1
|
Choudhery MS, Arif T, Mahmood R, Harris DT. Stem Cell-Based Acellular Therapy: Insight into Biogenesis, Bioengineering and Therapeutic Applications of Exosomes. Biomolecules 2024; 14:792. [PMID: 39062506 PMCID: PMC11275160 DOI: 10.3390/biom14070792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The vast regenerative potential of stem cells has laid the foundation for stem cell-based therapies. However, certain challenges limit the application of cell-based therapies. The therapeutic use of cell-free therapy can avoid limitations associated with cell-based therapies. Acellular stem cell-based therapies rely on the use of biological factors released by stem cells, including growth factors and extracellular vesicles such as exosomes. Due to their comparable regenerative potential, acellular therapies may provide a feasible and scalable alternative to stem cell-based therapies. Exosomes are small vesicles secreted by various types of cells, including stem cells. Exosomes contain parent cell-derived nucleic acids, proteins, lipids, and other bioactive molecules. They play an important role in intra-cellular communication and influence the biological characteristics of cells. Exosomes inherit the properties of their parent cells; therefore, stem cell-derived exosomes are of particular interest for applications of regenerative medicine. In comparison to stem cell-based therapy, exosome therapy offers several benefits, such as easy transport and storage, no risk of immunological rejection, and few ethical dilemmas. Unlike stem cells, exosomes can be lyophilized and stored off-the-shelf, making acellular therapies standardized and more accessible while reducing overall treatment costs. Exosome-based acellular treatments are therefore readily available for applications in patients at the time of care. The current review discusses the use of exosomes as an acellular therapy. The review explores the molecular mechanism of exosome biogenesis, various methods for exosome isolation, and characterization. In addition, the latest advancements in bioengineering techniques to enhance exosome potential for acellular therapies have been discussed. The challenges in the use of exosomes as well as their diverse applications for the diagnosis and treatment of diseases have been reviewed in detail.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan; (M.S.C.); (T.A.)
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Hammer FA, Hölmich P, Nehlin JO, Vomstein K, Blønd L, Hölmich LR, Barfod KW, Bagge J. Microfragmented abdominal adipose tissue-derived stem cells from knee osteoarthritis patients aged 29-65 years demonstrate in vitro stemness and low levels of cellular senescence. J Exp Orthop 2024; 11:e12056. [PMID: 38911188 PMCID: PMC11190460 DOI: 10.1002/jeo2.12056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Purpose To investigate the level of cellular senescence in stem cells derived from microfragmented abdominal adipose tissue harvested from patients with knee osteoarthritis (OA). Methods Stem cells harvested from microfragmented abdominal adipose tissue from 20 patients with knee OA, aged 29-65 years (mean = 49.8, SD = 9.58), were analysed as a function of patient age and compared with control cells exhibiting signs of cellular senescence. Steady-state mRNA levels of a panel of genes associated with senescence were measured by qPCR. Intracellular senescence-associated proteins p16 and p21, and senescence-associated β-galactosidase activity were measured by flow cytometry. Cellular proliferation was assessed using a 5-ethynyl-2'-deoxyuridine proliferation assay. Stemness was assessed by stem cell surface markers using flow cytometry and the capacity to undergo adipogenic and osteogenic differentiation in vitro. Results No correlation was found between cellular senescence levels of the microfragmented adipose tissue-derived stem cells and patient age for any of the standard assays used to quantify senescence. The level of cellular senescence was generally low across all senescence-associated assays compared to the positive senescence control. Stemness was verified for all samples. An increased capacity to undergo adipogenic differentiation was shown with increasing patient age (p = 0.02). No effect of patient age was found for osteogenic differentiation. Conclusions Autologous microfragmented adipose tissue-derived stem cells may be used in clinical trials of knee OA of patients aged 29-65 years, at least until passage 4, as they show stemness potential and negligible senescence in vitro. Level of Evidence Not applicable.
Collapse
Affiliation(s)
- Freja Aabæk Hammer
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Per Hölmich
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Jan O. Nehlin
- Department of Clinical ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Kilian Vomstein
- Department of Obstetrics and Gynecology, The Fertility ClinicCopenhagen University Hospital—HvidovreHvidovreDenmark
| | - Lars Blønd
- Department of Orthopedic SurgeryZealand University Hospital—KøgeKøgeDenmark
| | | | - Kristoffer Weisskirchner Barfod
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Jasmin Bagge
- Sports Orthopedic Research Center—Copenhagen (SORC‐C), Department of Orthopedic SurgeryCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| |
Collapse
|
3
|
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med 2024; 13:3202. [PMID: 38892913 PMCID: PMC11172642 DOI: 10.3390/jcm13113202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Cancer encompasses various elements occurring at the cellular and genetic levels, necessitating an immunotherapy capable of efficiently addressing both aspects. T cells can combat cancer cells by specifically recognizing antigens on them. This innate capability of T cells has been used to develop cellular immunotherapies, but most of them can only target antigens through major histocompatibility complexes (MHCs). New gene-editing techniques such as clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (CRISPR-cas9) can precisely edit the DNA sequences. CRISPR-cas9 has made it possible to generate genetically engineered chimeric antigen receptors (CARs) that can overcome the problems associated with old immunotherapies. In chimeric antigen receptor T (CAR-T) cell therapy, the patient's T cells are isolated and genetically modified to exhibit synthetic CAR(s). CAR-T cell treatment has shown remarkably positive clinical outcomes in cancers of various types. Nevertheless, there are various challenges that reduce CAR-T effectiveness in solid tumors. It is required to address these challenges in order to make CAR-T cell therapy a better and safer option. Combining CAR-T treatment with other immunotherapies that target multiple antigens has shown positive outcomes. Moreover, recently generated Boolean logic-gated advanced CARs along with artificial intelligence has expanded its potential to treat solid tumors in addition to blood cancers. This review aims to describe the structure, types, and various methods used to develop CAR-T cells. The clinical applications of CAR-T cells in hematological malignancies and solid tumours have been described in detail. In addition, this discussion has addressed the limitations associated with CAR-T cells, explored potential strategies to mitigate CAR-T-related toxicities, and delved into future perspectives.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54600, Pakistan;
| | - Ruhma Mahmood
- Jinnah Hospital, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - David T. Harris
- Department of Immunobiology, College of Medicine, University of Arizona Health Sciences Biorepository, The University of Arizona, Tucson, AZ 85724-5221, USA;
| |
Collapse
|
4
|
Rusconi G, Cremona M, Gallazzi M, Mariotta L, Gola M, Gandolfi E, Malacco M, Soldati G. Good Manufacturing Practice-Compliant Cryopreserved and Thawed Native Adipose Tissue Ready for Fat Grafting. J Clin Med 2024; 13:3028. [PMID: 38892739 PMCID: PMC11172459 DOI: 10.3390/jcm13113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Background: As adipose tissue-derived mesenchymal stem cells are becoming the tool of choice for many clinical applications; standardized cryopreservation protocols are necessary to deliver high-quality samples. For this purpose, the cryopreservation and thawing of native adipose tissue under GMP conditions could represent an extremely useful and powerful tool for the direct reinfusion of the tissue, and consequently, of its stromal vascular fraction. Methods: In this study, 19 samples of adipose tissue were cryopreserved and characterized before and after storage in liquid nitrogen vapors. Of these 19 samples, 14 were processed in research and 5 in a GMP-compliant environment. Storage with and without cryopreservation medium was also evaluated. After one week to three months of storage, samples were thawed, washed, enzymatically digested, and characterized with flow cytometry. Results: The results show that there is a loss of nearly 50% of total nucleated cells during the cryopreservation/thawing process. Non-GMP and GMP samples are comparable for all parameters analyzed. This study also allowed us to exclude the cryopreservation of adipose tissue without any cryopreservation medium. Conclusions: The data shown in this work are consistent with the idea that native adipose tissue, if properly processed and controlled, could be a useful source of cells for regenerative medicine, keeping in mind that there is a clear difference in the quality between fresh and thawed samples.
Collapse
Affiliation(s)
- Giulio Rusconi
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland (M.C.)
| | | | | | - Luca Mariotta
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland (M.C.)
- Swiss Stem Cells Biotech AG, 8008 Zurich, Switzerland
| | - Mauro Gola
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland (M.C.)
| | - Eugenio Gandolfi
- Clinica Sant’Anna, Swiss Medical Network, 6924 Sorengo, Switzerland
| | - Matteo Malacco
- Clinica Sant’Anna, Swiss Medical Network, 6924 Sorengo, Switzerland
| | - Gianni Soldati
- Swiss Stem Cell Foundation, 6900 Lugano, Switzerland (M.C.)
| |
Collapse
|
5
|
Bagge J, Hölmich P, Hammer FA, Nehlin JO, Vomstein K, Blønd L, Hölmich LR, Barfod KW. Successful isolation of viable stem cells from cryopreserved microfragmented human adipose tissue from patients with knee osteoarthritis - a comparative study of isolation by tissue explant culture and enzymatic digestion. J Exp Orthop 2023; 10:31. [PMID: 36952141 PMCID: PMC10036689 DOI: 10.1186/s40634-023-00596-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/10/2023] [Indexed: 03/24/2023] Open
Abstract
PURPOSE To investigate if viable stem cells could be isolated and expanded from cryopreserved microfragmented adipose tissue (AT) harvested from patients with knee osteoarthritis. METHODS Microfragmented abdominal AT from knee osteoarthritis patients was cryopreserved at -80 °C in cryoprotectant-medium. The samples were thawed for stem cell isolation by tissue explant culture (TEC) and enzymatic digestion (ED), respectively. Viability, population doublings, and doubling time were assessed by trypan blue staining and flow cytometry. Cell type and senescence-associated β-galactosidase activity were analyzed by flow cytometry. Osteogenic and adipogenic differentiation was assessed quantitatively by Alizarin-Red-S and Oil-Red-O staining, respectively. RESULTS Microfragmented AT from 7 patients was cryopreserved for a period of 46-150 days (mean (SD) 115.9 days (44.3 days)). Viable stem cells were successfully recovered and expanded from all patients using both isolation methods with no significant difference in viable population doublings or doubling time from passage 1 to 3 (p > 0.05). Low levels of senescence-associated β-galactosidase activity was detected for both methods with no significant difference between TEC and ED (p = 0.17). Stemness was verified by stem cell surface markers and osteogenic and adipogenic differentiation performance. Adventitial stem cells (CD31-CD34+CD45-CD90+CD146-), pericytes (CD31-CD34-CD45-CD90+CD146+), transitional pericytes (CD31-CD34+CD45-CD90+CD146+), and CD271+ stem cells (CD31-CD45-CD90+CD271+) were identified using both methods. More pericytes were present when using TEC (25% (24%)) compared to ED (3% (2%)) at passage 4 (p = 0.04). CONCLUSIONS Viable stem cells can be isolated and expanded from cryopreserved microfragmented AT using both TEC and ED. TEC provides more clinically relevant pericytes than ED.
Collapse
Affiliation(s)
- Jasmin Bagge
- Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark.
| | - Per Hölmich
- Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark
| | - Freja Aabæk Hammer
- Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital - Amager and Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark
| | - Kilian Vomstein
- Department of Obstetrics and Gynecology, The Fertility Clinic, Copenhagen University Hospital - Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark
| | - Lars Blønd
- Department of Orthopedic Surgery, Zealand University Hospital - Køge, Lykkebækvej 1, 4600, Køge, Denmark
| | - Lisbet Rosenkrantz Hölmich
- Department of Plastic Surgery, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730, Herlev, Denmark
| | - Kristoffer Weisskirchner Barfod
- Sports Orthopedic Research Center - Copenhagen (SORC-C), Department of Orthopedic Surgery, Copenhagen University Hospital - Amager and Hvidovre, Kettegård Allé 30, 2650, Hvidovre, Denmark
| |
Collapse
|
6
|
Liu RR, Danesh H. Adult Mesenchymal Stem Cell Collection and Banking. Regen Med 2023. [DOI: 10.1007/978-3-030-75517-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Stem Cell Banking of Adipose Tissue. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Optimization of Adipose Tissue Cryopreservation Techniques in a Murine Model. Plast Reconstr Surg Glob Open 2021; 9:e3926. [PMID: 35028258 PMCID: PMC8751777 DOI: 10.1097/gox.0000000000003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Background: The aim of this study was to develop an adipose tissue (AT) cryopreservation protocol that is effective, simple, and maintains the functionality and viability of AT after thawing and transplantation. Methods: Two cryopreservation temperatures (T°), −20°C and −80°C, and two cryoprotective agents (CPAs), trehalose and hydroxyethyl starch (HES), were compared first in an experimental study, using a slowfreezing protocol. The five experimental groups were the following: (a) Fresh AT (control group), (b) T = −20°C, 10%HES, (c) T = −80°C, 10%HES, (d) T = −20°C, 0.35M trehalose, (e) T = −80°C, 0.35M trehalose. We evaluated the morphology (histological studies) and tissue viability by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genic expression. Based on the results of the preliminary study, an in vivo study was performed, choosing as cryopreservation T° −20°C. HES and trehalose were compared as cryoprotective agents and with a control group (fresh AT). AT grafts were transplanted into immunodeficient mice. After 1 month of inoculation, animals were euthanized and samples were recovered. Samples were weighted and processed for histological study, viability study (GAPDH genic expression), and vascularization study (VEGF genic expression). Results: The initial histological study demonstrated that all AT cryopreserved group samples showed typical histological features of AT, similar to that of the control group. Statistically significant differences were not observed (P > 0.05) in GAPDH expression between different groups related to temperature or CPA. Referring to the in vivo studies, cryopreserved groups showed good take of the graft and normal AT architectural preservation, as well as a clear vascular network. Statistically significant differences were not found (P > 0.05) with regard to graft take (%), GAPDH, or VEGF expression. Conclusion: Slow freezing at −20°C using trehalose, and −20°C using HES as cryoprotective agents are both straightforward and easy AT cryopreservation procedures, with results similar to those of fresh AT in terms of tissue viability and morphohistological characteristics.
Collapse
|
9
|
Crowley CA, Smith WPW, Seah KTM, Lim SK, Khan WS. Cryopreservation of Human Adipose Tissues and Adipose-Derived Stem Cells with DMSO and/or Trehalose: A Systematic Review. Cells 2021; 10:cells10071837. [PMID: 34360005 PMCID: PMC8307030 DOI: 10.3390/cells10071837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue senescence is implicated as a major player in obesity- and ageing-related disorders. There is a growing body of research studying relevant mechanisms in age-related diseases, as well as the use of adipose-derived stem cells in regenerative medicine. The cell banking of tissue by utilising cryopreservation would allow for much greater flexibility of use. Dimethyl sulfoxide (DMSO) is the most commonly used cryopreservative agent but is toxic to cells. Trehalose is a sugar synthesised by lower organisms to withstand extreme cold and drought that has been trialled as a cryopreservative agent. To examine the efficacy of trehalose in the cryopreservation of human adipose tissue, we conducted a systematic review of studies that used trehalose for the cryopreservation of human adipose tissues and adipose-derived stem cells. Thirteen articles, including fourteen studies, were included in the final review. All seven studies that examined DMSO and trehalose showed that they could be combined effectively to cryopreserve adipocytes. Although studies that compared nonpermeable trehalose with DMSO found trehalose to be inferior, studies that devised methods to deliver nonpermeable trehalose into the cell found it comparable to DMSO. Trehalose is only comparable to DMSO when methods are devised to introduce it into the cell. There is some evidence to support using trehalose instead of using no cryopreservative agent.
Collapse
Affiliation(s)
- Conor A. Crowley
- Australasian College of Cosmetic Surgery, Parramatta, NSW 2150, Australia;
| | - William P. W. Smith
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - K. T. Matthew Seah
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence:
| | - Soo-Keat Lim
- The Ashbrook Cosmetic Surgery, Mosman, NSW 2088, Australia;
| | - Wasim S. Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
10
|
Xiao K, Yang L, Xie W, Gao X, Huang R, Xie M. Bcl-xL mutant promotes cartilage differentiation of BMSCs by upregulating TGF-β/BMP expression levels. Exp Ther Med 2021; 22:736. [PMID: 34055053 PMCID: PMC8138271 DOI: 10.3892/etm.2021.10168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 03/19/2021] [Indexed: 12/22/2022] Open
Abstract
Bcl-xL is a transmembrane molecule in the mitochondria, with apoptosis-related and pro-metabolic functions, that also plays a role in chondrogenesis and differentiation. A Bcl-xL mutant, in which the GRI sequence is replaced by ELN, has no anti-apoptotic effect, while other biological functions of this mutant remain unchanged. The present study investigated the impact of this Bcl-xL mutant on cartilage differentiation and the expression levels of TGF-β and bone morphogenetic protein (BMP). Human bone marrow mesenchymal stem cells (BMSCs) were transfected with Bcl-xL and Bcl-xL mutant (∆Bcl-xL) overexpression vectors. The cells were divided into four groups: Control (not subjected to any transfection), EV (empty pcDNA3.1-Bcl-xL vector), OV (Bcl-xL overexpression) and ∆OV (∆Bcl-xL overexpression). Saffron and toluidine blue staining was performed to observe cartilage tissue formation. Flow cytometry was conducted to measure BMSC apoptosis. The expression levels of TGF-β and BMP were evaluated using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Compared with that in the control group, the expression levels of Bcl-xL in the OV group increased significantly (P<0.05). Western blotting and RT-qPCR results revealed that OV and ∆OV treatment increased the expression levels of TGF-β and BMP in transfected cells, compared to their expression in the control and EV groups (P<0.05). Saffron and toluidine blue staining results showed that cartilage formation was increased in the ∆OV and ∆OV + Bax-/Bak-groups to similar degrees. Cell apoptosis in the ∆OV group did not change compared with that in the control group. The Bcl-xL mutant promoted cartilage differentiation of BMSCs and upregulated TGF-β/BMP expression. This enhancement of chondrogenic differentiation was not related to the expression of Bax and Bak. Taken together, these findings provided for improved application of bone tissue engineering technology in the treatment of articular cartilage defects.
Collapse
Affiliation(s)
- Kai Xiao
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Lin Yang
- Department of Allergy, Tongji Hospital of Tongji Medical College of HUST, Wuhan, Hubei 430033, P.R. China
| | - Wei Xie
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Xinfeng Gao
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ruokun Huang
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| | - Ming Xie
- Foot and Ankle Surgery, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430033, P.R. China
| |
Collapse
|
11
|
Photoaged Skin Therapy with Adipose-Derived Stem Cells. Plast Reconstr Surg 2021; 148:144e-145e. [PMID: 34100851 DOI: 10.1097/prs.0000000000008070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Cryopreservation Engineering Strategies for Mass Production of Adipose-Derived Stem Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-019-1359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Awais S, Balouch SS, Riaz N, Choudhery MS. Human Dental Pulp Stem Cells Exhibit Osteogenic Differentiation Potential. Open Life Sci 2020; 15:229-236. [PMID: 33987479 PMCID: PMC8114786 DOI: 10.1515/biol-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023] Open
Abstract
Bone regeneration after trauma, pathologic and surgical procedures is considered a major medical challenge. Due to limitations in using conventional approaches, cell based regenerative strategies may provide an alternative option to address such issues. In the current study, we sought to determine the osteogenic potential of dental pulp stem cells (DPSCs) isolated from impacted 3rd molars. DPSCs were isolated from human dental pulp tissue (n=6) using explant culture. Growth characteristics of DPSCs were determined using plating efficiency, and the number and time of population doublings. After characterization, DPSCs were induced to differentiate into osteoblasts and were assessed using polymerase chain reactions (PCR) and histological analysis. Results indicated that DPSCs can be isolated from impacted human third molars, and that DPSCs exhibited typical fibroblastic morphology and excellent proliferative potential. In addition, morphological changes, histological analysis and expression of lineage specific genes confirmed osteogenic differentiation of DPSCs. In conclusion, DPSCs isolated from impacted 3rd molars have high proliferative potential and ability to differentiate into osteoblasts.
Collapse
Affiliation(s)
- Sadia Awais
- Department of Oral and Maxillofacial Surgery, King Edward medical University, Lahore, Pakistan
| | - Samira Shabbir Balouch
- Department of Oral and Maxillofacial Surgery, King Edward medical University, Lahore, Pakistan
| | - Nabeela Riaz
- Department of Oral and Maxillofacial Surgery, King Edward medical University, Lahore, Pakistan
| | - Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Sciences, King Edward Medical University, Lahore, Pakistan
- E-mail:
| |
Collapse
|
14
|
From 3D to 3D: isolation of mesenchymal stem/stromal cells into a three-dimensional human platelet lysate matrix. Stem Cell Res Ther 2019; 10:248. [PMID: 31399129 PMCID: PMC6688329 DOI: 10.1186/s13287-019-1346-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/02/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
Background Mesenchymal stem/stromal cells (MSCs) are considered an important candidate in cell therapy and tissue engineering approaches. The culture of stem cells in a 3D environment is known to better resemble the in vivo situation and to promote therapeutically relevant effects in isolated cells. Therefore, the aim of this study was to develop an approach for the direct isolation of MSCs from adipose tissue into a 3D environment, avoiding contact to a 2D plastic surface. Furthermore, the use of a cryoprotective medium for the cryopreservation of whole adipose tissue was evaluated. Materials and methods Cryopreservation of fresh adipose tissue with and without a cryoprotective medium was compared with regard to the viability and metabolic activity of cells. After thawing, the tissue was embedded in a novel human platelet lysate-based hydrogel for the isolation of MSCs. The migration, yield, viability, and metabolic activity of cells from the 3D matrix were compared to cells from 2D explant culture. Also, the surface marker profile and differentiation capacity of MSCs from the 3D matrix were evaluated and compared to MSCs from isolation by enzymatic treatment or 2D explant culture. Results The cryopreservation of whole adipose tissue was found to be feasible, and therefore, adipose tissue can be stored and is available for MSC isolation on demand. Also, we demonstrate the isolation of MSCs from adipose tissue into the 3D matrix. The cells derived from this isolation procedure display a similar phenotype and differentiation capacity like MSCs derived by traditional procedures. Conclusions The presented approach allows to cryopreserve adipose tissue. Furthermore, for the first time, MSCs were directly isolated from the tissue into a soft 3D hydrogel environment, avoiding any contact to a 2D plastic culture surface. Electronic supplementary material The online version of this article (10.1186/s13287-019-1346-2) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Long-Term Biobanking of Intact Tissue from Lipoaspirate. J Clin Med 2019; 8:jcm8030327. [PMID: 30857129 PMCID: PMC6463172 DOI: 10.3390/jcm8030327] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 01/09/2023] Open
Abstract
Autologous fat grafting has now been extensively and successfully performed for more than two decades. Although most adipose grafts and adipose-derived MSC therapies are done with fresh tissue, cryopreservation of tissue allows for much greater flexibility of use. Over the course of five years, 194 cryopreserved adipose samples were thawed and then returned to the collecting physician for subsequent autologous applications. Samples were stored with a mean cryogenic storage time of 9.5 months, with some samples being stored as long as 44 months. The volumes of tissue stored varied from 12 cc to as large as 960 cc. Upon thawing, the volume of recovered whole adipose tissue averaged 67% of the original amount stored for all samples, while the samples that were stored for longer than one year averaged 71%. Recovery was not found to be a function of length of time in cryopreservation. No significant relationship was found between tissue recovery and patient age. While an average recovery of 67% of volume frozen indicates that the use of banked and thawed tissue requires a larger amount of sample to be taken from the patient initially, an experienced clinician easily accomplishes this requirement. As cryopreservation of adipose tissue becomes more commonplace, physicians will find it helpful to know the amount and quality of tissue that will be available after thawing procedures.
Collapse
|
16
|
Abstract
Human umbilical cord represents a source of multipotent stromal cells of a supreme therapeutic potential. The cells can be isolated from either fresh or cryopreserved umbilical cord tissues. DMSO is a cryoprotectant most commonly used for preservation of umbilical cord tissues; however, cyto- and genotoxicity of this compound is evident and well documented. In the present study we performed successful cryopreservation of the umbilical cord tissue using other cryoprotectants: propylene glycol, ethylene glycol, and glycerol. Of these, 1.5 M ethylene glycol and 20% glycerol turned out to be the best in terms of the preservation of living cells within the frozen tissue, early onset of migration of these cells out of the thawed explants, and overall efficacy of multipotent stromal cell isolation. Cryobanking of tissues can improve availability of multiple cell products for medical purposes and promote the development of personalized medicine.
Collapse
|
17
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
18
|
Vakhshori V, Bougioukli S, Sugiyama O, Tang A, Yoho R, Lieberman JR. Cryopreservation of Human Adipose-Derived Stem Cells for Use in Ex Vivo Regional Gene Therapy for Bone Repair. Hum Gene Ther Methods 2018; 29:269-277. [PMID: 30280937 DOI: 10.1089/hgtb.2018.191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development of an ex vivo regional gene therapy clinical pathway using adipose-derived stem cells (ASCs) may require cryopreservation for cell culture, storage, and transport prior to clinical use. ASCs isolated from five donors were transduced with a lentiviral vector containing BMP-2. Three groups were assessed: transduction without cell freezing (group 1), freezing of cells for 3 weeks followed by transduction (group 2), and cell transduction prior to freezing (group 3). Nontransduced cells were used as a control. The cluster of differentiation (CD) marker profiles, cell number, BMP-2 production, and osteogenic potential were measured. The CD marker profile (CD44, CD73, CD90, and CD105) was unchanged after cryopreservation. Cell number was equivalent among cryopreservation protocols in transduced and nontransduced cells. There was a trend toward decreased BMP-2 production in group 3 compared to groups 1 and 2. Osteogenic potential based on Alizarin red concentration was higher in group 2 compared to group 3, with no difference compared to group 1. Freezing ASCs prior to transduction with a lentiviral vector containing BMP-2 has no detrimental effect on cell number, BMP-2 production, osteogenic potential, or immunophenotype. Transduction prior to freezing, however, may limit the BMP-2 production and potential osteogenic differentiation of the ASCs.
Collapse
Affiliation(s)
- Venus Vakhshori
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Sofia Bougioukli
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Osamu Sugiyama
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Amy Tang
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| | - Robert Yoho
- Cosmetic surgery private practice, Visalia, California
| | - Jay R Lieberman
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California; Visalia, California
| |
Collapse
|
19
|
Abstract
In this review we present current evidence on the possibility of umbilical cord tissue cryopreservation for subsequent clinical use. Protocols for obtaining umbilical cord-derived vessels, Wharton’s jelly-based grafts, multipotent stromal cells, and other biomedical products from cryopreserved umbilical cords are highlighted, and their prospective clinical applications are discussed. Examination of recent literature indicates we should expect high demand for cryopreservation of umbilical cord tissues in the near future.
Collapse
Affiliation(s)
- Irina Arutyunyan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia.,Peoples' Friendship University of Russia, Moscow, Russia
| | - Timur Fatkhudinov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia. .,Peoples' Friendship University of Russia, Moscow, Russia.
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| |
Collapse
|
20
|
Pogozhykh O, Prokopyuk V, Prokopyuk O, Kuleshova L, Goltsev A, Figueiredo C, Pogozhykh D. Towards biobanking technologies for natural and bioengineered multicellular placental constructs. Biomaterials 2018; 185:39-50. [PMID: 30218835 DOI: 10.1016/j.biomaterials.2018.08.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/20/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Clinical application of a large variety of biomaterials is limited by the imperfections in storage technology. Perspective approaches utilizing low-temperature storage are especially challenging for multicellular structures, such as tissues, organs, and bioengineered constructs. Placenta, as a temporary organ, is a widely available unique biological material, being among the most promising sources of various cells and tissues for clinical and experimental use in regenerative medicine and tissue engineering. The aim of this study was to analyse the mechanisms of cryoinjuries in different placental tissues and bioengineered constructs as well as to support the viability after low temperature storage, which would contribute to development of efficient biobanking technologies. This study shows that specificity of cryodamage depends on the structure of the studied object, intercellular bonds, as well as interaction of its components with cryoprotective agents. Remarkably, it was possible to efficiently isolate cells after thawing from all of the studied tissues. While the outcome was lower in comparison to the native non-frozen samples, the phenotype and expression levels of pluripotency genes remained unaffected. Further progress in eliminating of recrystallization processes during thawing would significantly improve biobanking technologies for multicellular constructs and tissues.
Collapse
Affiliation(s)
- Olena Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Volodymyr Prokopyuk
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Olga Prokopyuk
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Larisa Kuleshova
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine
| | - Constança Figueiredo
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Denys Pogozhykh
- Institute for Transfusion Medicine, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany; Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavskaya Str. 23, 61015 Kharkiv, Ukraine.
| |
Collapse
|
21
|
Ohta Y, Takenaga M, Hamaguchi A, Ootaki M, Takeba Y, Kobayashi T, Watanabe M, Iiri T, Matsumoto N. Isolation of Adipose-Derived Stem/Stromal Cells from Cryopreserved Fat Tissue and Transplantation into Rats with Spinal Cord Injury. Int J Mol Sci 2018; 19:ijms19071963. [PMID: 29976859 PMCID: PMC6073880 DOI: 10.3390/ijms19071963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 01/28/2023] Open
Abstract
Adipose tissue contains multipotent cells known as adipose-derived stem/stromal cells (ASCs), which have therapeutic potential for various diseases. Although the demand for adipose tissue for research use remains high, no adipose tissue bank exists. In this study, we attempted to isolate ASCs from cryopreserved adipose tissue with the aim of developing a banking system. ASCs were isolated from fresh and cryopreserved adipose tissue of rats and compared for proliferation (doubling time), differentiation capability (adipocytes), and cytokine (hepatocyte growth factor and vascular endothelial growth factor) secretion. Finally, ASCs (2.5 × 106) were intravenously infused into rats with spinal cord injury, after which hindlimb motor function was evaluated. Isolation and culture of ASCs from cryopreserved adipose tissue were possible, and their characteristics were not significantly different from those of fresh tissue. Transplantation of ASCs derived from cryopreserved tissue significantly promoted restoration of hindlimb movement function in injured model rats. These results indicate that cryopreservation of adipose tissue may be an option for clinical application.
Collapse
Affiliation(s)
- Yuki Ohta
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Akemi Hamaguchi
- Institute of Medical Science, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8512, Japan.
| | - Masanori Ootaki
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yuko Takeba
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Tsukasa Kobayashi
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Minoru Watanabe
- Institute for Animal Experimentation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Taroh Iiri
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Naoki Matsumoto
- Department of Pharmacology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|
22
|
Mahmood R, Shaukat M, S Choudhery M. Biological properties of mesenchymal stem cells derived from adipose tissue, umbilical cord tissue and bone marrow. ACTA ACUST UNITED AC 2018. [DOI: 10.3934/celltissue.2018.2.78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Harris DT. Banking of Adipose- and Cord Tissue-Derived Stem Cells: Technical and Regulatory Issues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 951:147-154. [PMID: 27837561 DOI: 10.1007/978-3-319-45457-3_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cells are found in all multicellular organisms and are defined as cells that can differentiate into specialized mature cells as well as divide to produce more stem cells. Mesenchymal stem cells (MSC) were among the first stem cell types to be utilized for regenerative medicine. Although initially isolated from bone marrow, based on ease and costs of procurement, MSC derived from adipose tissue (AT-MSC) and umbilical cord tissue (CT-MSC) are now preferred stem cell sources for these applications. Both adipose tissues and cord tissue present unique problems for biobanking however, in that these are whole tissues, not cellular suspensions. Although the tissues could be processed to facilitate the biobanking process, by doing so additional regulatory issues arise that must be addressed. This review will discuss the technical issues associated with biobanking of these tissues, as well as regulatory concerns when banking of utilizing MSC derived from these sources in the clinic.
Collapse
Affiliation(s)
- David T Harris
- University of Arizona Health Sciences Biorepository, Tucson, AZ, USA. .,University of Arizona, Tucson, AZ, USA. .,Division of Translational Medicine, University of Arizona, Tucson, AZ, USA. .,GMP Laboratory at the University of Arizona, Tucson, AZ, USA. .,Celebration Stem Cell Centre, Gilbert, AZ, USA.
| |
Collapse
|
24
|
Hosoda T, Iguchi N, Cho Y, Inoue M, Murakami T, Tabata M, Takanashi S, Tomoike H. The proliferative potential of human cardiac stem cells was unaffected after a long-term cryopreservation of tissue blocks. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:41. [PMID: 28251120 DOI: 10.21037/atm.2017.01.69] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Human c-kit-positive cardiac stem cells (CSCs) have been used to treat patients suffering from ischemic cardiomyopathy. This study aimed to investigate whether a long-term storage of cardiac tissues would influence the growth potential of the subsequently isolated CSCs. METHODS A total of 34 fresh samples were obtained from various cardiac regions [right atrium (RA), left atrium (LA), and/or left ventricle (LV)] of 21 patients. From 12 of these patients, 18 samples kept frozen for ~2 years were employed to prepare and characterize the CSCs. After confirming the specificity of the cell sorting by c-kit immunolabeling, the growth rate (number of doublings per day), BrdU positivity, and colony forming unit (CFU) were measured in each CSC population; the values were compared among distinct cardiac regions as well as between fresh and frozen tissues from which CSCs were derived. RESULTS Among independent measurements indicating growth potential, the growth rate and BrdU positivity remarkably correlated in freshly prepared CSCs. The cells obtained from every examined region displayed a high proliferative capacity with the growth rate of 0.48±0.19 and the BrdU positivity of 15.0%±7.6%. The right atrial CSCs tended to show a greater growth than those in the other two areas. Similarly, the CSCs were isolated from tissue blocks, cryopreserved for ~2 years, and compared with CSCs derived from the fresh specimens of the same patients. Importantly, we were able to obtain and culture CSCs from every frozen material, and their proliferative potential, represented by the growth rate of 0.47±0.22 and the BrdU positivity of 13.7%±7.9%, was not inferior to that of the freshly prepared cells. CONCLUSIONS The long-term cryopreservation of cardiac tissues did not affect the growth potential of the derivative CSCs. Our findings should expand the therapeutic applications of these cells over a longer time span.
Collapse
Affiliation(s)
- Toru Hosoda
- Tokai University Institute of Innovative Science and Technology, Kanagawa, Japan;; Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Nobuo Iguchi
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| | - Yasunori Cho
- Department of Cardiovascular Surgery, Tokai University School of Medicine, Kanagawa, Japan
| | - Masaki Inoue
- Tokai University Institute of Innovative Science and Technology, Kanagawa, Japan
| | - Tsutomu Murakami
- Department of Cardiology, Tokai University School of Medicine, Kanagawa, Japan
| | - Minoru Tabata
- Department of Cardiovascular Surgery, Tokyo Bay Urayasu Ichikawa Medical Center, Chiba, Japan
| | - Shuichiro Takanashi
- Department of Cardiovascular Surgery, Sakakibara Heart Institute, Tokyo, Japan
| | - Hitonobu Tomoike
- Department of Cardiology, Sakakibara Heart Institute, Tokyo, Japan
| |
Collapse
|
25
|
Varghese J, Griffin M, Mosahebi A, Butler P. Systematic review of patient factors affecting adipose stem cell viability and function: implications for regenerative therapy. Stem Cell Res Ther 2017; 8:45. [PMID: 28241882 PMCID: PMC5329955 DOI: 10.1186/s13287-017-0483-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The applications for fat grafting have increased recently, within both regenerative and reconstructive surgery. Although fat harvesting, processing and injection techniques have been extensively studied and standardised, this has not had a big impact on the variability of outcome following fat grafting. This suggests a possible larger role of patient characteristics on adipocyte and adipose-derived stem cell (ADSC) viability and function. This systematic review aims to collate current evidence on the effect of patient factors on adipocyte and ADSC behaviour. METHODS A systematic literature review was performed using MEDLINE, Cochrane Library and EMBASE. It includes outcomes observed in in vitro analyses, in vivo animal studies and clinical studies. Data from basic science work have been included in the discussion to enhance our understanding of the mechanism behind ADSC behaviour. RESULTS A total of 41 papers were included in this review. Accumulating evidence indicates decreased proliferation and differentiation potential of ADSCs with increasing age, body mass index, diabetes mellitus and exposure to radiotherapy and Tamoxifen, although this was not uniformly seen across all studies. Gender, donor site preference, HIV status and chemotherapy did not show a significant influence on fat retention. Circulating oestrogen levels have been shown to support both adipocyte function and graft viability. Evidence so far suggests no significant impact of total cholesterol, hypertension, renal disease, physical exercise and peripheral vascular disease on ADSC yield. CONCLUSIONS A more uniform comparison of all factors highlighted in this review, with the application of a combination of tests for each outcome measure, is essential to fully understand factors that affect adipocyte and ADSC viability, as well as functionality. As these patient factors interact, future studies looking at adipocyte viability need to take them into consideration for conclusions to be meaningful. This would provide crucial information for surgeons when deciding appropriate volumes of lipoaspirate to inject, improve patient selection, and counsel patient expectations with regards to outcomes and likelihood for repeat procedures. An improved understanding will also assist in identification of patient groups that would benefit from graft enrichment and cryopreservation techniques.
Collapse
Affiliation(s)
- Jajini Varghese
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.
| | - Michelle Griffin
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Afshin Mosahebi
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| | - Peter Butler
- Charles Wolfson Center for Reconstructive Surgery, Royal Free Hospital, London, UK.,UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
26
|
Roato I, Alotto D, Belisario DC, Casarin S, Fumagalli M, Cambieri I, Piana R, Stella M, Ferracini R, Castagnoli C. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int 2016; 2016:4968724. [PMID: 28018432 PMCID: PMC5153503 DOI: 10.1155/2016/4968724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at -80°C and -196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at -80°C and -196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- CeRMS, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Daniela Alotto
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | | | - Stefania Casarin
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Mara Fumagalli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Irene Cambieri
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Raimondo Piana
- Department of Orthopaedic Oncology, CTO Hospital, Torino, Italy
| | - Maurizio Stella
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | | | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
27
|
Purpura V, Bondioli E, Melandri D, Parodi PC, Valenti L, Riccio M. The Collection of Adipose Derived Stem Cells using Water-Jet Assisted Lipoplasty for their Use in Plastic and Reconstructive Surgery: A Preliminary Study. Front Cell Dev Biol 2016; 4:136. [PMID: 27921032 PMCID: PMC5118416 DOI: 10.3389/fcell.2016.00136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
The graft of autologous fat for the augmentation of soft tissue is a common practice frequently used in the field of plastic and reconstructive surgery. In addition, the presence of adipose derived stem cells (ASCs) in adipose tissue stimulates the regeneration of tissue in which it is applied after the autologous fat grafting improving the final clinical results. Due to these characteristics, there is an increasing interest in the use of ASCs for the treatment of several clinical conditions. As a consequence, the use of clean room environment is required for the production of cell-based therapies. The present study is aimed to describe the biological properties of adipose tissue and cells derived from it cultured in vitro in clean room environment according to current regulation. The collection of adipose tissue was performed using the water-jet assisted liposuction in order to preserve an high cell viability increasing their chances of future use for different clinical application in the field of plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Valeria Purpura
- Burn Center and Emilia Romagna Regional Skin Bank, "M.Bufalini" Hospital, AUSL della Romagna Cesena, Italy
| | - Elena Bondioli
- Burn Center and Emilia Romagna Regional Skin Bank, "M.Bufalini" Hospital, AUSL della Romagna Cesena, Italy
| | - Davide Melandri
- Burn Center and Emilia Romagna Regional Skin Bank, "M.Bufalini" Hospital, AUSL della Romagna Cesena, Italy
| | - Pier C Parodi
- Clinic of Plastic and Reconstructive Surgery, University of Udine, "AOU Santa Maria della Misericordia" Udine, Italy
| | - Luca Valenti
- Clinic of Plastic and Reconstructive Surgery, University of Milano, "IRCSS San Donato" Milano, Italy
| | - Michele Riccio
- S.O.D.C. Plastic and Reconstructive Hand Surgery, "Ospedali Riuniti" Hospital Ancona, Italy
| |
Collapse
|
28
|
Yang Y, Melzer C, Bucan V, von der Ohe J, Otte A, Hass R. Conditioned umbilical cord tissue provides a natural three-dimensional storage compartment as in vitro stem cell niche for human mesenchymal stroma/stem cells. Stem Cell Res Ther 2016; 7:28. [PMID: 26869167 PMCID: PMC4751714 DOI: 10.1186/s13287-016-0289-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 12/24/2022] Open
Abstract
Background The use of large amounts of human multipotent mesenchymal stroma/stem cells (MSC) for cell therapies represents a desirable property in tissue engineering and banking in the field of regenerative medicine. Methods and results Whereas cryo-storage of umbilical cord (UC) tissue pieces in liquid nitrogen without ingredients was associated with predominant appearance of apoptotic cells after thawing and re-culture, progressive growth of MSC was observed following use of cryo-medium. Moreover, conditioning of UC tissue pieces by initial explant culture and subsequent cryo-storage with cryo-medium accelerated a further MSC culture after thawing. These findings suggested that conditioning of UC tissue pieces provides an in vitro stem cell niche by maintenance of a 3-dimensional natural microenvironment for continuous MSC outgrowth and expansion. Indeed, culture of GFP-labeled UC tissue pieces was accompanied by increased outgrowth of GFP-labeled cells which was accelerated in conditioned UC tissue after cryo-storage. Moreover, cryopreserved conditioned UC tissue pieces in cryo-medium after thawing and explant culture could be cryopreserved again demonstrating renewed MSC outgrowth after repeated thawing with similar population doublings compared to the initial explant culture. Flow cytometry analysis of outgrowing cells revealed expression of the typical MSC markers CD73, CD90, and CD105. Furthermore, these cells demonstrated little if any senescence and cultures revealed stem cell-like characteristics by differentiation along the adipogenic, chondrogenic and osteogenic lineages. Conclusions Expression of MSC markers was maintained for at least 10 freeze/thaw/explant culture cycles demonstrating that repeated cryopreservation of conditioned UC tissue pieces provided a reproducible and enriched stem cell source.
Collapse
Affiliation(s)
- Yuanyuan Yang
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany. .,Tongji Hospital Affiliated Tongji University, Shanghai, 200065, China.
| | - Catharina Melzer
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.
| | - Vesna Bucan
- Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, D-30625, Germany.
| | - Juliane von der Ohe
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.
| | - Anna Otte
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany.
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, D-30625, Germany. .,Department of Gynecology and Obstetrics, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover, D - 30625, Germany.
| |
Collapse
|
29
|
Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects. Cryobiology 2015; 71:181-97. [PMID: 26186998 DOI: 10.1016/j.cryobiol.2015.07.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/13/2015] [Indexed: 12/11/2022]
Abstract
Originally isolated from bone marrow, mesenchymal stromal cells (MSCs) have since been obtained from various fetal and post-natal tissues and are the focus of an increasing number of clinical trials. Because of their tremendous potential for cellular therapy, regenerative medicine and tissue engineering, it is desirable to cryopreserve and bank MSCs to increase their access and availability. A remarkable amount of research and resources have been expended towards optimizing the protocols, freezing media composition, cooling devices and storage containers, as well as developing good manufacturing practices in order to ensure that MSCs retain their therapeutic characteristics following cryopreservation and that they are safe for clinical use. Here, we first present an overview of the identification of MSCs, their tissue sources and the properties that render them suitable as a cellular therapeutic. Next, we discuss the responses of cells during freezing and focus on the traditional and novel approaches used to cryopreserve MSCs. We conclude that viable MSCs from diverse tissues can be recovered after cryopreservation using a variety of freezing protocols, cryoprotectants, storage periods and temperatures. However, alterations in certain functions of MSCs following cryopreservation warrant future investigations on the recovery of cells post-thaw followed by expansion of functional cells in order to achieve their full therapeutic potential.
Collapse
|
30
|
Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age. Stem Cells Int 2015; 2015:146421. [PMID: 25945096 PMCID: PMC4402176 DOI: 10.1155/2015/146421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/28/2015] [Accepted: 03/05/2015] [Indexed: 12/21/2022] Open
Abstract
We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days) from patients of varying ages (26–62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.
Collapse
|
31
|
Choudhery MS, Badowski M, Muise A, Harris DT. Effect of mild heat stress on the proliferative and differentiative ability of human mesenchymal stromal cells. Cytotherapy 2015; 17:359-68. [PMID: 25536863 DOI: 10.1016/j.jcyt.2014.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are an attractive candidate for autologous cell therapy, but regenerative potential can be compromised with extensive in vitro cell passaging. Development of viable cell therapies must address the effect of in vitro passaging to maintain overall functionality of expanded MSCs. METHODS We examined the effect of repeated mild heat shock on the proliferation and differentiation capability of human adipose-derived MSCs. Adipose tissue MSCs were characterized by means of fluorescence activated cell sorting analysis for expression of CD3, CD14, CD19, CD34, CD44, CD45, CD73, CD90 and CD105. Similarly, the expression of SIRT-1, p16(INK4a) and p21 was determined by means of polymerase chain reaction. Measurements of population doubling, doubling time and superoxide dismutase activity were also determined. Differentiation of expanded MSCs into bone and adipose were analyzed qualitatively and quantitatively. RESULTS The strategy led to an increase in expression of SIRT-1 concomitant with enhanced viability, proliferation and delayed senescence. The stressed MSCs showed better differentiation into osteoblasts and adipocytes. CONCLUSIONS The results indicate that mild heat shock could be used to maintain MSC proliferative and differentiation potential.
Collapse
Affiliation(s)
- Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Advanced Research Center in Biomedical Sciences, King Edward Medical University, Lahore, Pakistan; Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Michael Badowski
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Angela Muise
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - David T Harris
- Department of Immunobiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
32
|
Abstract
This article first discusses some fundamentals of cryobiology and challenges for cell and tissue cryopreservation. Then, the results of cryopreservation of adipose cells and tissues, including adipose-derived stem cells, in the last decade are reviewed. In addition, from the viewpoint of cryobiology, some desired future work in fat cryopreservation is proposed that would benefit the optimization, standardization, and better application of such techniques.
Collapse
Affiliation(s)
- Zhiquan Shu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lee L Q Pu
- Division of Plastic Surgery, University of California Davis, 2221 Stockton Boulevard, Suite 2123, Sacramento, CA 95817, USA.
| |
Collapse
|
33
|
Ge Z, Lal S, Le TYL, Dos Remedios C, Chong JJH. Cardiac stem cells: translation to human studies. Biophys Rev 2014; 7:127-139. [PMID: 28509972 DOI: 10.1007/s12551-014-0148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/13/2014] [Indexed: 02/08/2023] Open
Abstract
The discovery of multiple classes of cardiac progenitor cells in the adult mammalian heart has generated hope for their use as a therapeutic in heart failure. However, successful results from animal models have not always yielded similar findings in human studies. Recent Phase I/II trials of c-Kit (SCIPIO) and cardiosphere-based (CADUCEUS) cardiac progenitor cells have demonstrated safety and some therapeutic efficacy. Gaps remain in our understanding of the origins, function and relationships between the different progenitor cell families, many of which are heterogeneous populations with overlapping definitions. Another challenge lies in the limitations of small animal models in replicating the human heart. Cryopreserved human cardiac tissue provides a readily available source of cardiac progenitor cells and may help address these questions. We review important findings and relative unknowns of the main classes of cardiac progenitor cells, highlighting differences between animal and human studies.
Collapse
Affiliation(s)
- Zijun Ge
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sean Lal
- Bosch Institute, The University of Sydney, Sydney, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Thi Y L Le
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia.,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145
| | | | - James J H Chong
- Department of Cardiology Westmead Hospital, Sydney, NSW, Australia. .,Sydney Medical School, University of Sydney, Sydney, NSW, Australia. .,Centre for Heart Research, Westmead Millennium Institute for Medical Research, 176 Hawkesbury Road, Westmead, Sydney, NSW, Australia, 2145.
| |
Collapse
|
34
|
Choudhery MS, Harris DT. Cryopreservation can be used as an anti-aging strategy. Cytotherapy 2014; 16:1771-3. [PMID: 25304665 DOI: 10.1016/j.jcyt.2014.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 08/14/2014] [Accepted: 08/23/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Mahmood S Choudhery
- Tissue Engineering and Regenerative Medicine Laboratory, Advance Center of Research in Biomedical Sciences/King Edward Medical University/Mayo Hospital, Lahore, Pakistan; Department of Immunobiology, College of Medicine, the University of Arizona, Tucson, Arizona, USA.
| | - David T Harris
- Department of Immunobiology, College of Medicine, the University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
35
|
Stem Cell Banking for Regenerative and Personalized Medicine. Biomedicines 2014; 2:50-79. [PMID: 28548060 PMCID: PMC5423479 DOI: 10.3390/biomedicines2010050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine, tissue engineering and gene therapy offer the opportunity to treat and cure many of today’s intractable afflictions. These approaches to personalized medicine often utilize stem cells to accomplish these goals. However, stem cells can be negatively affected by donor variables such as age and health status at the time of collection, compromising their efficacy. Stem cell banking offers the opportunity to cryogenically preserve stem cells at their most potent state for later use in these applications. Practical stem cell sources include bone marrow, umbilical cord blood and tissue, and adipose tissue. Each of these sources contains stem cells that can be obtained from most individuals, without too much difficulty and in an economical fashion. This review will discuss the advantages and disadvantages of each stem cell source, factors to be considered when contemplating banking each stem cell source, the methodology required to bank each stem cell source, and finally, current and future clinical uses of each stem cell source.
Collapse
|