1
|
Zhang K, Wang C, Guo S, Li S, Wu Z, Hata S, Li J, Shiraishi Y, Du Y. Photoelectrocatalytic oxidation of ethylene glycol on trimetallic PdAgCu nanospheres enhanced by surface plasmon resonance. J Colloid Interface Sci 2023; 636:559-567. [PMID: 36669449 DOI: 10.1016/j.jcis.2023.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The notable surface plasmon resonance (SPR) effect of some metals has been applied to improve the efficiency of alcohol oxidation reactions, whereas the comprehensive investigation of Cu-assisted photoelectrocatalysis remains challenging. We herein successfully prepared trimetallic PdAgCu nanospheres (NSs) with abundant surface bulges for the advanced ethylene glycol oxidation reaction (EGOR) and compared them with bimetallic PdAg NSs to investigate the performance enhancement mechanism. Impressively, the as-optimized PdAgCu NSs exhibited superb mass activity and electrochemical stability. Moreover, under visible light illumination, the mass activity of PdAgCu NSs increased to 1.62 times compared to that in the dark, and in contrast, the mass activity of PdAg NSs only increased to 1.48 times that in the dark. A mechanistic study indicated that the incorporation of Cu not only strengthens the whole SPR effect of PdAgCu NSs but also further modifies the electronic structure of Pd. This work highlighted that the incorporation of Cu into PdAg NSs further enhanced the photoelectrocatalytic performance and increased noble metal atom utilization, which may provide guidance to fabricate novel and promising nanocatalysts in the field of photoelectrocatalysis.
Collapse
Affiliation(s)
- Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
2
|
Li Z, Zhang Y, Zou B, Wu Z, Gao F, Du Y. Simple Synthesis of PdAg Porous Nanowires as Effective Catalysts for Polyol Oxidation Reaction. Inorg Chem 2022; 61:9693-9701. [PMID: 35699994 DOI: 10.1021/acs.inorgchem.2c01164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of efficient and stable Pd-based electrocatalysts is extremely important to facilitate the development of catalysts for polyol oxidation reactions. To synthesize Pd-based catalysts with excellent catalytic performance, a series of PdAg porous nanowires (PdAg PNWs) with different elemental ratios was constructed by facile synthesis using a seed-mediated method. The synthesized PdAg PNWs have a rough surface and a porous one-dimensional structure, which optimize the specific surface area and surface area of catalysts, thereby providing more active sites for catalysts. PdAg PNWs benefited from the geometric effect of porous nanowires and the synergy between Pd and Ag, showing excellent catalysis (8243.0 and 4137.0 mA mgPd-1) for the ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). Among them, the optimal Pd62Ag38 PNWs show the highest catalytic activity (6.0 times and 3.9 times higher than Pd/C) and stability compared with Pd57Ag43 PNWs, Pd51Ag49 PNWs, and Pd/C for EGOR and GOR. At the same time, this porous one-dimensional structure also endows PdAg PNWs with faster electron transfer capabilities than Pd/C. This work will likely provide an effective strategy for constructing cost-effective catalysts.
Collapse
Affiliation(s)
- Zhuolin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bin Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
3
|
Liu B, Wu C, Wen C, Li H, Shimura Y, Tatsuoka H, Sa B. Promoting effect of (Co, Ni)O solid solution on Pd catalysts for ethylene glycol electrooxidation in alkaline solution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Nickel-manganese double hydroxide mixed with reduced graphene oxide electrocatalyst for efficient ethylene glycol electrooxidation and hydrogen evolution reaction. SYNTHETIC METALS 2021; 282:116959. [DOI: 10.1016/j.synthmet.2021.116959] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
|
5
|
Sun Q, Gao F, Zhang Y, Wang C, Zhu X, Du Y. Ultrathin one-dimensional platinum-cobalt nanowires as efficient catalysts for the glycerol oxidation reaction. J Colloid Interface Sci 2019; 556:441-448. [DOI: 10.1016/j.jcis.2019.08.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 11/16/2022]
|
6
|
Shape-controlled PdSn alloy as superior electrocatalysts for alcohol oxidation reactions. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Gao F, Zhang Y, Song P, Wang J, Yan B, Sun Q, Li L, Zhu X, Du Y. Shape-control of one-dimensional PtNi nanostructures as efficient electrocatalysts for alcohol electrooxidation. NANOSCALE 2019; 11:4831-4836. [PMID: 30816372 DOI: 10.1039/c8nr09892a] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bimetallic one-dimensional (1D) nanostructures such as nanowires (NWs) and nanorods (NRs), serving as high-efficiency anode electrocatalysts, have attracted extensive attention in the past decade. However, the precise design and synthesis of 1D Pt-based nanocrystals with tunable morphology and size still remain an arduous challenge. Driven by this, we report a facile yet efficient strategy for the first time to prepare PtNi ultrafine NWs (UNWs), sinuous NWs (SNWs) and ultrashort NRs (UNRs) by adjusting the amount of citric acid, ascorbic acid and glucose. Detailed analysis of their electrocatalytic properties has indicated that the as-obtained PtNi SNWs exhibit the most outstanding electrocatalytic activity toward ethylene glycol oxidation reaction (EGOR) and glycerol oxidation (GOR), 4.5 and 4.3 times higher in mass activity as well as 4.3 and 3.9 times higher in specific activity compared with the commercial Pt/C catalyst. The as-prepared PtNi SNWs are also more stable than the commercial Pt/C catalyst after successive durability tests. The proposed method provides insight into more rational designs of bimetallic nanocatalysts with 1D architectures and the as-synthesized PtNi catalysts with improved electrocatalytic performance assist in promoting the further development of direct alcohol fuel cells (DAFCs).
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|