1
|
Uko MP, Umana SI, Iwatt IJ, Udoekong NS, Mgbechidinma CL, Adie FU, Akan OD. Microbial ice-binding structures: A review of their applications. Int J Biol Macromol 2024; 275:133670. [PMID: 38971293 DOI: 10.1016/j.ijbiomac.2024.133670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Microorganisms' ice-binding structures (IBS) are macromolecules with potential commercial value in agriculture, food technology, material technology, cryobiology, and medicine. Microbial ice-structuring or microbial ice-binding particles, with their multi-applications, are simple to use, effective in low amounts, non-toxic, and environmentally friendly. Due to their source and composition diversities, microbial ice-binding structures are gaining attention because they are useable in various conditions. Some microorganisms also produce structures with dual ice-nucleating and anti-freezing properties. Structures that promote ice formation (ice nucleating particles- INPs) act as ice nuclei, lowering the energy barrier between supercooled liquid and ice, causing ice crystals to form. In contrast, anti-freeze particles (AFPs) prevent ice formation and recrystallization through several mechanisms, including disturbing the formation of string hydrogen bonds amongst water molecules, melting already formed ice crystals, and preventing crystal formation by binding to specific sites. Knowledge of the type and function of microbial ice-binding structures lends fundamental insight for possible scaling the production of cheap, functional, and advanced microbial structure-inspired mimics and by-products. This review focuses on microbial ice-binding structures and their potential uses in the food, medicinal, environmental, and agricultural sectors.
Collapse
Affiliation(s)
- Mfoniso Peter Uko
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria
| | - Senyene Idorenyin Umana
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria; Department of Microbiology, Faculty of Michael Okpara of Agriculture, Umudike, Nigeria
| | - Ifiok Joseph Iwatt
- Center for Wetlands and Wastes Management Studies, Faculty of Agriculture, University of Uyo, Uyo, Nigeria
| | | | - Chiamaka Linda Mgbechidinma
- School of Life Sciences, Centre for Cell and Development Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Department of Microbiology, University of Ibadan, Ibadan 200243, Nigeria
| | - Francisca Upekiema Adie
- Department of Microbiology, Faculty of Biological Sciences, Cross River State University of Technology, Calabar, Nigeria
| | - Otobong Donald Akan
- Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria; College of Food Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China.
| |
Collapse
|
2
|
Zhang T, Jia L, Niu Z, Li X, Men S, Jiang L, Ma M, Wang H, Tang X, Chen Q. Comparative transcriptomic analysis delineates adaptation strategies of Rana kukunoris toward cold stress on the Qinghai-Tibet Plateau. BMC Genomics 2024; 25:363. [PMID: 38609871 PMCID: PMC11015565 DOI: 10.1186/s12864-024-10248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cold hardiness is fundamental for amphibians to survive during the extremely cold winter on the Qinghai-Tibet plateau. Exploring the gene regulation mechanism of freezing-tolerant Rana kukunoris could help us to understand how the frogs survive in winter. RESULTS Transcriptome of liver and muscle of R. kukunoris collected in hibernation and spring were assisted by single molecule real-time (SMRT) sequencing technology. A total of 10,062 unigenes of R. kukunoris were obtained, and 9,924 coding sequences (CDS) were successfully annotated. Our examination of the mRNA response to whole body freezing and recover in the frogs revealed key genes concerning underlying antifreeze proteins and cryoprotectants (glucose and urea). Functional pathway analyses revealed differential regulated pathways of ribosome, energy supply, and protein metabolism which displayed a freeze-induced response and damage recover. Genes related to energy supply in the muscle of winter frogs were up-regulated compared with the muscle of spring frogs. The liver of hibernating frogs maintained modest levels of protein synthesis in the winter. In contrast, the liver underwent intensive high levels of protein synthesis and lipid catabolism to produce substantial quantity of fresh proteins and energy in spring. Differences between hibernation and spring were smaller than that between tissues, yet the physiological traits of hibernation were nevertheless passed down to active state in spring. CONCLUSIONS Based on our comparative transcriptomic analyses, we revealed the likely adaptive mechanisms of R. kukunoris. Ultimately, our study expands genetic resources for the freezing-tolerant frogs.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lun Jia
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xinying Li
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shengkang Men
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Jiang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Miaojun Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
3
|
Storey JM, Li Z, Storey KB. Hypoxia inducible factor-1α responds to freezing, anoxia and dehydration stresses in a freeze-tolerant frog. Cryobiology 2023; 110:79-85. [PMID: 36442660 DOI: 10.1016/j.cryobiol.2022.11.242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The wood frog, Rana sylvatica (aka Lithobates sylvaticus) is the main model for studies of natural freeze tolerance among amphibians living in seasonally cold climates. During freezing, ∼65% of total body water can be converted to extracellular ice and this imposes both dehydration and hypoxia/anoxia stresses on cells. The current study analyzed the responses of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1), a crucial oxygen-sensitive regulator of gene expression, to freezing, anoxia or dehydration stresses, examining six tissues of wood frogs (liver, skeletal muscle, brain, heart, kidney, skin). RT-PCR revealed a rapid elevation hif-1α transcript levels within 2 h of freeze initiation in both liver and brain and elevated levels of both mRNA and protein in liver and muscle after 24 h frozen. However, both transcript and protein levels reverted to control values after thawing except for HIF-1 protein in liver that dropped to ∼60% of control. Independent exposures of wood frogs to anoxia or dehydration stresses (two components of freezing) also triggered upregulation of hif-1α transcripts and/or HIF-1α protein in liver and kidney with variable responses in other tissues. The results show active modulation of HIF-1 in response to freezing, anoxia and dehydration stresses and implicate this transcription factor as a contributor to the regulation of metabolic adaptations needed for long term survival of wood frogs in the ischemic frozen state.
Collapse
Affiliation(s)
- Janet M Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Zhenhong Li
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada.
| |
Collapse
|
4
|
Gharib G, Saeidiharzand S, Sadaghiani AK, Koşar A. Antifreeze Proteins: A Tale of Evolution From Origin to Energy Applications. Front Bioeng Biotechnol 2022; 9:770588. [PMID: 35186912 PMCID: PMC8851421 DOI: 10.3389/fbioe.2021.770588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 11/19/2022] Open
Abstract
Icing and formation of ice crystals is a major obstacle against applications ranging from energy systems to transportation and aviation. Icing not only introduces excess thermal resistance, but it also reduces the safety in operating systems. Many organisms living under harsh climate and subzero temperature conditions have developed extraordinary survival strategies to avoid or delay ice crystal formation. There are several types of antifreeze glycoproteins with ice-binding ability to hamper ice growth, ice nucleation, and recrystallization. Scientists adopted similar approaches to utilize a new generation of engineered antifreeze and ice-binding proteins as bio cryoprotective agents for preservation and industrial applications. There are numerous types of antifreeze proteins (AFPs) categorized according to their structures and functions. The main challenge in employing such biomolecules on industrial surfaces is the stabilization/coating with high efficiency. In this review, we discuss various classes of antifreeze proteins. Our particular focus is on the elaboration of potential industrial applications of anti-freeze polypeptides.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
| | - Shaghayegh Saeidiharzand
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Abdolali K. Sadaghiani
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- *Correspondence: Abdolali K. Sadaghiani, ; Ali Koşar,
| | - Ali Koşar
- Faculty of Engineering and Natural Sciences (FENS), Sabanci University, Istanbul, Turkey
- Sabanci University Nanotechnology and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano-Diagnostics (EFSUN), Sabanci University, Istanbul, Turkey
- *Correspondence: Abdolali K. Sadaghiani, ; Ali Koşar,
| |
Collapse
|
5
|
Mitochondria and the Frozen Frog. Antioxidants (Basel) 2021; 10:antiox10040543. [PMID: 33915853 PMCID: PMC8067143 DOI: 10.3390/antiox10040543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 01/06/2023] Open
Abstract
The wood frog, Rana sylvatica, is the best-studied of a small group of amphibian species that survive whole body freezing during the winter months. These frogs endure the freezing of 65-70% of their total body water in extracellular ice masses. They have implemented multiple adaptations that manage ice formation, deal with freeze-induced ischemia/reperfusion stress, limit cell volume reduction with the production of small molecule cryoprotectants (glucose, urea) and adjust a wide variety of metabolic pathways for prolonged life in a frozen state. All organs, tissues, cells and intracellular organelles are affected by freeze/thaw and its consequences. This article explores mitochondria in the frozen frog with a focus on both the consequences of freezing (e.g., anoxia/ischemia, cell volume reduction) and mitigating defenses (e.g., antioxidants, chaperone proteins, upregulation of mitochondria-encoded genes, enzyme regulation, etc.) in order to identify adaptive strategies that defend and adapt mitochondria in animals that can be frozen for six months or more every year. A particular focus is placed on freeze-responsive genes in wood frogs that are encoded on the mitochondrial genome including ATP6/8, ND4 and 16S RNA. These were strongly up-regulated during whole body freezing (24 h at -2.5 °C) in the liver and brain but showed opposing responses to two component stresses: strong upregulation in response to anoxia but no response to dehydration stress. This indicates that freeze-responsive upregulation of mitochondria-encoded genes is triggered by declining oxygen and likely has an adaptive function in supporting cellular energetics under indeterminate lengths of whole body freezing.
Collapse
|
6
|
Li F, Du X, Ren Y, Kong B, Wang B, Xia X, Bao Y. Impact of ice structuring protein on myofibrillar protein aggregation behaviour and structural property of quick-frozen patty during frozen storage. Int J Biol Macromol 2021; 178:136-142. [PMID: 33636271 DOI: 10.1016/j.ijbiomac.2021.02.158] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/24/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
The goal of this study was to explore the cryoprotective effect of ice structuring protein (ISP) on the aggregation behaviour and structural changes of myofibrillar protein (MP) from quick-frozen pork patties during frozen storage. Frozen storage causes the formation of large protein aggregates and weakens MP structures. After adding ISP into patties, MP had a more stable aggregation system, which was manifested by a uniform particle size distribution and significantly higher absolute zeta potential (11.71 mV) than the control (9.56 mV) (P < 0.05). Atomic force microscopy results showed that the surface roughness of MP aggregation decreased by 9.78% with ISP after freezing for 180 d. Additionally, compared to patties without ISP, the MP carbonyl content from the ISP-treated patty decreased by 32%, and the free amino content increased by 14.99% during frozen storage. Results from circular dichroism spectroscopy and fluorescence spectroscopy showed that MP secondary and tertiary structure stability in patties improved with ISP. Overall, ISP has the potential to improve MP aggregation and structural stability during frozen storage.
Collapse
Affiliation(s)
- Fangfei Li
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanming Ren
- Heilongjiang Province Agricultural Products and Veterinary Drug Feed Technical Identification Station, Harbin, Heilongjiang 150090, China
| | - Baohua Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
7
|
Li F, Du X, Wang B, Pan N, Xia X, Bao Y. Inhibiting effect of ice structuring protein on the decreased gelling properties of protein from quick-frozen pork patty subjected to frozen storage. Food Chem 2021; 353:129104. [PMID: 33730666 DOI: 10.1016/j.foodchem.2021.129104] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The effect of ice structuring protein (ISP) on the gelling properties of myofibrillar protein from quick-frozen pork patty during frozen storage was investigated by determining and comparing protein solubility, turbidity and gel properties. Protein solubility was increased by 10.23% and turbidity was decreased after ISP treated. The gel whiteness and strength of myofibrillar protein from patty with ISP were 8.38% and 13.70% higher than that of the control after frozen for 180 days. And the addition of ISP could weaken the influence of frozen storage on water mobility and reduce the water loss. Furthermore, ISP retrained the decrease in the maximum elastic (G') value and loss factor (tan δ) value of samples. Through observing by scanning electron microscope (SEM), ISP retarded the destruction of gel microstructure and maintained the relatively complete tissue of gel. These findings confirmed the importance of ISP in myofibrillar protein gel quality assurance of pork patty during frozen storage.
Collapse
Affiliation(s)
- Fangfei Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Xin Du
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Bo Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Nan Pan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiufang Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Yihong Bao
- College of Forestry, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| |
Collapse
|