary, AB, Canada; Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
38
|
Bridges NR, McKinley RA, Boeke D, Sherwood MS, Parker JG, McIntire LK, Nelson JM, Fletchall C, Alexander N, McConnell A, Goodyear C, Nelson JT. Single Session Low Frequency Left Dorsolateral Prefrontal Transcranial Magnetic Stimulation Changes Neurometabolite Relationships in Healthy Humans. Front Hum Neurosci 2018; 12:77. [PMID: 29632477 PMCID: PMC5879132 DOI: 10.3389/fnhum.2018.00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/12/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Dorsolateral prefrontal cortex (DLPFC) low frequency repetitive transcranial magnetic stimulation (LF-rTMS) has shown promise as a treatment and investigative tool in the medical and research communities. Researchers have made significant progress elucidating DLPFC LF-rTMS effects—primarily in individuals with psychiatric disorders. However, more efforts investigating underlying molecular changes and establishing links to functional and behavioral outcomes in healthy humans are needed. Objective: We aimed to quantify neuromolecular changes and relate these to functional changes following a single session of DLPFC LF-rTMS in healthy participants. Methods: Eleven participants received sham-controlled neuronavigated 1 Hz rTMS to the region most activated by a 7-letter Sternberg working memory task (SWMT) within the left DLPFC. We quantified SWMT performance, functional magnetic resonance activation and proton Magnetic resonance spectroscopy (MRS) neurometabolite measure changes before and after stimulation. Results: A single LF-rTMS session was not sufficient to change DLPFC neurometabolite levels and these changes did not correlate with DLPFC activation changes. Real rTMS, however, significantly altered neurometabolite correlations (compared to sham rTMS), both with baseline levels and between the metabolites themselves. Additionally, real rTMS was associated with diminished reaction time (RT) performance improvements and increased activation within the motor, somatosensory and lateral occipital cortices. Conclusion: These results show that a single session of LF-rTMS is sufficient to influence metabolite relationships and causes widespread activation in healthy humans. Investigating correlational relationships may provide insight into mechanisms underlying LF-rTMS.
Collapse
Affiliation(s)
| | - Richard A McKinley
- Warfighter Interfaces Division, Applied Neuroscience Branch, Wright-Patterson AFB (WPAFB), Dayton, OH, United States
| | - Danielle Boeke
- Warfighter Interfaces Division, Applied Neuroscience Branch, Wright-Patterson AFB (WPAFB), Dayton, OH, United States
| | - Matthew S Sherwood
- Wright State Research Institute, Wright State University, Dayton, OH, United States
| | - Jason G Parker
- Kettering Health Network Innovation Center, Kettering, OH, United States
| | | | | | - Catherine Fletchall
- Grandview Medical Center, Kettering Health Network, Dayton, OH, United States
| | - Natasha Alexander
- Grandview Medical Center, Kettering Health Network, Dayton, OH, United States
| | - Amanda McConnell
- Grandview Medical Center, Kettering Health Network, Dayton, OH, United States
| | | | - Jeremy T Nelson
- Research Imaging Institute, School of Medicine, University of Texas Health Science Center, San Antonio, San Antonio, TX, United States
| |
Collapse
|
39
|
Cocchi L, Zalesky A. Personalized Transcranial Magnetic Stimulation in Psychiatry. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:731-741. [PMID: 29571586 DOI: 10.1016/j.bpsc.2018.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/02/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that allows for modulating the activity of local neural populations and related neural networks. TMS is touted as a viable intervention to normalize brain activity and alleviate some psychiatric symptoms. However, TMS interventions are known to be only moderately reliable, and the efficacy of such therapies remains to be proven for psychiatric disorders other than depression. We review new opportunities to personalize TMS interventions using neuroimaging and computational modeling, aiming to optimize treatment to suit particular individuals and clinical subgroups. Specifically, we consider the prospect of improving the efficacy of existing TMS interventions by parsing broad diagnostic categories into biologically and clinically homogeneous biotypes. Biotypes can provide distinct treatment targets for optimized TMS interventions. We further discuss the utility of computational models in refining TMS personalization and efficiently establishing optimal cortical targets for distinct biotypes. Personalizing cortical stimulation targets, treatment frequencies, and intensities can improve the therapeutic efficacy of TMS and potentially establish noninvasive brain stimulation as a viable treatment for psychiatric symptoms.
Collapse
Affiliation(s)
- Luca Cocchi
- QIMR Berghofer Medical Research Institute, University of Queensland, Brisbane, Queensland, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia; Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Riley CA, Renshaw PF. Brain choline in major depression: A review of the literature. Psychiatry Res Neuroimaging 2018; 271:142-153. [PMID: 29174766 DOI: 10.1016/j.pscychresns.2017.11.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
The focus of this review is to provide a synthesis of the current literature on the role of brain choline, as measured by proton magnetic resonance spectroscopy (1H-MRS), in major depressive disorder (MDD). The most recent 1H-MRS literature review took place over 10 years ago and, reflecting the high level of research on this topic, much has been learned since then. Higher brain choline levels have been linked to an increase in depression, and a cholinergic model for MDD development has been postulated. However, current 1H-MRS studies have been inconclusive regarding the role of choline in depression. Data from eighty-six peer-reviewed studies were analyzed for a random-effects model meta-analysis. Two significant findings are reported. Papers that did not report segmentation had a significant, moderate effect size. Higher choline concentrations in the frontal lobe were found in depressed patients, both in those who responded to treatment and those who did not, after treatment with psychiatric medication, repetitive transcranial magnetic stimulation, or electroconvulsive therapy. Findings from this review may add to existing information regarding the role of brain choline in MDD. This may provide a future target for treatment and drug development. It also may serve as a biomarker for treatment progress.
Collapse
Affiliation(s)
- Colin A Riley
- University of Utah, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT, USA; Rocky Mountain MIRECC, Department of Veterans Affairs, 500 Foothill Drive, Salt Lake City, UT, USA.
| | - Perry F Renshaw
- University of Utah, Department of Psychiatry, 383 Colorow Drive, Salt Lake City, UT, USA; Rocky Mountain MIRECC, Department of Veterans Affairs, 500 Foothill Drive, Salt Lake City, UT, USA
| |
Collapse
|
41
|
Tavares DF, Myczkowski ML, Alberto RL, Valiengo L, Rios RM, Gordon P, de Sampaio-Junior B, Klein I, Mansur CG, Marcolin MA, Lafer B, Moreno RA, Gattaz W, Daskalakis ZJ, Brunoni AR. Treatment of Bipolar Depression with Deep TMS: Results from a Double-Blind, Randomized, Parallel Group, Sham-Controlled Clinical Trial. Neuropsychopharmacology 2017; 42:2593-2601. [PMID: 28145409 PMCID: PMC5686495 DOI: 10.1038/npp.2017.26] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 12/26/2022]
Abstract
Bipolar depression (BD) is a highly prevalent condition with limited therapeutic options. Deep (H1-coil) transcranial magnetic stimulation (dTMS) is a novel TMS modality with established efficacy for unipolar depression. We conducted a randomized sham-controlled trial to evaluate the efficacy and safety of dTMS in treatment-resistant BD patients. Patients received 20 sessions of active or sham dTMS over the left dorsolateral prefrontal cortex (H1-coil, 55 18 Hz 2 s 120% MT trains). The primary outcome was changes in the 17-item Hamilton Depression Rating Scale (HDRS-17) from baseline to endpoint (week 4). Secondary outcomes were changes from baseline to the end of the follow-up phase (week 8), and response and remission rates. Safety was assessed using a dTMS adverse effects questionnaire and the Young Mania Rating Scale to assess treatment-emergent mania switch (TEMS). Out of 50 patients, 43 finished the trial. There were 2 and 5 dropouts in the sham and active groups, respectively. Active dTMS was superior to sham at end point (difference favoring dTMS=4.88; 95% CI 0.43 to 9.32, p=0.03) but not at follow-up. There was also a trend for greater response rates in the active (48%) vs sham (24%) groups (OR=2.92; 95% CI=0.87 to 9.78, p=0.08). Remission rates were not statistically different. No TEMS episodes were observed. Deep TMS is a potentially effective and well-tolerated add-on therapy in resistant bipolar depressed patients receiving adequate pharmacotherapy.
Collapse
Affiliation(s)
- Diego F Tavares
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Martin L Myczkowski
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rodrigo L Alberto
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Leandro Valiengo
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Rosa M Rios
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pedro Gordon
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bernardo de Sampaio-Junior
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- University Hospital, University of São Paulo, São Paulo, Brazil
| | - Izio Klein
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- University Hospital, University of São Paulo, São Paulo, Brazil
| | - Carlos G Mansur
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marco Antonio Marcolin
- Department and Institute of Neurology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Beny Lafer
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo A Moreno
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Wagner Gattaz
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Zafiris J Daskalakis
- Centre for Addiction and Mental Health, Clarke Division, Toronto, Ontario, Canada
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation (SIN-EMT), Department and Institute of Psychiatry, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
- Laboratory of Neuroscience (LIM27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
- University Hospital, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Brennan BP, Admon R, Perriello C, LaFlamme EM, Athey AJ, Pizzagalli DA, Hudson JI, Pope HG, Jensen JE. Acute change in anterior cingulate cortex GABA, but not glutamine/glutamate, mediates antidepressant response to citalopram. Psychiatry Res 2017; 269:9-16. [PMID: 28892734 PMCID: PMC5642118 DOI: 10.1016/j.pscychresns.2017.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 12/28/2022]
Abstract
Little is known about the acute effects of antidepressant treatments on brain glutamate and gamma-amino-butyric acid (GABA) levels, and their association with clinical response. Using proton magnetic resonance spectroscopy (1H-MRS) we examined longitudinally the effects of citalopram on glutamine/glutamate ratios and GABA levels in the pregenual anterior cingulate cortex (pgACC) of individuals with major depressive disorder (MDD). We acquired 1H-MRS scans at baseline and at days 3, 7, and 42 of citalopram treatment in nineteen unmedicated individuals with MDD. Ten age- and sex-matched non-depressed comparison individuals were scanned once. The association between 1) baseline metabolites and 2) change in metabolites from baseline to each time point and clinical response (change in Montgomery-Åsberg Depression Rating Scale (MADRS) score from baseline to day 42) was assessed by longitudinal regression analysis using generalized estimating equations. Contrary to our hypotheses, no significant associations emerged between glutamate metabolites and clinical response; however, greater increases (or smaller decreases) in pgACC GABA levels from baseline to days 3 and 7 of citalopram treatment were significantly associated with clinical response. These findings suggest that an acute change in GABA levels in pgACC predicts, and possibly mediates, later clinical response to citalopram treatment in individuals with MDD.
Collapse
Affiliation(s)
- Brian P Brennan
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Chris Perriello
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Erin M LaFlamme
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA
| | - Alison J Athey
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety, and Stress Research, McLean Hospital, Belmont, MA, USA; McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - James I Hudson
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Harrison G Pope
- Biological Psychiatry Laboratory, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - J Eric Jensen
- McLean Imaging Center, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Baeken C, Lefaucheur JP, Van Schuerbeek P. The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from 1 H MR spectroscopy. Clin Neurophysiol 2017; 128:1664-1672. [DOI: 10.1016/j.clinph.2017.06.243] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 05/21/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022]
|
44
|
Rosa CE, Soares JC, Figueiredo FP, Cavalli RC, Barbieri MA, Schaufelberger MS, Salmon CEG, Del-Ben CM, Santos AC. Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy. Psychiatry Res Neuroimaging 2017; 265:18-25. [PMID: 28494346 DOI: 10.1016/j.pscychresns.2017.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 12/11/2022]
Abstract
Although postpartum depression (PPD) is a prevalent subtype of major depressive disorder, neuroimaging studies on PPD are rare, particularly those identifying neurochemical abnormalities obtained by proton magnetic resonance spectroscopy (¹H-MRS). The dorsolateral prefrontal (DLPF) and the anterior cingulate gyrus (ACG) are part of the neural pathways involved in executive functions and emotional processing, and both structures have been implicated in the neurobiology of depressive disorders. This study aimed to evaluate brain metabolites abnormalities in women with PPD compared with healthy postpartum (HP) women. Thirty-six PPD (34 without antidepressants) and 25 HP women underwent a ¹H-MRS acquired on a 3-T MRI system, with the volume of interest positioned in ACG and DLPF. An ANCOVA was conducted with age, postpartum time, and contraceptive type as covariates. PPD group presented significantly lower Glutamate+Glutamine (Glx, -0.95mM) and N-acetylaspartate+N-acetylaspartylglutamate (NAA, -0.60mM) values in DLPF. There were no significant differences between groups in ACG, but we found a significant increase of Glutamate (Glu, 2.18mM) and Glx (1.84mM) in participants using progestogen-only contraceptives. These findings suggest glutamatergic dysfunction and neuronal damage in the DLPF of PPD patients, similarly to other subtypes of depressive disorders. Progestogens seem to interfere in the neurochemistry of ACG.
Collapse
Affiliation(s)
- Carlos E Rosa
- Department of Internal Medicine, Radiology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Jair C Soares
- Psychiatry and Behavioral Sciences at the University of Texas Health Science Center at Houston, USA
| | - Felipe P Figueiredo
- Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo C Cavalli
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Marco A Barbieri
- Department of the Pediatrics and Puericulture, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maristela S Schaufelberger
- Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlos E G Salmon
- Department of Physics, Faculty of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristina M Del-Ben
- Department of Neuroscience and Behavior, Psychiatric Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio C Santos
- Department of Internal Medicine, Radiology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Bulteau S, Sébille V, Fayet G, Thomas-Ollivier V, Deschamps T, Bonnin-Rivalland A, Laforgue E, Pichot A, Valrivière P, Auffray-Calvier E, Fortin J, Péréon Y, Vanelle JM, Sauvaget A. Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: study protocol for a randomised controlled trial. Trials 2017; 18:17. [PMID: 28086851 PMCID: PMC5237321 DOI: 10.1186/s13063-016-1764-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023] Open
Abstract
Background The treatment of depression remains a challenge since at least 40% of patients do not respond to initial antidepressant therapy and 20% present chronic symptoms (more than 2 years despite standard treatment administered correctly). Repetitive transcranial magnetic stimulation (rTMS) is an effective adjuvant therapy but still not ideal. Intermittent Theta Burst Stimulation (iTBS), which has only been used recently in clinical practice, could have a faster and more intense effect compared to conventional protocols, including 10-Hz high-frequency rTMS (HF-rTMS). However, no controlled study has so far highlighted the superiority of iTBS in resistant unipolar depression. Methods/design This paper focuses on the design of a randomised, controlled, double-blind, single-centre study with two parallel arms, carried out in France, in an attempt to assess the efficacy of an iTBS protocol versus a standard HF- rTMS protocol. Sixty patients aged between 18 and 75 years of age will be enrolled. They must be diagnosed with major depressive disorder persisting despite treatment with two antidepressants at an effective dose over a period of 6 weeks during the current episode. The study will consist of two phases: a treatment phase comprising 20 sessions of rTMS to the left dorsolateral prefrontal cortex, localised via a neuronavigation system and a 6-month longitudinal follow-up. The primary endpoint will be the number of responders per group, defined by a decrease of at least 50% in the initial score on the Montgomery and Asberg Rating Scale (MADRS) at the end of rTMS sessions. The secondary endpoints will be: response rate 1 month after rTMS sessions; number of remissions defined by a MADRS score of <8 at the endpoint and 1 month after; the number of responses and remissions maintained over the next 6 months; quality of life; and the presence of predictive markers of the therapeutic response: clinical (dimensional scales), neuropsychological (evaluation of cognitive functions), motor (objective motor testing) and neurophysiological (cortical excitability measurements). Discussion The purpose of our study is to check the assumption of iTBS superiority in the management of unipolar depression and we will discuss its effect over time. In case of a significant increase in the number of therapeutic responses with a prolonged effect, the iTBS protocol could be considered a first-line protocol in resistant unipolar depression. Trial registration ClinicalTrials.gov, Identifier NCT02376491. Registered on 17 February 2015 at http://clinicaltrials.gov. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1764-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Samuel Bulteau
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France. .,University of Nantes, University of Tours, INSERM, SPHERE U1246, F-44000, Nantes, France.
| | - Veronique Sébille
- University of Nantes, University of Tours, INSERM, SPHERE U1246, F-44000, Nantes, France
| | - Guillemette Fayet
- CHU de Nantes, Department of Clinical Neurophysiology, F-44000, Nantes, France
| | - Veronique Thomas-Ollivier
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (E.A. 4334), F-44000, Nantes, France
| | - Thibault Deschamps
- University of Nantes, Laboratory 'Movement, Interactions, Performance' (E.A. 4334), F-44000, Nantes, France
| | - Annabelle Bonnin-Rivalland
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France
| | - Edouard Laforgue
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France
| | - Anne Pichot
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France
| | - Pierre Valrivière
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France
| | | | - June Fortin
- CHU de Nantes, Delegation of Clinical Research and Innovation, F-44000, Nantes, France
| | - Yann Péréon
- CHU de Nantes, Department of Clinical Neurophysiology, F-44000, Nantes, France
| | - Jean-Marie Vanelle
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France
| | - Anne Sauvaget
- CHU de Nantes, Clinical Investigation Unit 18, Department of Addictology and Consultation-liaison Psychiatry, F-44000, Nantes, France.,University of Nantes, University of Tours, INSERM, SPHERE U1246, F-44000, Nantes, France
| |
Collapse
|
46
|
Dlabac-de Lange JJ, Liemburg EJ, Bais L, van de Poel-Mustafayeva AT, de Lange-de Klerk ES, Knegtering H, Aleman A. Effect of Bilateral Prefrontal rTMS on Left Prefrontal NAA and Glx Levels in Schizophrenia Patients with Predominant Negative Symptoms: An Exploratory Study. Brain Stimul 2017; 10:59-64. [DOI: 10.1016/j.brs.2016.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/25/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022] Open
|
47
|
Henigsberg N, Šarac H, Radoš M, Radoš M, Ozretić D, Foro T, Erdeljić Turk V, Hrabač P, Bajs Janović M, Rak B, Kalember P. Lower Choline-Containing Metabolites/Creatine (Cr) Rise and Failure to Sustain NAA/Cr Levels in the Dorsolateral Prefrontal Cortex Are Associated with Depressive Episode Recurrence under Maintenance Therapy: A Proton Magnetic Resonance Spectroscopy Retrospective Cohort Study. Front Psychiatry 2017; 8:277. [PMID: 29321747 PMCID: PMC5733547 DOI: 10.3389/fpsyt.2017.00277] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/27/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The aim of this study was to evaluate the relationship between changes in proton magnetic resonance spectroscopy (1H-MRS) parameters at the start of the index episode recovery phase and at recurrence in patients with recurrent depression who were treated with prolonged maintenance therapy. METHODS 1H-MRS parameters were analyzed in 48 patients with recurrent depression who required maintenance therapy with antidepressant medication prescribed by a psychiatrist and who continued with the same antidepressant during the maintenance phase, either to recurrence of depression, completion of the 10-year observation period, or the start of the withdrawal phase (tapering-off antidepressant). N-acetylaspartate (NAA), choline-containing metabolites (Cho), creatine (Cr), and glutamine/glutamate were measured at the start of the recovery phase and 6 months later. RESULTS Recurrent depressive episodes occurred in 20 patients. These individuals had a smaller increase in Cho/Cr after the beginning of the recovery phase compared to the non-recurrent patient group and also exhibited a decreased NAA/Cr ratio. CONCLUSION Sustainable NAA and increased Cho levels at the onset of the recovery phase of the index episode are early markers of antidepressant effectiveness associated with a lower risk of major depressive disorder recurrence. The NAA and Cho changes in the non-recurrent group may be attributable to increased brain resilience, contrary to the transient temporal effect observed in subjects who experienced a depressive episode.
Collapse
Affiliation(s)
| | - Helena Šarac
- University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marko Radoš
- School of Medicine, University of Zagreb, Zagreb, Croatia.,University Hospital Centre Zagreb, Zagreb, Croatia
| | - Milan Radoš
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - David Ozretić
- School of Medicine, University of Zagreb, Zagreb, Croatia.,University Hospital Centre Zagreb, Zagreb, Croatia
| | - Tamara Foro
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Pero Hrabač
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Benedict Rak
- University Hospital "Sveti Duh", Zagreb, Croatia
| | | |
Collapse
|
48
|
Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections. Clin Neurophysiol 2016; 127:3394-3405. [PMID: 27672727 DOI: 10.1016/j.clinph.2016.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a relatively recent addition to the neurostimulation armamentarium for treating individuals suffering from treatment refractory depression and has demonstrated efficacy in clinical trials. One of the proposed mechanisms of action underlying the therapeutic effects of rTMS for depression involves the modulation of depression-associated dysfunctional activity in distributed brain networks involving frontal cortical and subcortical limbic regions, via changes to aberrant functional and structural connectivity. Although there is currently a paucity of published data, we review changes to functional and structural connectivity following rTMS for depression. Current evidence suggests an rTMS-induced normalisation of depression-associated dysfunction within and between large scale functional networks, including the default mode, central executive and salience networks, associated with an amelioration of depressive symptoms. Additionally, changes to measures of white matter microstructure, primarily in the dorsolateral prefrontal cortex, have also been reported following rTMS for depression, possibly reversing depression-associated abnormalities. We argue that measures of functional and structural connectivity can be used to optimise rTMS targeting within the dorsolateral prefrontal cortex and also to explore novel rTMS targets for depression. Finally, we discuss the utility of measures of brain connectivity as predictive biomarkers of rTMS treatment response in guiding therapeutic decisions.
Collapse
|
49
|
Wu Y, Fu Y, Rao C, Li W, Liang Z, Zhou C, Shen P, Cheng P, Zeng L, Zhu D, Zhao L, Xie P. Metabolomic analysis reveals metabolic disturbances in the prefrontal cortex of the lipopolysaccharide-induced mouse model of depression. Behav Brain Res 2016; 308:115-27. [PMID: 27102340 DOI: 10.1016/j.bbr.2016.04.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 11/25/2022]
Abstract
Major depressive disorder (MDD) is a debilitating illness. However, the underlying molecular mechanisms of depression remain largely unknown. Increasing evidence supports that inflammatory cytokine disturbances may be associated with the pathophysiology of depression in humans. Systemic administration of lipopolysaccharide (LPS) has been used to study inflammation-associated neurobehavioral changes in rodents, but no metabonomic study has been conducted to assess differential metabolites in the prefrontal cortex (PFC) of a LPS-induced mouse model of depression. Here, we employed a gas chromatography-mass spectrometry-based metabonomic approach in the LPS-induced mouse model of depression to investigate any significant metabolic changes in the PFC. Multivariate statistical analysis, including principal component analysis (PCA), partial least squares-discriminate analysis (PLS-DA), and pair-wise orthogonal projections to latent structures discriminant analysis (OPLS-DA), was implemented to identify differential PFC metabolites between LPS-induced depressed mice and healthy controls. A total of 20 differential metabolites were identified. Compared with control mice, LPS-treated mice were characterized by six lower level metabolites and 14 higher level metabolites. These molecular changes were closely related to perturbations in neurotransmitter metabolism, energy metabolism, oxidative stress, and lipid metabolism, which might be evolved in the pathogenesis of MDD. These findings provide insight into the pathophysiological mechanisms underlying MDD and could be of valuable assistance in the clinical diagnosis of MDD.
Collapse
Affiliation(s)
- Yu Wu
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yuying Fu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Chenglong Rao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Wenwen Li
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zihong Liang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, The Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017,China
| | - Chanjuan Zhou
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Peng Shen
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Pengfei Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Li Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Dan Zhu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Libo Zhao
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China
| | - Peng Xie
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
50
|
Li Y, Jakary A, Gillung E, Eisendrath S, Nelson SJ, Mukherjee P, Luks T. Evaluating metabolites in patients with major depressive disorder who received mindfulness-based cognitive therapy and healthy controls using short echo MRSI at 7 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:523-33. [PMID: 26861048 PMCID: PMC4891376 DOI: 10.1007/s10334-016-0526-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 11/28/2022]
Abstract
Objectives Our aim was to evaluate differences in metabolite levels between unmedicated patients with major depressive disorder (MDD) and healthy controls, to assess changes in metabolites in patients after they completed an 8-week course of mindfulness-based cognitive therapy (MBCT), and to exam the correlation between metabolites and depression severity. Materials and methods Sixteen patients with MDD and ten age- and gender-matched healthy controls were studied using 3D short echo-time (20 ms) magnetic resonance spectroscopic imaging (MRSI) at 7 Tesla. Relative metabolite ratios were estimated in five regions of interest corresponding to insula, anterior cingulate cortex (ACC), caudate, putamen, and thalamus. Results In all cases, MBCT reduced severity of depression. The ratio of total choline-containing compounds/total creatine (tCr) in the right caudate was significantly increased compared to that in healthy controls, while ratios of N-acetyl aspartate (NAA)/tCr in the left ACC, myo-inositol/tCr in the right insula, and glutathione/tCr in the left putamen were significantly decreased. At baseline, the severity of depression was negatively correlated with my-inositol/tCr in the left insula and putamen. The improvement in depression severity was significantly associated with changes in NAA/tCr in the left ACC. Conclusions This study has successfully evaluated regional differences in metabolites for patients with MDD who received MBCT treatment and in controls using 7 Tesla MRSI.
Collapse
Affiliation(s)
- Yan Li
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, Radiology Box 2532, Byers Hall, 1700 4th Street, San Francisco, CA, 94158-2532, USA.
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, Radiology Box 2532, Byers Hall, 1700 4th Street, San Francisco, CA, 94158-2532, USA
| | - Erin Gillung
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Stuart Eisendrath
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, Radiology Box 2532, Byers Hall, 1700 4th Street, San Francisco, CA, 94158-2532, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pratik Mukherjee
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, Radiology Box 2532, Byers Hall, 1700 4th Street, San Francisco, CA, 94158-2532, USA
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, Radiology Box 2532, Byers Hall, 1700 4th Street, San Francisco, CA, 94158-2532, USA
| |
Collapse
|