1
|
Shendge AK, Sekler I, Hershfinkel M. ZnR/GPR39 regulates hepatic insulin signaling, tunes liver bioenergetics and ROS production, and mitigates liver fibrosis and injury. Redox Biol 2024; 78:103403. [PMID: 39514940 PMCID: PMC11584770 DOI: 10.1016/j.redox.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Adequate supply of zinc is essential for hepatic function and its deficiency is associated with acute liver injury (ALI) and chronic nonalcoholic fatty liver disease (NAFLD). However, how zinc controls hepatic function is unknown. We found that the zinc sensitive ZnR/GPR39, a mediator of zinc signaling, enhances hepatic phosphorylation of ERK1/2, which is reduced in ZnR/GPR39 deficient livers. Surprisingly, livers from ZnR/GPR39 knockout (KO) mice exhibited elevated insulin receptor expression and downstream AKT activation. Moreover, ZnR/GPR39 KO mice had higher blood fasting glucose level, pronounced hepatic lipid accumulation, increased hepatocyte oxygen consumption rate (OCR) and reactive oxygen species (ROS) levels. These data suggest that ZnR/GPR39 modulates insulin receptor signaling, a major pathway in hepatic metabolism. Associated with the impaired signaling, ZnR/GPR39 KO livers exhibited increased tissue fibrosis, manifested by marked elevation of collagen expression, compared to wildtype (WT). Additionally, we found alteration of hepatocyte junctional proteins that was accompanied by increased macrophage infiltration and higher liver inflammation in ZnR/GPR39 KO mice. To determine the role of ZnR/GPR39 in ALI, we applied a mild LPS challenge that induced profound decrease in hepatic OCR, also leading to higher ROS generation in ZnR/GPR39 KO hepatocytes, but not in WT. We further found increased serum IL-2 and AST/ALT ratio only in ZnR/GPR39 KO mice. Our findings reveal a role of ZnR/GPR39 in controlling hepatic insulin receptor signaling and mitigating liver fibrosis and inflammation, thus underscoring the important role of ZnR/GPR39 in liver signaling and function.
Collapse
Affiliation(s)
- Anil Khushalrao Shendge
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Israel Sekler
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.
| |
Collapse
|
2
|
Li J, Li X, Wang Y, Meng L, Cui W. Zinc: a potential star for regulating peritoneal fibrosis. Front Pharmacol 2024; 15:1436864. [PMID: 39301569 PMCID: PMC11411568 DOI: 10.3389/fphar.2024.1436864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
Peritoneal dialysis (PD) is a commonly used renal replacement therapy for patients with end-stage renal disease (ESRD). During PD, the peritoneum (PM), a semi-permeable membrane, is exposed to nonbiocompatible PD solutions. Peritonitis can occur, leading to structural and functional PM disorders, resulting in peritoneal fibrosis and ultrafiltration failure, which are important reasons for patients with ESRD to discontinue PD. Increasing evidence suggests that oxidative stress (OS) plays a key role in the pathogenesis of peritoneal fibrosis. Furthermore, zinc deficiency is often present to a certain extent in patients undergoing PD. As an essential trace element, zinc is also an antioxidant, potentially playing an anti-OS role and slowing down peritoneal fibrosis progression. This study summarises and analyses recent research conducted by domestic and foreign scholars on the possible mechanisms through which zinc prevents peritoneal fibrosis.
Collapse
Affiliation(s)
- Jian Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Xinyang Li
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Yangwei Wang
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Lingfei Meng
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Zhang X, Hou Y, Huang Y, Chen W, Zhang H. Interplay between zinc and cell proliferation and implications for the growth of livestock. J Anim Physiol Anim Nutr (Berl) 2023; 107:1402-1418. [PMID: 37391879 DOI: 10.1111/jpn.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 07/02/2023]
Abstract
Zinc (Zn) plays a critical role in the growth of livestock, which depends on cell proliferation. In addition to modifying the growth associated with its effects on food intake, mitogenic hormones, signal transduction and gene transcription, Zn also regulates body weight gain through mediating cell proliferation. Zn deficiency in animals leads to growth inhibition, along with an arrest of cell cycle progression at G0/G1 and S phase due to depression in the expression of cyclin D/E and DNA synthesis. Therefore, in the present study, the interplay between Zn and cell proliferation and implications for the growth of livestock were reviewed, in which Zn regulates cell proliferation in several ways, especially cell cycle progression at the G0/G1 phase DNA synthesis and mitosis. During the cell cycle, the Zn transporters and major Zn binding proteins such as metallothioneins are altered with the requirements of cellular Zn level and nuclear translocation of Zn. In addition, calcium signaling, MAPK pathway and PI3K/Akt cascades are also involved in the process of Zn-interfering cell proliferation. The evidence collected over the last decade highlights the necessity of Zn for normal cell proliferation, which suggests Zn supplementation should be considered for the growth and health of poultry.
Collapse
Affiliation(s)
- Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yuhuang Hou
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Zhu B, Yang C, Liu D, Zhi Q, Hua ZC. Zinc depletion induces JNK/p38 phosphorylation and suppresses Akt/mTOR expression in acute promyelocytic NB4 cells. J Trace Elem Med Biol 2023; 79:127264. [PMID: 37473591 DOI: 10.1016/j.jtemb.2023.127264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Myeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear. OBJECTIVE This study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells. METHODS We used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database. RESULTS Zinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML. CONCLUSION Our findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dekang Liu
- School of Medicine, and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qi Zhi
- School of Medicine, and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
5
|
Blixhavn CH, Haug FMŠ, Kleven H, Puchades MA, Bjaalie JG, Leergaard TB. A Timm-Nissl multiplane microscopic atlas of rat brain zincergic terminal fields and metal-containing glia. Sci Data 2023; 10:150. [PMID: 36944675 PMCID: PMC10030855 DOI: 10.1038/s41597-023-02012-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/09/2023] [Indexed: 03/23/2023] Open
Abstract
The ability of Timm's sulphide silver method to stain zincergic terminal fields has made it a useful neuromorphological marker. Beyond its roles in zinc-signalling and neuromodulation, zinc is involved in the pathophysiology of ischemic stroke, epilepsy, degenerative diseases and neuropsychiatric conditions. In addition to visualising zincergic terminal fields, the method also labels transition metals in neuronal perikarya and glial cells. To provide a benchmark reference for planning and interpretation of experimental investigations of zinc-related phenomena in rat brains, we have established a comprehensive repository of serial microscopic images from a historical collection of coronally, horizontally and sagittally oriented rat brain sections stained with Timm's method. Adjacent Nissl-stained sections showing cytoarchitecture, and customised atlas overlays from a three-dimensional rat brain reference atlas registered to each section image are included for spatial reference and guiding identification of anatomical boundaries. The Timm-Nissl atlas, available from EBRAINS, enables experimental researchers to navigate normal rat brain material in three planes and investigate the spatial distribution and density of zincergic terminal fields across the entire brain.
Collapse
Affiliation(s)
- Camilla H Blixhavn
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Finn-Mogens Š Haug
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Ruz M, Andrews-Guzmán M, Arredondo-Olguín M. Modulation of Zinc Transporter Expressions by Additional Zinc in C2C12 Cells Cultured in a High Glucose Environment and in the Presence of Insulin or Interleukin-6. Biol Trace Elem Res 2022; 201:3428-3437. [PMID: 36227447 DOI: 10.1007/s12011-022-03443-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022]
Abstract
Zn status has been related to various chronic diseases presenting oxidative stress and inflammation, such as type 2 diabetes. Zn supplementation has been suggested to be a potential coadjuvant in the management of this condition. Zn transporters constitute a key component in the maintenance of Zn homeostasis. Our aim was to evaluate the modulatory effect of additional Zn (10 or 100 µM; as a ZnSO4*7H20) on the mRNA relative expression of selected Zn transporters (ZnT1, ZnT5, ZnT7, ZIP6, ZIP7, ZIP10, ZIP14), in myoblast (C2C12) cells cultured in normal (10 mM) and high glucose (30 mM), and in the absence or presence of insulin (1 nM), and interleukin-6 (IL-6; 5 nM) for 24 h. The main findings of our study were that in high glucose conditions in absence of insulin or IL-6, additional Zn increased ZnT1 and ZIP6, and decreased ZnT5 and ZIP7 expressions. However, this situation is modified by insulin, where incremental Zn induced increased expressions of ZnT1, ZnT5, and all the ZIP transporters studied. In high glucose conditions and in the presence of IL-6, additional Zn caused increased expressions of ZnT7, ZIP7, and ZIP14, compared with results in the absence of IL-6. This study provides preliminary evidence for the differential expression of selected Zn transporters in C2C12 cells subjected to high glucose and incremental Zn, suggesting that important changes in intracellular Zn distribution take place in response to inflammatory and high-insulin environments. Further study is necessary to understand the implications of these findings.
Collapse
Affiliation(s)
- Manuel Ruz
- Department of Nutrition, Faculty of Medicine, University of Chile, Avenida Independencia 1027, Independencia, Santiago, Chile
| | - Mónica Andrews-Guzmán
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Macul, Santiago, Chile
| | - Miguel Arredondo-Olguín
- Micronutrient Laboratory, Institute of Nutrition and Food Technology, University of Chile, Macul 5540, Macul, Santiago, Chile.
| |
Collapse
|
7
|
Ye C, Lian G, Wang T, Chen A, Chen W, Gong J, Luo L, Wang H, Xie L. The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulm Med 2022; 22:111. [PMID: 35346134 PMCID: PMC8962172 DOI: 10.1186/s12890-022-01905-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/17/2022] [Indexed: 01/05/2024] Open
Abstract
Background The zinc transporter ZIP12 is a membrane-spanning protein that transports zinc ions into the cytoplasm from the extracellular space. Recent studies demonstrated that upregulation of ZIP12 is involved in elevation of cytosolic free zinc and excessive proliferation of pulmonary arterial smooth muscle cells (PASMCs) induced by hypoxia. However, the expression of ZIP12 and its role in pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT) in rats have not been evaluated previously. The aim of this study was to investigate the effect of ZIP12 on the proliferation and migration of PASMCs and its underlying mechanisms in MCT-induced PAH. Methods A PAH rat model was generated by intraperitoneal injection of 20 mg/kg MCT twice at one-week intervals. PASMCs were isolated from the pulmonary arteries of rats with MCT-induced PAH or control rats. The expression of ZIP12 and related molecules was detected in the lung tissues and cells. A ZIP12 knockdown lentivirus and an overexpressing lentivirus were constructed and transfected into PASMCs derived from PAH and control rats, respectively. EdU assays, wound healing assays and Western blotting were carried out to explore the function of ZIP12 in PASMCs. Results Increased ZIP12 expression was observed in PASMCs derived from MCT-induced PAH rats. The proliferation and migration of PASMCs from PAH rats were significantly increased compared with those from control rats. These results were corroborated by Western blot analysis of PCNA and cyclin D1. All these effects were significantly reversed by silencing ZIP12. Comparatively, ZIP12 overexpression resulted in the opposite effects as shown in PASMCs from control rats. Furthermore, selective inhibition of AKT phosphorylation by LY294002 abolished the effect of ZIP12 overexpression on enhancing cell proliferation and migration and partially suppressed the increase in ERK1/2 phosphorylation induced by ZIP12 overexpression. However, inhibition of ERK activity by U0126 resulted in partial reversal of this effect and did not influence an increase in AKT phosphorylation induced by ZIP12 overexpression. Conclusions ZIP12 is involved in MCT-induced pulmonary vascular remodeling and enhances the proliferation and migration of PASMCs. The mechanism of these effects was partially mediated by enhancing the AKT/ERK signaling pathways. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01905-3.
Collapse
Affiliation(s)
- Chaoyi Ye
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guili Lian
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Tingjun Wang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Ai Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Weixiao Chen
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Jin Gong
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China.,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Huajun Wang
- Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, 20 Chazhong Road, Fuzhou, 350005, Fujian, People's Republic of China. .,Department of General Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China. .,Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China.
| |
Collapse
|
8
|
Zinc-mediated activation of CREB pathway in proliferation of pulmonary artery smooth muscle cells in pulmonary hypertension. Cell Commun Signal 2021; 19:103. [PMID: 34635097 PMCID: PMC8504081 DOI: 10.1186/s12964-021-00779-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcription factor CREB is involved in the development of pulmonary hypertension (PH). However, little is known about the role and regulatory signaling of CREB in PH. METHODS A series of techniques, including bioinformatics methods, western blot, cell proliferation and luciferase reporter assay were used to perform a comprehensive analysis of the role and regulation of CREB in proliferation of pulmonary artery smooth muscle cells (PASMCs) in PH. RESULTS Using bioinformatic analysis of the differentially expressed genes (DEGs) identified in the development of monocrotaline (MCT)- and hypoxia-induced PH, we found the overrepresentation of CRE-containing DEGs. Western blot analysis revealed a sustained increase in total- and phosphorylated-CREB in PASMCs isolated from rats treated with MCT. Similarly, an enhanced and prolonged serum-induced CREB phosphorylation was observed in hypoxia-pretreated PASMCs. The sustained CREB phosphorylation in PASMCs may be associated with multiple protein kinases phosphorylated CREB. Additionally, hierarchical clustering analysis showed reduced expression of the majority of CREB phosphatases in PH, including regulatory subunits of PP2A, Ppp2r2c and Ppp2r3a. Cell proliferation analysis showed increased PASMCs proliferation in MCT-induced PH, an effect relied on CREB-mediated transcriptional activity. Further analysis revealed the raised intracellular labile zinc possibly from ZIP12 was associated with reduced phosphatases, increased CREB-mediated transcriptional activity and PASMCs proliferation. CONCLUSIONS CREB pathway was overactivated in the development of PH and contributed to PASMCs proliferation, which was associated with multiple protein kinases and/or reduced CREB phosphatases and raised intracellular zinc. Thus, this study may provide a novel insight into the CREB pathway in the pathogenesis of PH. Video abstract.
Collapse
|
9
|
Lopes-Pires ME, Ahmed NS, Vara D, Gibbins JM, Pula G, Pugh N. Zinc regulates reactive oxygen species generation in platelets. Platelets 2021; 32:368-377. [PMID: 32248725 DOI: 10.1080/09537104.2020.1742311] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/28/2020] [Accepted: 03/07/2020] [Indexed: 01/16/2023]
Abstract
Vascular complications resulting from atherosclerosis development are a major cause of death. Reactive oxygen species (ROS) are produced by platelets during activation, and have been demonstrated to positively regulate platelet activatory responses. Zn2+ is also an important hemostatic cofactor in platelets, acting both as a platelet agonist and second messenger. Whilst the effect of Zn2+-dependent signaling mechanisms on ROS production in nucleated cells has been demonstrated, comparable roles in platelets have yet to be investigated. In this study we investigated the relationship between fluctuations in cytosolic Zn2 [Zn2+]i and platelet ROS production. Agonist-evoked ROS production, GSH levels and GPx activity are abrogated in platelets treated with the Zn2+-chelator, TPEN. Conversely, increasing platelet [Zn2+]i using Zn2+ ionophores potentiated ROS generation and decreased GSH levels and GPx activity. Zn2+-dependent ROS production was sensitive to pretreatment with DPI or mitoTEMPO, NADPH oxidase and mitochondria inhibitors respectively. Increasing [Zn2+]i resulted in increases of Erk1/2 and JNK phosphorylation. Our data are consistent with a functional association between [Zn2+]i and ROS production in platelets that could influence thrombus formation in a clinical context.
Collapse
Affiliation(s)
- M E Lopes-Pires
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - N S Ahmed
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | - D Vara
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - J M Gibbins
- Institute for Cardiovascular & Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK
| | - G Pula
- Hamburg Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Eppendorf, Hamburg, Germany
| | - N Pugh
- School of Life Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
10
|
Ahmed NS, Lopes-Pires M, Pugh N. Zinc: an endogenous and exogenous regulator of platelet function during hemostasis and thrombosis. Platelets 2020; 32:880-887. [DOI: 10.1080/09537104.2020.1840540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Niaz Shahed Ahmed
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| | | | - Nicholas Pugh
- Department of Life Sciences, Anglia Ruskin University, Cambridge, UK
| |
Collapse
|
11
|
Vahidi Ferdowsi P, Ng R, Adulcikas J, Sohal SS, Myers S. Zinc Modulates Several Transcription-Factor Regulated Pathways in Mouse Skeletal Muscle Cells. Molecules 2020; 25:E5098. [PMID: 33153045 PMCID: PMC7663025 DOI: 10.3390/molecules25215098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc is an essential metal ion involved in many biological processes. Studies have shown that zinc can activate several molecules in the insulin signalling pathway and the concomitant uptake of glucose in skeletal muscle cells. However, there is limited information on other potential pathways that zinc can activate in skeletal muscle. Accordingly, this study aimed to identify other zinc-activating pathways in skeletal muscle cells to further delineate the role of this metal ion in cellular processes. Mouse C2C12 skeletal muscle cells were treated with insulin (10 nM), zinc (20 µM), and the zinc chelator TPEN (various concentrations) over 60 min. Western blots were performed for the zinc-activation of pAkt, pErk, and pCreb. A Cignal 45-Reporter Array that targets 45 signalling pathways was utilised to test the ability of zinc to activate pathways that have not yet been described. Zinc and insulin activated pAkt over 60 min as expected. Moreover, the treatment of C2C12 skeletal muscle cells with TPEN reduced the ability of zinc to activate pAkt and pErk. Zinc also activated several associated novel transcription factor pathways including Nrf1/Nrf2, ATF6, CREB, EGR1, STAT1, AP-1, PPAR, and TCF/LEF, and pCREB protein over 120 min of zinc treatment. These studies have shown that zinc's activity extends beyond that of insulin signalling and plays a role in modulating novel transcription factor activated pathways. Further studies to determine the exact role of zinc in the activation of transcription factor pathways will provide novel insights into this metal ion actions.
Collapse
Affiliation(s)
| | | | | | | | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston 7250, Australia; (P.V.F.); (R.N.); (J.A.); (S.S.S.)
| |
Collapse
|
12
|
Delahaut V, Rašković B, Salvado MS, Bervoets L, Blust R, De Boeck G. Toxicity and bioaccumulation of Cadmium, Copper and Zinc in a direct comparison at equitoxic concentrations in common carp (Cyprinus carpio) juveniles. PLoS One 2020; 15:e0220485. [PMID: 32271754 PMCID: PMC7145017 DOI: 10.1371/journal.pone.0220485] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
The individual toxicity and bioaccumulation of cadmium, copper and zinc for common carp juveniles was evaluated in a direct comparison in two experimental setups. First, fish were exposed for 10 days to different metal concentrations in order to link metal bioaccumulation to LC50 values (concentration lethal to 50% of the animals) and incipient lethal levels (ILL, concentration where 50% survives indefinitely). Accumulated metals showed a positive dose dependent uptake for cadmium and copper, but not for zinc. Toxicity was in the order cadmium>copper>zinc with 96h LC50 values for cadmium at 0.20±0.16 μM, for copper at 0.77±0.03 μM, and for zinc at 29.89±9.03 μM respectively. For copper, the 96h exposure was sufficient to calculate the incipient lethal level and therefore 96h LC50 and ILL levels were the same, while for cadmium and zinc 5 to 6 days were needed to reach ILL resulting in slightly lower values at 0.16 μM and 28.33 μM respectively. Subsequently, a subacute exposure experiment was conducted, where carp juveniles were exposed to 2 equitoxic concentrations (10% and 50% of LC50 96 h) of the three metals for 1, 3 and 7 days. Again a significant dose-dependent increase in gill cadmium and copper, but not in zinc, was observed during the 7-day exposure. Copper clearly affected sodium levels in gill tissue, while zinc and cadmium did not significantly alter any of the gill electrolytes. The overall histopathological effects (e.g. hyperemia and hypertrophy) of the metal exposures were mild for most of the alterations. Our study showed that copper an cadmium (but not zinc) showed dose dependent metal accumulation, however this bioaccumulation was only correlated with mortality for cadmium. Metal specific alterations were reduced gill sodium levels in copper exposed fish and oedema of the primary epithelium which typically occurred in both levels of zinc exposure.
Collapse
Affiliation(s)
- Vyshal Delahaut
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
| | - Božidar Rašković
- University of Belgrade—Faculty of Agriculture, Institute of Animal Science, Zemun, Belgrade, Serbia
| | | | - Lieven Bervoets
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
| | - Ronny Blust
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
| | - Gudrun De Boeck
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
13
|
Dünkelberg S, Maywald M, Schmitt AK, Schwerdtle T, Meyer S, Rink L. The Interaction of Sodium and Zinc in the Priming of T Cell Subpopulations Regarding Th17 and Treg Cells. Mol Nutr Food Res 2020; 64:e1900245. [PMID: 31845513 DOI: 10.1002/mnfr.201900245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/22/2019] [Indexed: 01/10/2023]
Abstract
SCOPE Nutrition is a critical determinant of a functional immune system. The aim of this study is to investigate the molecular mechanisms by which immune cells are influenced by zinc and sodium. METHODS AND RESULTS Mixed lymphocyte cultures and Jurkat cells are generated and incubated with zinc, sodium, or a combination of both for further tests. Zinc induces the number of regulatory T cells (Treg) and decreases T helper 17 cells (Th17), and sodium has the opposite effect. The transforming growth factor beta receptor signaling pathway is also enhanced by zinc and reduced by sodium as indicated by contrary phosphoSmad 2/3 induction. Antagonistic effects can also be seen on zinc transporter and metallothionein-1 (MT-1) mRNA expression: zinc declines Zip10 mRNA expression while sodium induces it, whereas MT-1 mRNA expression is induced by zinc while it is reduced by sodium. CONCLUSION This data indicate that zinc and sodium display opposite effects regarding Treg and Th17 induction in MLC, respectively, resulting in a contrary effect on the immune system. Additionally, it reveals a direct interaction of zinc and sodium in the priming of T cell subpopulations and shows that Zip10 and MT-1 play a significant role in those differentiation pathways.
Collapse
Affiliation(s)
- Sophie Dünkelberg
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Anne Kristina Schmitt
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Sören Meyer
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| |
Collapse
|
14
|
Wessels I, Rink L. Micronutrients in autoimmune diseases: possible therapeutic benefits of zinc and vitamin D. J Nutr Biochem 2019; 77:108240. [PMID: 31841960 DOI: 10.1016/j.jnutbio.2019.108240] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
A functional immune system is essential for healthy life. This is achieved by the coordinate activation and interaction of different immune cells. One should be aware that activation of the immune response is as important as its deactivation when the pathogens are cleared, as otherwise host tissue can be damaged up to life-threatening levels. Autoimmune diseases (AID) represent a phenomenon of immune cells attacking host cells and tissue. Five to eight percent of the world's population are currently affected by 80-100 AID. In recent years, the incidence has been constantly increasing, reaching alarmingly high numbers particularly for type 1 diabetes mellitus, Crohn's disease, rheumatoid arthritis, Sjogren's syndrome and multiple sclerosis. This indicates a higher societal burden of AID for the future. This article provides an overview of general concepts of triggers and underlying mechanisms leading to self-destruction. Lately, several original concepts of disease etiology were revised, and there is a variety of hypotheses on triggers, underlying mechanisms and preventive actions. This article concentrates on the importance of nutrition, especially zinc and vitamin D, for balancing the immune function. Homespun nutritional remedies seem to reenter today's therapeutic strategies. Current treatment approaches are largely symptomatic or suppress the immune system. However, recent studies reveal significant benefits of nutrition-related therapeutic approaches including prevention and treatment of established disease, which offer a cost-efficient and trigger-unspecific alternative addressing balancing rather than suppression of the immune system. Zinc and vitamin D are currently the best studied and most promising candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstr. 30, D-52074 Aachen, Germany.
| |
Collapse
|
15
|
Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The Role of Zinc in Antiviral Immunity. Adv Nutr 2019; 10:696-710. [PMID: 31305906 PMCID: PMC6628855 DOI: 10.1093/advances/nmz013] [Citation(s) in RCA: 411] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/16/2022] Open
Abstract
Zinc is an essential trace element that is crucial for growth, development, and the maintenance of immune function. Its influence reaches all organs and cell types, representing an integral component of approximately 10% of the human proteome, and encompassing hundreds of key enzymes and transcription factors. Zinc deficiency is strikingly common, affecting up to a quarter of the population in developing countries, but also affecting distinct populations in the developed world as a result of lifestyle, age, and disease-mediated factors. Consequently, zinc status is a critical factor that can influence antiviral immunity, particularly as zinc-deficient populations are often most at risk of acquiring viral infections such as HIV or hepatitis C virus. This review summarizes current basic science and clinical evidence examining zinc as a direct antiviral, as well as a stimulant of antiviral immunity. An abundance of evidence has accumulated over the past 50 y to demonstrate the antiviral activity of zinc against a variety of viruses, and via numerous mechanisms. The therapeutic use of zinc for viral infections such as herpes simplex virus and the common cold has stemmed from these findings; however, there remains much to be learned regarding the antiviral mechanisms and clinical benefit of zinc supplementation as a preventative and therapeutic treatment for viral infections.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Stephanie Obeid
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Chantelle Ahlenstiel
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, New South Wales, Australia
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| |
Collapse
|
16
|
The zinc transporter Zip14 (SLC39a14) affects Beta-cell Function: Proteomics, Gene expression, and Insulin secretion studies in INS-1E cells. Sci Rep 2019; 9:8589. [PMID: 31197210 PMCID: PMC6565745 DOI: 10.1038/s41598-019-44954-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Insulin secretion from pancreatic beta-cells is dependent on zinc ions as essential components of insulin crystals, zinc transporters are thus involved in the insulin secretory process. Zip14 (SLC39a14) is a zinc importing protein that has an important role in glucose homeostasis. Zip14 knockout mice display hyperinsulinemia and impaired insulin secretion in high glucose conditions. Endocrine roles for Zip14 have been established in adipocytes and hepatocytes, but not yet confirmed in beta-cells. In this study, we investigated the role of Zip14 in the INS-1E beta-cell line. Zip14 mRNA was upregulated during high glucose stimulation and Zip14 silencing led to increased intracellular insulin content. Large-scale proteomics showed that Zip14 silencing down-regulated ribosomal mitochondrial proteins, many metal-binding proteins, and others involved in oxidative phosphorylation and insulin secretion. Furthermore, proliferation marker Mki67 was down-regulated in Zip14 siRNA-treated cells. In conclusion, Zip14 gene expression is glucose sensitive and silencing of Zip14 directly affects insulin processing in INS-1E beta-cells. A link between Zip14 and ribosomal mitochondrial proteins suggests altered mitochondrial RNA translation, which could disturb mitochondrial function and thereby insulin secretion. This highlights a role for Zip14 in beta-cell functioning and suggests Zip14 as a future pharmacological target in the treatment of beta-cell dysfunction.
Collapse
|
17
|
Ahmed NS, Lopes Pires ME, Taylor KA, Pugh N. Agonist-Evoked Increases in Intra-Platelet Zinc Couple to Functional Responses. Thromb Haemost 2018; 119:128-139. [PMID: 30597507 PMCID: PMC6327715 DOI: 10.1055/s-0038-1676589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background
Zinc (Zn
2+
) is an essential trace element that regulates intracellular processes in multiple cell types. While the role of Zn
2+
as a platelet agonist is known, its secondary messenger activity in platelets has not been demonstrated.
Objectives
This article determines whether cytosolic Zn
2+
concentrations ([Zn
2+
]
i
) change in platelets in response to agonist stimulation, in a manner consistent with a secondary messenger, and correlates the effects of [Zn
2+
]
i
changes on activation markers.
Methods
Changes in [Zn
2+
]
i
were quantified in Fluozin-3 (Fz-3)-loaded washed, human platelets using fluorometry. Increases in [Zn
2+
]
i
were modelled using Zn
2+
-specific chelators and ionophores. The influence of [Zn
2+
]
i
on platelet function was assessed using platelet aggregometry, flow cytometry and Western blotting.
Results
Increases of intra-platelet Fluozin-3 (Fz-3) fluorescence occurred in response to stimulation by cross-linked collagen-related peptide (CRP-XL) or U46619, consistent with a rise of [Zn
2+
]
i
. Fluoresence increases were blocked by Zn
2+
chelators and modulators of the platelet redox state, and were distinct from agonist-evoked [Ca
2+
]
i
signals. Stimulation of platelets with the Zn
2+
ionophores clioquinol (Cq) or pyrithione (Py) caused sustained increases of [Zn
2+
]
i
, resulting in myosin light chain phosphorylation, and cytoskeletal re-arrangements which were sensitive to cytochalasin-D treatment. Cq stimulation resulted in integrin α
IIb
β
3
activation and release of dense, but not α, granules. Furthermore, Zn
2+
-ionophores induced externalization of phosphatidylserine.
Conclusion
These data suggest that agonist-evoked fluctuations in intra-platelet Zn
2+
couple to functional responses, in a manner that is consistent with a role as a secondary messenger. Increased intra-platelet Zn
2+
regulates signalling processes, including shape change, α
IIb
β
3
up-regulation and dense granule release, in a redox-sensitive manner.
Collapse
Affiliation(s)
- Niaz S Ahmed
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Maria E Lopes Pires
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Kirk A Taylor
- Cardio-Respiratory Interface Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Nicholas Pugh
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| |
Collapse
|
18
|
The Intracellular Free Zinc Level Is Vital for Treg Function and a Feasible Tool to Discriminate between Treg and Activated Th Cells. Int J Mol Sci 2018; 19:ijms19113575. [PMID: 30428511 PMCID: PMC6274670 DOI: 10.3390/ijms19113575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The intracellular free zinc level and zinc distribution are important for cellular function. Both are highly variable and are altered due to intrinsic zinc pool fluctuation via buffering and muffling reactions. Multiple autoimmune diseases are associated with pathologically changed zinc levels, which provoke altered signal transduction leading to changed immune responses, cell differentiation, and function. For instance, immunological tolerance can be impaired, causing autoimmune diseases because of a malfunction of regulatory T cells (Tregs). We investigated the intracellular free zinc concentration of resting and activated T helper (Th) cells and Tregs in an allogeneic graft versus host disease model using fluorescence-activated cell sorting (FACS) analysis and enlightened cell function under nontoxic zinc concentrations and zinc deficiency by detecting cytokine secretion via enzyme-linked immunosorbent assay (ELISA). We exhibited for the first time that Tregs could be explicitly discriminated from other Th cell subsets using significantly increased intracellular free zinc levels. Moreover, the intracellular free zinc level was essential in maintaining the Treg phenotype and function, since zinc deficiency favored the pro-inflammatory immune response. Therefore, we hypothesize that the intracellular free zinc level in Th cells is essential in guaranteeing proper cellular function and can be used to discriminate Tregs from other Th cell subsets.
Collapse
|
19
|
Li J, Huang D, Sun X, Li X, Cheng CHK. Zinc mediates the action of androgen in acting as a downstream effector of luteinizing hormone on oocyte maturation in zebrafish†. Biol Reprod 2018; 100:468-478. [DOI: 10.1093/biolre/ioy224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 08/01/2018] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jianzhen Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Duo Huang
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xiao Sun
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Xuehui Li
- College of Life Sciences, Northwest Normal University, Lanzhou, China
| | - Christopher H K Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong-Shandong University Joint Laboratory on Reproductive Genetics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
20
|
Giacconi R, Malavolta M, Chiodi L, Boccoli G, Costarelli L, Bonfigli AR, Galeazzi R, Piacenza F, Basso A, Gasparini N, Nisi L, Testa R, Provinciali M. ZnT8 Arg325Trp polymorphism influences zinc transporter expression and cytokine production in PBMCs from patients with diabetes. Diabetes Res Clin Pract 2018; 144:102-110. [PMID: 30142362 DOI: 10.1016/j.diabres.2018.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/30/2022]
Abstract
AIMS ZnT8 Arg325Trp polymorphism has been associated with type 2 diabetes (T2DM) susceptibility. The Arg-325 risk variant shows accelerated zinc (Zn) transport kinetic and reduced glucose-stimulated insulin secretion in pancreatic cells. However, it remains unexplored the role of Znt8 polymorphism in the regulation of Zn homeostasis and inflammatory response in peripheral blood mononuclear cells (PBMCs) from T2DM patients. METHODS AND RESULTS A total of 556 healthy controls and 413 T2DM patients were genotyped for ZnT8 Arg325Trp polymorphism confirming the association of Arg-325 variant with an increased T2DM risk (OR = 1.35 95% C.I: 1.10-1.66; p = 0.0044). Moreover, PBMCs from Arg/Arg T2DM subjects showed increased intracellular free Zn, higher gene expression of Metallothioneins, Znt1, Znt8, Zip2 genes, and reduced Znt4 and Znt7. Higher release of IL-1α, IL-1β, IFN-γ, IL-12p70 and TNF-α and a reduced IL-10 secretion after lipopolysaccharide (LPS) stimulation were observed in PBMCs from Arg/Arg T2DM carriers as compared to subjects with the Trp variant. CONCLUSIONS Our data provide evidence of a substantial different Zn homeostasis regulation between Znt8 Arg-325 and Trp-325 carriers in PBMCs from T2DM patients. Moreover, Znt8 Arg-325 risk variant shows an enhanced inflammatory response upon LPS stimulation that might aggravate insulin resistance and the progression of diabetes cardiovascular complications.
Collapse
Affiliation(s)
- R Giacconi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy.
| | - M Malavolta
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - L Chiodi
- Department of General and Vascular Surgery, INRCA-IRCCS, Ancona, Italy
| | - G Boccoli
- Department of General and Vascular Surgery, INRCA-IRCCS, Ancona, Italy
| | - L Costarelli
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - A R Bonfigli
- Scientific Direction, INRCA-IRCCS National Institute, Ancona, Italy
| | - R Galeazzi
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - F Piacenza
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - A Basso
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - N Gasparini
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - L Nisi
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - R Testa
- Clinical Laboratory & Molecular Diagnostics, INRCA-IRCCS, Ancona, Italy
| | - M Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
21
|
Norouzi S, Adulcikas J, Sohal SS, Myers S. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines. PLoS One 2018; 13:e0191727. [PMID: 29373583 PMCID: PMC5786307 DOI: 10.1371/journal.pone.0191727] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.
Collapse
Affiliation(s)
- Shaghayegh Norouzi
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
| | - John Adulcikas
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
| | - Sukhwinder Singh Sohal
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
| | - Stephen Myers
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Newnham Campus, Launceston, Tasmania, Australia
- * E-mail:
| |
Collapse
|
22
|
Skalny AV, Tinkov AA, Voronina I, Terekhina O, Skalnaya MG, Kovas Y. Hair Trace Element and Electrolyte Content in Women with Natural and In Vitro Fertilization-Induced Pregnancy. Biol Trace Elem Res 2018; 181:1-9. [PMID: 28444499 DOI: 10.1007/s12011-017-1032-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/20/2017] [Indexed: 01/17/2023]
Abstract
The objective of the present study was to perform comparative analysis of hair trace element content in women with natural and in vitro fertilization (IVF)-induced pregnancy. Hair trace element content in 33 women with IVF-induced pregnancy and 99 age- and body mass index-matched control pregnant women (natural pregnancy) was assessed using inductively coupled plasma mass spectrometry. The results demonstrated that IVF-pregnant women are characterized by significantly lower hair levels of Cu, Fe, Si, Zn, Ca, Mg, and Ba at p < 0.05 or lower. Comparison of the individual levels with the national reference values demonstrated higher incidence of Fe and Cu deficiency in IVF-pregnant women in comparison to that of the controls. IVF pregnancy was also associated with higher hair As levels (p < 0.05). Multiple regression analysis revealed a significant interrelation between IVF pregnancy and hair Cu, Fe, Si, and As content. Hair Cu levels were also influenced by vitamin/mineral supplementation and the number of pregnancies, whereas hair Zn content was dependent on prepregnancy anthropometric parameters. In turn, planning of pregnancy had a significant impact on Mg levels in scalp hair. Generally, the obtained data demonstrate an elevated risk of copper, iron, zinc, calcium, and magnesium deficiency and arsenic overload in women with IVF-induced pregnancy. The obtained data indicate the necessity of regular monitoring of micronutrient status in IVF-pregnant women in order to prevent potential deleterious effects of altered mineral homeostasis.
Collapse
Affiliation(s)
- Anatoly V Skalny
- All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia.
- Orenburg State University, Orenburg, Russia.
- Yaroslavl State University, Yaroslavl, Russia.
- RUDN University, Moscow, Russia.
| | - Alexey A Tinkov
- Orenburg State University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- RUDN University, Moscow, Russia
- Orenburg State Medical University, Orenburg, Russia
| | - Irina Voronina
- Tomsk State University, Tomsk, Russia
- Psychological Institute of Russian Academy of Education, Moscow, Russia
| | | | | | - Yulia Kovas
- Tomsk State University, Tomsk, Russia
- Goldsmiths, University of London, London, UK
| |
Collapse
|
23
|
Wessels I, Maywald M, Rink L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017; 9:E1286. [PMID: 29186856 PMCID: PMC5748737 DOI: 10.3390/nu9121286] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022] Open
Abstract
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc "importers" (ZIP 1-14), zinc "exporters" (ZnT 1-10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate "zinc waves", and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function.
Collapse
Affiliation(s)
- Inga Wessels
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Martina Maywald
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany.
| |
Collapse
|
24
|
Turan B, Tuncay E. Impact of Labile Zinc on Heart Function: From Physiology to Pathophysiology. Int J Mol Sci 2017; 18:ijms18112395. [PMID: 29137144 PMCID: PMC5713363 DOI: 10.3390/ijms18112395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 12/15/2022] Open
Abstract
Zinc plays an important role in biological systems as bound and histochemically reactive labile Zn2+. Although Zn2+ concentration is in the nM range in cardiomyocytes at rest and increases dramatically under stimulation, very little is known about precise mechanisms controlling the intracellular distribution of Zn2+ and its variations during cardiac function. Recent studies are focused on molecular and cellular aspects of labile Zn2+ and its homeostasis in mammalian cells and growing evidence clarified the molecular mechanisms underlying Zn2+-diverse functions in the heart, leading to the discovery of novel physiological functions of labile Zn2+ in parallel to the discovery of subcellular localization of Zn2+-transporters in cardiomyocytes. Additionally, important experimental data suggest a central role of intracellular labile Zn2+ in excitation-contraction coupling in cardiomyocytes by shaping Ca2+ dynamics. Cellular labile Zn2+ is tightly regulated against its adverse effects through either Zn2+-transporters, Zn2+-binding molecules or Zn2+-sensors, and, therefore plays a critical role in cellular signaling pathways. The present review summarizes the current understanding of the physiological role of cellular labile Zn2+ distribution in cardiomyocytes and how a remodeling of cellular Zn2+-homeostasis can be important in proper cell function with Zn2+-transporters under hyperglycemia. We also emphasize the recent investigations on Zn2+-transporter functions from the standpoint of human heart health to diseases together with their clinical interest as target proteins in the heart under pathological condition, such as diabetes.
Collapse
Affiliation(s)
- Belma Turan
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| | - Erkan Tuncay
- Department of Biophysics, Ankara University, Faculty of Medicine, 06100 Ankara, Turkey.
| |
Collapse
|
25
|
Giacconi R, Cai L, Costarelli L, Cardelli M, Malavolta M, Piacenza F, Provinciali M. Implications of impaired zinc homeostasis in diabetic cardiomyopathy and nephropathy. Biofactors 2017; 43:770-784. [PMID: 28845600 DOI: 10.1002/biof.1386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/12/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022]
Abstract
Impaired zinc homeostasis is observed in diabetes mellitus (DM2) and its complications. Zinc has a specific role in pancreatic β-cells via insulin synthesis, storage, and secretion. Intracellular zinc homeostasis is tightly controlled by zinc transporters (ZnT and Zip families) and metallothioneins (MT) which modulate the uptake, storage, and distribution of zinc. Several investigations in animal models demonstrate the protective role of MT in DM2 and its cardiovascular or renal complications, while a copious literature shows that a common polymorphism (R325W) in ZnT8, which affects the protein's zinc transport activity, is associated with increased DM2 risk. Emerging studies highlight a role of other zinc transporters in β-cell function, suggesting that targeting them could make a possible contribution in managing the hyperglycemia in diabetic patients. This article summarizes the current findings concerning the role of zinc homeostasis in DM2 pathogenesis and development of diabetic cardiomyopathy and nephropathy and suggests novel therapeutic targets. © 2017 BioFactors, 43(6):770-784, 2017.
Collapse
Affiliation(s)
- Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Lu Cai
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY, USA
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Maurizio Cardelli
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific and Technological Pole, Italian National Institute of Health and Science on Aging (INRCA), Ancona, Italy
| |
Collapse
|
26
|
Zinc Signals and Immunity. Int J Mol Sci 2017; 18:ijms18102222. [PMID: 29064429 PMCID: PMC5666901 DOI: 10.3390/ijms18102222] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Collapse
|
27
|
Tsirul’nikova N, Volosneva O, Dernovaya E, Ananyev I, Podgorskii V. Dichloro(ethylenediamine-N,N-di-3-propionato)zinc: Synthesis and crystal structure. RUSS J INORG CHEM+ 2017. [DOI: 10.1134/s0036023617100187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Cooper-Capetini V, de Vasconcelos DAA, Martins AR, Hirabara SM, Donato J, Carpinelli AR, Abdulkader F. Zinc Supplementation Improves Glucose Homeostasis in High Fat-Fed Mice by Enhancing Pancreatic β-Cell Function. Nutrients 2017; 9:nu9101150. [PMID: 29053582 PMCID: PMC5691766 DOI: 10.3390/nu9101150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/28/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Zinc is an essential component of the insulin granule and it possibly modulates insulin secretion and signaling. Since insulin resistance is a hallmark in the development of type 2 diabetes mellitus, this study aimed at investigating if zinc supplementation is able to improve glucose tolerance and β-cell function in a model of insulin resistance. Male C57BL/6 mice were distributed in four groups according to the diet: normal fat (NF); normal fat supplemented with ZnCl2 (NFZ); high-fat (HF); and, high-fat chow supplemented with ZnCl2 (HFZ). Intraperitoneal glucose (ipGTT) and insulin (ipITT) tolerance, glycemia, insulinemia, HOMA-IR, and HOMA-β were determined after 15 weeks in each diet. Glucose-stimulated insulin secretion (GSIS) was investigated in isolated islets. The insulin effect on glucose uptake, metabolism, and signaling was investigated in soleus muscle. ZnCl2 did not affect body mass or insulin sensitivity as assessed by ipITT, HOMA-IR, muscle glucose metabolism, and Akt and GSK3-β phosphorylation. However, glucose tolerance, HOMA-β, and GSIS were significantly improved by ZnCl2 supplementation. Therefore, ZnCl2 supplementation improves glucose homeostasis in high fat-fed mice by a mechanism that enhances β-cell function, rather than whole-body or muscle insulin sensitivity.
Collapse
Affiliation(s)
- Vinícius Cooper-Capetini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | | | - Amanda Roque Martins
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, São Paulo 05508-000, Brazil.
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Angelo Rafael Carpinelli
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| | - Fernando Abdulkader
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil.
| |
Collapse
|
29
|
Singh KB, Maret W. The interactions of metal cations and oxyanions with protein tyrosine phosphatase 1B. Biometals 2017; 30:517-527. [PMID: 28540523 PMCID: PMC5514212 DOI: 10.1007/s10534-017-0019-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 11/24/2022]
Abstract
Protein tyrosine phosphatases are not considered to be metalloenzymes. Yet, they are inhibited by zinc cations and metal and non-metal oxyanions that are chemical analogues of phosphate, e.g. vanadate. Metal inhibition is generally not recognized as these enzymes are purified, supplied, and assayed with buffers containing chelating and reducing agents. We screened a series of cations and anions for their capacity to inhibit protein tyrosine phosphatase 1B and discuss the ensuing general issues with inhibition constants reported in the scientific literature. In contrast to zinc, which binds to the phosphocysteine intermediate in the closed conformation of protein tyrosine phosphatase 1B when the catalytic aspartate has moved into the active site, other divalent cations such as cadmium and copper may also bind to the enzyme in the open conformation. Inhibition by both anions and cations, conditions such as pH, the presence of metal ligands such as glutathione, and the existence of multiple conformational states of protein tyrosine phosphatases in the reaction cycle establish a complex pattern of inhibition of these important regulatory enzymes with implications for the physiology, pharmacology and toxicology of metal ions.
Collapse
Affiliation(s)
- Kshetrimayum Birla Singh
- Department of Zoology, Pachhunga University College, Mizoram University, Aizawl, 796001, Mizoram, India
| | - Wolfgang Maret
- Metal Metabolism Group, Department of Biochemistry, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
30
|
Skalnaya MG, Skalny AV, Yurasov VV, Demidov VA, Grabeklis AR, Radysh IV, Tinkov AA. Serum Trace Elements and Electrolytes Are Associated with Fasting Plasma Glucose and HbA 1c in Postmenopausal Women with Type 2 Diabetes Mellitus. Biol Trace Elem Res 2017; 177:25-32. [PMID: 27752920 DOI: 10.1007/s12011-016-0868-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/07/2016] [Indexed: 02/06/2023]
Abstract
The primary aim of the research was to assess the level of trace elements and electrolytes in serum of postmenopausal diabetic women. Sixty-four postmenopausal women with type 2 diabetes mellitus (DM2) and 64 age- and body mass index-matched controls were examined. Serum trace elements were assessed using inductively coupled plasma dynamic reaction cell mass spectrometry (ICP-DRC-MS). Fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) levels were evaluated using Randox kits. The obtained data demonstrate that DM2 patients were characterized by 42 and 34 % higher FPG and HbA1c levels, respectively (p < 0.001). The level of Cu and Se in diabetic postmenopausal women was increased by 10 and 15 % in comparison to the respective control values (p = 0.002 and <0.001). Serum Mn, Zn, and Ni concentrations were lower than the control ones by 32 % (p = 0.003), 8 % (p = 0.003), and 23 % (p = 0.046), respectively. FPG and HbA1c levels directly correlated with serum Se (p < 0.001) and Cu (p = 0.014 and p = 0.028) concentrations and inversely related to Zn (p < 0.001) and Tl (p = 0.023 and p = 0.029) levels. Multiple regression analysis demonstrated a significant association between serum Zn and Se and FPG and HbA1c levels. It is proposed that Zn and Se play an important role in DM2 pathogenesis. Further studies are required to assess the intimate mechanisms of the observed differences.
Collapse
Affiliation(s)
- Margarita G Skalnaya
- RUDN University, Moscow, Russia
- Russian Society of Trace Elements in Medicine, ANO "Center for Biotic Medicine", Moscow, Russia
| | - Anatoly V Skalny
- RUDN University, Moscow, Russia
- Russian Society of Trace Elements in Medicine, ANO "Center for Biotic Medicine", Moscow, Russia
- Orenburg State University, Orenburg, Russia
- Yaroslavl State University, Yaroslavl, Russia
- All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | | | - Vasily A Demidov
- Russian Society of Trace Elements in Medicine, ANO "Center for Biotic Medicine", Moscow, Russia
| | - Andrei R Grabeklis
- Russian Society of Trace Elements in Medicine, ANO "Center for Biotic Medicine", Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | | | - Alexey A Tinkov
- RUDN University, Moscow, Russia.
- Orenburg State University, Orenburg, Russia.
- Yaroslavl State University, Yaroslavl, Russia.
- Orenburg State Medical University, Orenburg, Russia.
| |
Collapse
|
31
|
Maxel T, Svendsen PF, Smidt K, Lauridsen JK, Brock B, Pedersen SB, Rungby J, Larsen A. Expression Patterns and Correlations with Metabolic Markers of Zinc Transporters ZIP14 and ZNT1 in Obesity and Polycystic Ovary Syndrome. Front Endocrinol (Lausanne) 2017; 8:38. [PMID: 28303117 PMCID: PMC5332389 DOI: 10.3389/fendo.2017.00038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 02/14/2017] [Indexed: 12/29/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is associated with infertility, increased androgen levels, and insulin resistance. In adipose tissue, zinc facilitates insulin signaling. Circulating zinc levels are altered in obesity, diabetes, and PCOS; and zinc supplementation can ameliorate metabolic disturbances in PCOS. In adipose tissue, expression of zinc influx transporter ZIP14 varies with body mass index (BMI), clinical markers of metabolic syndrome, and peroxisome proliferator-activated receptor gamma (PPARG). In this study, we investigated expression levels of ZIP14 and PPARG in subcutaneous adipose tissue of 36 PCOS women (17 lean and 19 obese women) compared with 23 healthy controls (7 lean and 16 obese women). Further, expression levels of zinc transporter ZIP9, a recently identified androgen receptor, and zinc efflux transporter ZNT1 were investigated, alongside lipid profile and markers of glucose metabolism [insulin degrading enzyme, retinol-binding protein 4 (RBP4), and glucose transporter 4 (GLUT4)]. We find that ZIP14 expression is reduced in obesity and positively correlates with PPARG expression, which is downregulated with increasing BMI. ZNT1 is upregulated in obesity, and both ZIP14 and ZNT1 expression significantly correlates with clinical markers of altered glucose metabolism. In addition, RBP4 and GLUT4 associate with obesity, but an association with PCOS as such was present only for PPARG and RBP4. ZIP14 and ZNT1 does not relate to clinical androgen status and ZIP9 is unaffected by all parameters investigated. In conclusion, our findings support the existence of a zinc dyshomeostasis in adipose tissue in metabolic disturbances including PCOS-related obesity.
Collapse
Affiliation(s)
- Trine Maxel
- Faculty of Health, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Pernille Fog Svendsen
- Department of Obstetrics and Gynecology, Herlev University Hospital, Herlev, Denmark
| | - Kamille Smidt
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Birgitte Brock
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Steen Bønlykke Pedersen
- Faculty of Health, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology (MEA), Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Rungby
- Center for Diabetes Research, Department of Medicine, Gentofte University Hospital, Hellerup, Denmark
| | - Agnete Larsen
- Faculty of Health, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
de Carvalho GB, Brandão-Lima PN, Maia CSC, Barbosa KBF, Pires LV. Zinc’s role in the glycemic control of patients with type 2 diabetes: a systematic review. Biometals 2017; 30:151-162. [DOI: 10.1007/s10534-017-9996-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022]
|
33
|
Hessels AM, Taylor KM, Merkx M. Monitoring cytosolic and ER Zn(2+) in stimulated breast cancer cells using genetically encoded FRET sensors. Metallomics 2016; 8:211-7. [PMID: 26739447 PMCID: PMC4756312 DOI: 10.1039/c5mt00257e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The Zn(2+)-specific ion channel ZIP7 has been implicated to play an important role in releasing Zn(2+) from the ER. External stimulation of breast cancer cells has been proposed to induce phosphorylation of ZIP7 by CK2α, resulting in ZIP7-mediated Zn(2+) release from the ER into the cytosol. Here, we examined whether changes in cytosolic and ER Zn(2+) concentrations can be detected upon such external stimuli. Two previously developed FRET sensors for Zn(2+), eZinCh-2 (Kd = 1 nM at pH 7.1) and eCALWY-4 (Kd = 0.63 nM at pH 7.1), were expressed in both the cytosol and the ER of wild-type MCF-7 and TamR cells. Treatment of MCF-7 and TamR cells with external Zn(2+) and pyrithione, one of the previously used triggers, resulted in an immediate increase in free Zn(2+) in both cytosol and ER, suggesting that Zn(2+) was directly transferred across the cellular membranes by pyrithione. Cells treated with a second trigger, EGF/ionomycin, showed no changes in intracellular Zn(2+) levels, neither in multicolor imaging experiments that allowed simultaneous imaging of cytosolic and ER Zn(2+), nor in experiments in which cytosolic and ER Zn(2+) were monitored separately. In contrast to previous work using small-molecule fluorescent dyes, these results indicate that EGF-ionomycin treatment does not result in significant changes in cytosolic Zn(2+) levels as a result from Zn(2+) release from the ER. These results underline the importance of using genetically encoded fluorescent sensors to complement and verify intracellular imaging experiments with synthetic fluorescent Zn(2+) dyes.
Collapse
Affiliation(s)
- Anne M Hessels
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Kathryn M Taylor
- Breast Cancer Molecular Pharmacology Group, School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Maarten Merkx
- Laboratory of Chemical Biology and Institute of Complex Molecular Systems (ICMS), Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
34
|
Taylor KA, Pugh N. The contribution of zinc to platelet behaviour during haemostasis and thrombosis. Metallomics 2016; 8:144-55. [PMID: 26727074 DOI: 10.1039/c5mt00251f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Platelets are the primary cellular determinants of haemostasis and pathological thrombus formation leading to myocardial infarction and stroke. Following vascular injury or atherosclerotic plaque rupture, platelets are recruited to sites of damage and undergo activation induced by a variety of soluble and/or insoluble agonists. Platelet activation is a multi-step process culminating in the formation of thrombi, which contribute to the haemostatic process. Zinc (Zn(2+)) is acknowledged as an important signalling molecule in a diverse range of cellular systems, however there is limited understanding of the influence of Zn(2+) on platelet behaviour during thrombus formation. This review evaluates the contributions of exogenous and intracellular Zn(2+) to platelet function and assesses the potential pathophysiological implications of Zn(2+) signalling. We also provide a speculative assessment of the mechanisms by which platelets could respond to changes in extracellular and intracellular Zn(2+) concentration.
Collapse
Affiliation(s)
- K A Taylor
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| | - N Pugh
- Department of Biomedical and Forensic Sciences, Faculty of Science and Technology, Anglia Ruskin University, Cambridge, CB1 1PT, UK.
| |
Collapse
|
35
|
Satała G, Duszyńska B, Stachowicz K, Rafalo A, Pochwat B, Luckhart C, Albert PR, Daigle M, Tanaka KF, Hen R, Lenda T, Nowak G, Bojarski AJ, Szewczyk B. Concentration-Dependent Dual Mode of Zn Action at Serotonin 5-HT1A Receptors: In Vitro and In Vivo Studies. Mol Neurobiol 2016; 53:6869-6881. [PMID: 26660328 PMCID: PMC5104769 DOI: 10.1007/s12035-015-9586-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/29/2015] [Indexed: 12/17/2022]
Abstract
Recent data has indicated that Zn can modulate serotonergic function through the 5-HT1A receptor (5-HT1AR); however, the exact mechanisms are unknown. In the present studies, radioligand binding assays and behavioural approaches were used to characterize the pharmacological profile of Zn at 5-HT1ARs in more detail. The influence of Zn on agonist binding to 5-HT1ARs stably expressed in HEK293 cells was investigated by in vitro radioligand binding methods using the agonist [3H]-8-OH-DPAT. The in vivo effects of Zn were compared with those of 8-OH-DPAT in hypothermia, lower lip retraction (LLR), 5-HT behavioural syndrome and the forced swim (FST) tests. In the in vitro studies, biphasic effects, which involved allosteric potentiation of agonist binding at sub-micromolar Zn concentrations and inhibition at sub-millimolar Zn concentrations, were found. The in vivo studies showed that Zn did not induce LLR or elements of 5-HT behavioural syndrome but blocked such effects induced by 8-OH-DPAT. Zn decreased body temperature in rats and mice; however, Zn failed to induce hypothermia in the 5-HT1A autoreceptor knockout mice. In the FST, Zn potentiated the effect of 8-OH-DPAT. However, in the FST performed with the 5-HT1A autoreceptor knockout mice, the anti-immobility effect of Zn was partially blocked. Both the binding and behavioural studies suggest a concentration-dependent dual mechanism of Zn action at 5-HT1ARs, with potentiation at low dose and inhibition at high dose. Moreover, the in vivo studies indicate that Zn can modulate both presynaptic and postsynaptic 5-HT1ARs; however, Zn's effects at presynaptic receptors seem to be more potent.
Collapse
Affiliation(s)
- Grzegorz Satała
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Beata Duszyńska
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Katarzyna Stachowicz
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Anna Rafalo
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Bartlomiej Pochwat
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Christine Luckhart
- Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute , 451 Smyth Road #2464, Ottawa, ON, K1H-8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute , 451 Smyth Road #2464, Ottawa, ON, K1H-8M5, Canada
| | - Mireille Daigle
- Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute , 451 Smyth Road #2464, Ottawa, ON, K1H-8M5, Canada
| | - Kenji F Tanaka
- Department of Neuropsychiatry, School of Medicine, Keio University, Tokyo, 160-8582, Japan
| | - René Hen
- Department of Psychiatry, Columbia University Medical Center and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Tomasz Lenda
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Gabriel Nowak
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Andrzej J Bojarski
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland
| | - Bernadeta Szewczyk
- Institute of Pharmacology Polish Academy of Sciences , Smetna 12, PL 31-343, Krakow, Poland.
| |
Collapse
|
36
|
Bellomo E, Birla Singh K, Massarotti A, Hogstrand C, Maret W. The metal face of protein tyrosine phosphatase 1B. Coord Chem Rev 2016; 327-328:70-83. [PMID: 27890939 PMCID: PMC5115158 DOI: 10.1016/j.ccr.2016.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/01/2016] [Accepted: 07/01/2016] [Indexed: 01/12/2023]
Abstract
A new paradigm in metallobiochemistry describes the activation of inactive metalloenzymes by metal ion removal. Protein tyrosine phosphatases (PTPs) do not seem to require a metal ion for enzymatic activity. However, both metal cations and metal anions modulate their enzymatic activity. One binding site is the phosphate binding site at the catalytic cysteine residue. Oxyanions with structural similarity to phosphate, such as vanadate, inhibit the enzyme with nanomolar to micromolar affinities. In addition, zinc ions (Zn2+) inhibit with picomolar to nanomolar affinities. We mapped the cation binding site close to the anion binding site and established a specific mechanism of inhibition occurring only in the closed conformation of the enzyme when the catalytic cysteine is phosphorylated and the catalytic aspartate moves into the active site. We discuss this dual inhibition by anions and cations here for PTP1B, the most thoroughly investigated protein tyrosine phosphatase. The significance of the inhibition in phosphorylation signaling is becoming apparent only from the functions of PTP1B in the biological context of metal cations as cellular signaling ions. Zinc ion signals complement redox signals but provide a different type of control and longer lasting inhibition on a biological time scale owing to the specificity and affinity of zinc ions for coordination environments. Inhibitor design for PTP1B and other PTPs is a major area of research activity and interest owing to their prominent roles in metabolic regulation in health and disease, in particular cancer and diabetes. Our results explain the apparent dichotomy of both cations (Zn2+) and oxyanions such as vanadate inhibiting PTP1B and having insulin-enhancing ("anti-diabetic") effects and suggest different approaches, namely targeting PTPs in the cell by affecting their physiological modulators and considering a metallodrug approach that builds on the knowledge of the insulin-enhancing effects of both zinc and vanadium compounds.
Collapse
Affiliation(s)
- Elisa Bellomo
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Kshetrimayum Birla Singh
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Christer Hogstrand
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| | - Wolfgang Maret
- Metal Metabolism Group, Division of Diabetes and Nutritional Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, UK
| |
Collapse
|
37
|
Plasma/Serum Zinc Status During Aerobic Exercise Recovery: A Systematic Review and Meta-Analysis. Sports Med 2016; 47:127-134. [DOI: 10.1007/s40279-016-0567-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
38
|
Kunjara S, McLean P, Rademacher L, Rademacher TW, Fascilla F, Bettocchi S, Scioscia M. Putative Key Role of Inositol Messengers in Endothelial Cells in Preeclampsia. Int J Endocrinol 2016; 2016:7695648. [PMID: 27738431 PMCID: PMC5050364 DOI: 10.1155/2016/7695648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease.
Collapse
Affiliation(s)
- Sirilaksana Kunjara
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | - Patricia McLean
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | - Fabiana Fascilla
- Department of Biomedical Sciences and Human Oncology (DIMO), II Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Bettocchi
- Department of Biomedical Sciences and Human Oncology (DIMO), II Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Scioscia
- Department of Obstetrics and Gynecology, Sacro Cuore Don Calabria, Negrar, Verona, Italy
- *Marco Scioscia:
| |
Collapse
|
39
|
Umrani RD, Paknikar KM. Jasada bhasma, a Zinc-Based Ayurvedic Preparation: Contemporary Evidence of Antidiabetic Activity Inspires Development of a Nanomedicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:193156. [PMID: 25866533 PMCID: PMC4381720 DOI: 10.1155/2015/193156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
The roles of metals in human physiology are well established. It is also known that many metals are required in trace amounts for normal metabolism and their deficiency leads to diseases. In Ayurveda, metal-based preparations, that is, bhasmas, are indicated for the treatment of several diseases. Standard textbooks of Ayurveda recommend Jasada bhasma (zinc based bhasma) as the treatment of choice for diabetes. Modern medicine also recognizes the important role of zinc in glucose homeostasis. Yet, studies that validate the use of Jasada bhasma are few and uncomprehensive. There is an imminent need for a systematic study on physicochemical characterization, pharmacological efficacy, and toxicity assessment of several bhasma preparations to generate scientific evidence of their utility and safety. Interestingly, recent studies suggest that bhasmas comprise submicronic particles or nanoparticles. Thus a bhasma-inspired new drug discovery approach could emerge in which several metal based nanomedicines could be developed. This would help in utilizing the age old, time-tested wisdom of Ayurveda in modern medicine. One such study on antidiabetic activity of Jasada bhasma and the corresponding new drug, namely, zinc oxide nanoparticles, is briefly discussed, as an example.
Collapse
Affiliation(s)
- Rinku D. Umrani
- Centre for Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune Maharashtra 411004, India
| | - Kishore M. Paknikar
- Centre for Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune Maharashtra 411004, India
| |
Collapse
|
40
|
Metal Complexes with Ethylenediaminedicarboxylic Acids and Their Derivatives, Promising Pharmacological and Diagnostic Agents (Review). Pharm Chem J 2015. [DOI: 10.1007/s11094-015-1184-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
41
|
Yang H, Keen CL, Lanoue L. Influence of intracellular zinc on cultures of rat cardiac neural crest cells. ACTA ACUST UNITED AC 2015; 104:11-22. [PMID: 25689142 DOI: 10.1002/bdrb.21135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/08/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Developmental zinc (Zn) deficiency increases the incidence of heart anomalies in rat fetuses, in regions and structures derived from the outflow tract. Given that the development of the outflow tract requires the presence of cardiac neural crest cells (cNCC), we speculated that Zn deficiency selectively kills cNCC and could lead to heart malformations. METHODS Cardiac NCC were isolated from E10.5 rat embryos and cultured in control media (CTRL), media containing 3 μM of the cell permeable metal chelator N, N, N', N'-tetrakis (2-pyridylmethyl) ethylene diamine (TPEN), or in TPEN-treated media supplemented with 3 μM Zn (TPEN + Zn). Cardiac NCC were collected after 6, 8, and 24 h of treatment to assess cell viability, proliferation, and apoptosis. RESULTS The addition of TPEN to the culture media reduced free intracellular Zn pools and cell viability as assessed by low ATP production, compared to cells grown in control or Zn-supplemented media. There was an accumulation of reactive oxygen species, a release of mitochondrial cytochrome c into the cytoplasm, and an increased cellular expression of active caspase-3 in TPEN-treated cNCC compared to cNCC cultured in CTRL or TPEN + Zn media. CONCLUSION Zn deficiency can result in oxidative stress in cNCC, and subsequent decreases in their population and metabolic activity. These data support the concept that Zn deficiency associated developmental heart defects may arise in part as a consequence of altered cNCC metabolism.
Collapse
Affiliation(s)
- Hsunhui Yang
- Department of Nutrition, University of California, Davis, California
| | | | | |
Collapse
|
42
|
Myers SA. Zinc transporters and zinc signaling: new insights into their role in type 2 diabetes. Int J Endocrinol 2015; 2015:167503. [PMID: 25983752 PMCID: PMC4423030 DOI: 10.1155/2015/167503] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/07/2015] [Accepted: 04/12/2015] [Indexed: 12/13/2022] Open
Abstract
Zinc is an essential trace element that plays a vital role in many biological processes including growth and development, immunity, and metabolism. Recent studies have highlighted zinc's dynamic role as a "cellular second messenger" in the control of insulin signaling and glucose homeostasis. Accordingly, mechanisms that contribute to dysfunctional zinc signaling are suggested to be associated with metabolic disease states including cancer, cardiovascular disease, Alzheimer's disease, and diabetes. The actions of the proteins that control the uptake, storage, and distribution of zinc, the zinc transporters, are under intense investigation due to their emerging role in type 2 diabetes. The synthesis, secretion, and action of insulin are dependent on zinc and the transporters that make this ion available to cellular processes. This suggests that zinc plays a previously unidentified role where changes in zinc status over time may affect insulin activity. This previously unexplored concept would raise a whole new area of research into the pathophysiology of insulin resistance and introduce a new class of drug target with utility for diabetes pharmacotherapy.
Collapse
Affiliation(s)
- Stephen A. Myers
- University of Tasmania (UTAS), School of Health Sciences, Newnham Campus, Launceston, TAS 7250, Australia
- *Stephen A. Myers:
| |
Collapse
|
43
|
Chu A, Foster M, Hancock D, Bell-Anderson K, Petocz P, Samman S. TNF-α gene expression is increased following zinc supplementation in type 2 diabetes mellitus. GENES AND NUTRITION 2014; 10:440. [PMID: 25403095 DOI: 10.1007/s12263-014-0440-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/28/2014] [Indexed: 01/23/2023]
Abstract
Chronic low-grade inflammation in type 2 diabetes mellitus (DM) can elicit changes in whole-body zinc metabolism. The interaction among the expression of inflammatory cytokines, zinc transporter and metallothionein (MT) genes in peripheral blood mononuclear cells in type 2 DM remains unclear. In a 12-week randomized controlled trial, the effects of zinc (40 mg/day) supplementation on the gene expression of cytokines, zinc transporters and MT in women with type 2 DM were examined. In the zinc-supplemented group, gene expression of tumour necrosis factor (TNF)-α tended to be upregulated by 27 ± 10 % at week 12 compared to baseline (P = 0.053). TNF-α fold change in the zinc-treated group was higher than in those without zinc supplementation (P < 0.05). No significant changes were observed in the expression or fold change of interleukin (IL)-1β or IL-6. Numerous bivariate relationships were observed between the fold changes of cytokines and zinc transporters, including ZnT7 with IL-1β (P < 0.01), IL-6 (P < 0.01) and TNF-α (P < 0.01). In multiple regression analysis, IL-1β expression was predicted by the expression of all zinc transporters and MT measured at baseline (r (2) = 0.495, P < 0.05) and at week 12 (r (2) = 0.532, P < 0.03). The current study presents preliminary evidence that zinc supplementation increases cytokine gene expression in type 2 DM. The relationships found among zinc transporters, MT and cytokines suggest close interactions between zinc homeostasis and inflammation.
Collapse
Affiliation(s)
- Anna Chu
- Discipline of Nutrition and Metabolism, School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
SIGNIFICANCE Protein tyrosine phosphatases (PTPs) play essential roles in controlling cell proliferation, differentiation, communication, and adhesion. The dysregulated activities of PTPs are involved in the pathogenesis of a number of human diseases such as cancer, diabetes, and autoimmune diseases. RECENT ADVANCES Many PTPs have emerged as potential new targets for novel drug discovery. PTP inhibitors have attracted much attention. Many PTP inhibitors have been developed. Some of them have been proven to be efficient in lowering blood glucose levels in vivo or inhibiting tumor xenograft growth. CRITICAL ISSUES Some metal ions and metal complexes potently inhibit PTPs. The metal atoms within metal complexes play an important role in PTP binding, while ligand structures influence the inhibitory potency and selectivity. Some metal complexes can penetrate the cell membrane and selectively bind to their targeting PTPs, enhancing the phosphorylation of the related substrates and influencing cellular metabolism. PTP inhibition is potentially involved in the pathophysiological and toxicological processes of metals and some PTPs may be cellular targets of certain metal-based therapeutic agents. FUTURE DIRECTIONS Investigating the structural basis of the interactions between metal complexes and PTPs would facilitate a comprehensive understanding of the structure-activity relationship and accelerate the development of promising metal-based drugs targeting specific PTPs.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University , Taiyuan, People's Republic of China
| | | |
Collapse
|
45
|
Sun W, Miao X, Zhou S, Zhang L, Epstein PN, Mellen N, Zheng Y, Fu Y, Wang Y, Cai L. Zinc rescue of Akt2 gene deletion-linked murine cardiac dysfunction and pathological changes is metallothionein-dependent. J Mol Cell Cardiol 2014; 74:88-97. [PMID: 24819347 DOI: 10.1016/j.yjmcc.2014.04.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 04/23/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
We have demonstrated that zinc supplementation provides cardiac protection from diabetes in mice, but its underlying mechanism remains unclear. Since zinc mimics the function of insulin, it may provide benefit to the heart via stimulating Akt-mediated glucose metabolism. Akt2 plays an important role in cardiac glucose metabolism and mice with Akt2 gene deletion (Akt2-KO) exhibit a type 2 diabetes phenotype; therefore, we assumed that no cardiac protection by zinc supplementation from diabetes would be observed in Akt2-KO mice. Surprisingly, despite Akt2 gene deletion, zinc supplementation provided protection against cardiac dysfunction and other pathological changes in Akt2-KO mice, which were accompanied by significant decreases in Akt and GSK-3β phosphorylation. Correspondingly, glycogen synthase phosphorylation and hexokinase II and PGC-1α expression, all involved in the regulation of glucose metabolism, were significantly altered in diabetic hearts, along with a significantly increased expression of Akt negative regulators: PTEN, PTP1B, and TRB3. All these molecular, pathological, and functional changes were significantly prevented by 3-month zinc supplementation. Furthermore, the stimulation of Akt-mediated glucose metabolic kinases or enzymes by zinc treatment was metallothionein-dependent since it could not be observed in metallothionein-knockout mice. These results suggest that zinc preserves cardiac function and structure in Akt2-KO mice presumably due to its insulin mimetic effect on cardiac glucose-metabolism. The cardioprotective effects of zinc are metallothionein-dependent. This is very important since zinc supplementation may be required for patients with Akt2 gene deficiency or insulin resistance.
Collapse
Affiliation(s)
- Weixia Sun
- The First Hospital of Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Xiao Miao
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; The Second Hospital of Jilin University, Jilin 130041, China
| | - Shanshan Zhou
- The First Hospital of Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Li Zhang
- The First Hospital of Jilin University, Jilin 130021, China
| | - Paul N Epstein
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | - Nicholas Mellen
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Yang Zheng
- The First Hospital of Jilin University, Jilin 130021, China
| | - Yaowen Fu
- The First Hospital of Jilin University, Jilin 130021, China
| | - Yuehui Wang
- The First Hospital of Jilin University, Jilin 130021, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
46
|
Sun W, Wang Y, Miao X, Wang Y, Zhang L, Xin Y, Zheng S, Epstein PN, Fu Y, Cai L. Renal improvement by zinc in diabetic mice is associated with glucose metabolism signaling mediated by metallothionein and Akt, but not Akt2. Free Radic Biol Med 2014; 68:22-34. [PMID: 24296248 PMCID: PMC5288838 DOI: 10.1016/j.freeradbiomed.2013.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 11/07/2013] [Accepted: 11/15/2013] [Indexed: 01/11/2023]
Abstract
Human epidemiological and animal studies have shown the beneficial effect of zinc supplementation on mitigating diabetic nephropathy. However, the mechanism by which zinc protects the kidney from diabetes remains unknown. Here we demonstrate the therapeutic effects of zinc on diabetes-induced renal pathological and functional changes. These abnormalities were found in both transgenic OVE26 and Akt2-KO diabetic mouse models, accompanied by significant changes in glucose-metabolism-related regulators. The changes included significantly decreased phosphorylation of Akt and GSK-3β, increased phosphorylation of renal glycogen synthase, decreased expression of hexokinase II and PGC-1α, and increased expression of the Akt negative regulators PTEN, PTP1B, and TRB3. All of these were significantly prevented by zinc treatment for 3 months. Furthermore, zinc-stimulated changes in glucose metabolism mediated by Akt were actually found to be metallothionein dependent, but not Akt2 dependent. These results suggest that the therapeutic effects of zinc in diabetic nephropathy are mediated, in part, by the preservation of glucose-metabolism-related pathways via the prevention of diabetes-induced upregulation of Akt negative regulators. Given that zinc deficiency is very common in diabetics, this finding implies that regularly monitoring zinc levels in diabetic patients, as well as supplementing if low, is important in mitigating the development of diabetic nephropathy.
Collapse
Affiliation(s)
- Weixia Sun
- First Hospital, Jilin University, Jilin 130021, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Yuehui Wang
- Second Hospital, Jilin University, Jilin 130041, China
| | - Xiao Miao
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Second Hospital, Jilin University, Jilin 130041, China
| | - Yonggang Wang
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; China-Japan Union Hospital, Jilin University, Jilin 130031, China
| | - Li Zhang
- First Hospital, Jilin University, Jilin 130021, China
| | - Ying Xin
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Norman Bethune Medical College, Jilin University, Jilin 130021, China
| | - Shirong Zheng
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA
| | - Paul N Epstein
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA
| | - Yaowen Fu
- First Hospital, Jilin University, Jilin 130021, China.
| | - Lu Cai
- Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, KY 40202, USA.
| |
Collapse
|
47
|
Bellomo E, Massarotti A, Hogstrand C, Maret W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 2014; 6:1229-39. [DOI: 10.1039/c4mt00086b] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A novel mechanism by which Zn2+ modulates PTP1B activity encompasses the binding to the closed and phospho-intermediate forms only.
Collapse
Affiliation(s)
- Elisa Bellomo
- King's College London
- Metal Metabolism Group
- Division of Diabetes and Nutritional Sciences
- School of Medicine
- London, UK
| | - Alberto Massarotti
- Dipartimento di Scienze del Farmaco
- Universitá degli Studi del Piemonte Orientale “A. Avogadro”
- 28100 Novara, Italy
| | - Christer Hogstrand
- King's College London
- Metal Metabolism Group
- Division of Diabetes and Nutritional Sciences
- School of Medicine
- London, UK
| | - Wolfgang Maret
- King's College London
- Metal Metabolism Group
- Division of Diabetes and Nutritional Sciences
- School of Medicine
- London, UK
| |
Collapse
|
48
|
Haase H, Rink L. Zinc signals and immune function. Biofactors 2014; 40:27-40. [PMID: 23804522 DOI: 10.1002/biof.1114] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/23/2013] [Accepted: 04/25/2013] [Indexed: 12/21/2022]
Abstract
For more than 50 years, it has been known that zinc deficiency compromises immune function. During this time, knowledge about the biochemistry of zinc has continued to grow, but only recent years have provided in-depth molecular insights into the multiple aspects of zinc as a regulator of immunity. A network based on ZnT and ZIP proteins for transport and metallothionein for storage tightly regulates zinc availability, and virtually all aspects of innate and adaptive immunity are affected by zinc. In vivo, zinc deficiency alters the number and function of neutrophil granulocytes, monocytes, natural killer (NK)-, T-, and B-cells. T cell functions and balance between the different subsets are particularly susceptible to changes in zinc status. This article focuses in particular on the main mechanisms by which zinc ions exert essential functions in the immune system. On the one hand, this includes tightly protein bound zinc ions serving catalytic or structural functions in a multitude of different proteins, in particular enzymes and transcription factors. On the other hand, increasing evidence arises for a regulatory role of free zinc ions in signal transduction, especially in cells of the immune system. Identification of several molecular targets, including phosphatases, phosphodiesterases, caspases, and kinases suggest that zinc ions are a second messenger regulating signal transduction in various kinds of immune cells.
Collapse
Affiliation(s)
- Hajo Haase
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, Aachen, Germany
| | | |
Collapse
|
49
|
Nuttall JR, Oteiza PI. Zinc and the aging brain. GENES AND NUTRITION 2013; 9:379. [PMID: 24366781 DOI: 10.1007/s12263-013-0379-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 12/06/2013] [Indexed: 11/25/2022]
Abstract
Alterations in trace element homeostasis could be involved in the pathology of dementia, and in particular of Alzheimer's disease (AD). Zinc is a structural or functional component of many proteins, being involved in numerous and relevant physiological functions. Zinc homeostasis is affected in the elderly, and current evidence points to alterations in the cellular and systemic distribution of zinc in AD. Although the association of zinc and other metals with AD pathology remains unclear, therapeutic approaches designed to restore trace element homeostasis are being tested in clinical trials. Not only could zinc supplementation potentially benefit individuals with AD, but zinc supplementation also improves glycemic control in the elderly suffering from diabetes mellitus. However, the findings that select genetic polymorphisms may alter an individual's zinc intake requirements should be taken into consideration when planning zinc supplementation. This review will focus on current knowledge regarding pathological and protective mechanisms involving brain zinc in AD to highlight areas where future research may enable development of new and improved therapies.
Collapse
Affiliation(s)
- Johnathan R Nuttall
- Department of Nutrition, University of California, One Shields Av., Davis, CA, 95616, USA
| | | |
Collapse
|
50
|
Xu Z, Zhou J. Zinc and myocardial ischemia/reperfusion injury. Biometals 2013; 26:863-78. [DOI: 10.1007/s10534-013-9671-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/21/2013] [Indexed: 01/06/2023]
|