1
|
Fewkes JJ, Dordevic AL, Murray M, Williamson G, Kellow NJ. Association between endothelial function and skin advanced glycation end-products (AGEs) accumulation in a sample of predominantly young and healthy adults. Cardiovasc Diabetol 2024; 23:332. [PMID: 39251982 PMCID: PMC11386354 DOI: 10.1186/s12933-024-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND In populations with chronic disease, skin autofluorescence (SAF), a measure of long-term fluorescent advanced glycation end-products (AGEs) accumulation in body tissues, has been associated with vascular endothelial function, measured using flow-mediated dilation (FMD). The primary aim of this study was to quantify the relationship between endothelial function and tissue accumulation of AGEs in adults from the general population to determine whether SAF could be used as a marker to predict early impairment of the endothelium. METHODS A cross-sectional study was conducted with 125 participants (median age: 28.5 y, IQR: 24.4-36.0; 54% women). Endothelial function was measured by fasting FMD. Skin AGEs were measured as SAF using an AGE Reader. Participant anthropometry, blood pressure, and blood biomarkers were also measured. Associations were evaluated using multivariable regression analysis and were adjusted for significant covariates. RESULTS FMD was inversely correlated with SAF (ρ = -0.50, P < 0.001) and chronological age (ρ = -0.51, P < 0.001). In the multivariable analysis, SAF, chronological age, and male sex were independently associated with reduced FMD (B [95% CI]; -2.60 [-4.40, -0.80]; -0.10 [-0.16, -0.03]; 1.40 [0.14, 2.67], respectively), with the multivariable model adjusted R2 = 0.31, P < 0.001. CONCLUSIONS Higher skin AGE levels, as measured by SAF, were associated with lower FMD values, in a predominantly young, healthy population. Additionally, older age and male participants exhibited significantly lower FMD values, corresponding with compromised endothelial function. These results suggest that SAF, a simple and inexpensive marker, could be used to predict endothelial impairment before the emergence of any structural artery pathophysiology or classic cardiovascular disease risk markers. TRIAL REGISTRATION The study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12621000821897) and concurrently entered into the WHO International Clinical Trials Registry Platform under the same ID number.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Margaret Murray
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, 3800, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia
- Victorian Heart Institute, Victoria Heart Hospital, 631 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, Faculty of Medicine, Nursing and Health Sciences, Monash University, 264 Ferntree Gully Road, Notting Hill, 3168, Australia.
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
| |
Collapse
|
2
|
Reis A, Rocha BS, Laranjinha J, de Freitas V. Dietary (poly)phenols as modulators of the biophysical properties in endothelial cell membranes: its impact on nitric oxide bioavailability in hypertension. FEBS Lett 2024; 598:2190-2210. [PMID: 38281810 DOI: 10.1002/1873-3468.14812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Hypertension is a major contributor to premature death, owing to the associated increased risk of damage to the heart, brain and kidneys. Although hypertension is manageable by medication and lifestyle changes, the risk increases with age. In an increasingly aged society, the incidence of hypertension is escalating, and is expected to increase the prevalence of (cerebro)vascular events and their associated mortality. Adherence to plant-based diets improves blood pressure and vascular markers in individuals with hypertension. Food flavonoids have an inhibitory effect towards angiotensin-converting enzyme (ACE1) and although this effect is greatly diminished upon metabolization, their microbial metabolites have been found to improve endothelial nitric oxide synthase (eNOS) activity. Considering the transmembrane location of ACE1 and eNOS, the ability of (poly)phenols to interact with membrane lipids modulate the cell membrane's biophysical properties and impact on nitric oxide (·NO) synthesis and bioavailability, remain poorly studied. Herein, we provide an overview of the current knowledge on the lipid remodeling of endothelial membranes with age, its impact on the cell membrane's biophysical properties and ·NO permeability across the endothelial barrier. We also discuss the potential of (poly)phenols and other plant-based compounds as key players in hypertension management, and address the caveats and challenges in adopted methodologies.
Collapse
Affiliation(s)
- Ana Reis
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Barbara S Rocha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Polo das Ciências da Saúde, Portugal
| | - João Laranjinha
- Faculty of Pharmacy and Center for Neuroscience and Cell Biology, University of Coimbra, Polo das Ciências da Saúde, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Portugal
| |
Collapse
|
3
|
Bowles EF, Burleigh M, Mira A, Van Breda SGJ, Weitzberg E, Rosier BT. Nitrate: "the source makes the poison". Crit Rev Food Sci Nutr 2024:1-27. [PMID: 39213282 DOI: 10.1080/10408398.2024.2395488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Interest in the role of dietary nitrate in human health and disease has grown exponentially in recent years. However, consensus is yet to be reached as to whether consuming nitrate from various food sources is beneficial or harmful to health. Global authorities continue to recommend an acceptable daily intake (ADI) of nitrate of 3.7 mg/kg-bw/day due to concerns over its carcinogenicity. This is despite evidence showing that nitrate consumption from vegetable sources, exceeding the ADI, is associated with decreased cancer prevalence and improvements in cardiovascular, oral, metabolic and neurocognitive health. This review examines the paradox between dietary nitrate and health and disease and highlights the key role of the dietary source and food matrix in moderating this interaction. We present mechanistic and epidemiological evidence to support the notion that consuming vegetable-derived nitrate promotes a beneficial increase in nitric oxide generation and limits toxic N-nitroso compound formation seen with high intakes of nitrate added during food processing or present in contaminated water. We demonstrate the need for a more pragmatic approach to nitrate-related nutritional research and guidelines. Ultimately, we provide an overview of our knowledge in this field to facilitate the various therapeutic applications of dietary nitrate, whilst maintaining population safety.
Collapse
Affiliation(s)
- E F Bowles
- Department of Human Nutrition, School of Medicine, University of Glasgow, Glasgow, UK
| | - M Burleigh
- Sport and Physical Activity Research Institute, University of the West of Scotland, Blantyre, Scotland
| | - A Mira
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| | - S G J Van Breda
- Department of Toxicogenomics, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - B T Rosier
- Department of Genomics and Health, FISABIO Foundation, Centre for Advanced Research in Public Health, Valencia, Spain
| |
Collapse
|
4
|
Jouabadi SM, Ataabadi EA, Golshiri K, Bos D, Stricker BHC, Danser AHJ, Mattace-Raso F, Roks AJM. Clinical Impact and Mechanisms of Nonatherosclerotic Vascular Aging: The New Kid to Be Blocked. Can J Cardiol 2023; 39:1839-1858. [PMID: 37495207 DOI: 10.1016/j.cjca.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/07/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Ischemic cardiovascular disease and stroke remain the leading cause of global morbidity and mortality. During aging, protective mechanisms in the body gradually deteriorate, resulting in functional, structural, and morphologic changes that affect the vascular system. Because atherosclerotic plaques are not always present along with these alterations, we refer to this kind of vascular aging as nonatherosclerotic vascular aging (NAVA). To maintain proper vascular function during NAVA, it is important to preserve intracellular signalling, prevent inflammation, and block the development of senescent cells. Pharmacologic interventions targeting these components are potential therapeutic approaches for NAVA, with a particular emphasis on inflammation and senescence. This review provides an overview of the pathophysiology of vascular aging and explores potential pharmacotherapies that can improve the function of aged vasculature, focusing on NAVA.
Collapse
Affiliation(s)
- Soroush Mohammadi Jouabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ehsan Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Keivan Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daniel Bos
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Bruno H C Stricker
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Francesco Mattace-Raso
- Division of Geriatric Medicine, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
Maurer GS, Clayton ZS. Anthracycline chemotherapy, vascular dysfunction and cognitive impairment: burgeoning topics and future directions. Future Cardiol 2023; 19:547-566. [PMID: 36354315 PMCID: PMC10599408 DOI: 10.2217/fca-2022-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 11/12/2022] Open
Abstract
Anthracyclines, chemotherapeutic agents used to treat common forms of cancer, increase cardiovascular (CV) complications, thereby necessitating research regarding interventions to improve the health of cancer survivors. Vascular dysfunction, which is induced by anthracycline chemotherapy, is an established antecedent to overt CV diseases. Potential treatment options for ameliorating vascular dysfunction have largely been understudied. Furthermore, patients treated with anthracyclines have impaired cognitive function and vascular dysfunction is an independent risk factor for the development of mild cognitive impairment. Here, we will focus on: anthracycline chemotherapy associated CV diseases risk; how targeting mechanisms underlying vascular dysfunction may be a means to improve both CV and cognitive health; and research gaps and potential future directions for the field of cardio-oncology.
Collapse
Affiliation(s)
- Grace S Maurer
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Granada-Gómez M, Velásquez-Berrío M, Molina CR, Martín SS, Escudero C, Alvarez AM, Cadavid AP. Modulation of the activation of endothelial nitric oxide synthase and nitrosative stress biomarkers by aspirin triggered lipoxins: A possible mechanism of action of aspirin in the antiphospholipid syndrome. Am J Reprod Immunol 2023; 90:e13753. [PMID: 37491919 DOI: 10.1111/aji.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/27/2023] Open
Abstract
PROBLEM Antiphospholipid syndrome (APS) is characterized by the clinical manifestation of vascular thrombosis (VT) or pregnancy morbidity (PM) and antiphospholipid antibodies (aPL) that can modify the nitric oxide production. Low-dose aspirin is used in the prevention and treatment of diverse alterations of pregnancy. One of the mechanisms of action of aspirin is to induce the production of aspirin-triggered-lipoxins (ATL). The aim of this study was to evaluate the modulatory effect of ATL over the activation of endothelial nitric oxide synthase (eNOS) and nitrosative stress biomarkers induced by aPL. METHODS We used polyclonal IgG and sera from women with aPL and PM/VT or VT only, and from women with PM only and positive for non-criteria aPL (SN-OAPS). In these sera, biomarkers of nitrosative stress (nitrites and nitrotyrosine) were measured. The protein expression of nitrotyrosine and the phosphorylation of eNOS (at Ser1177) were estimated in human umbilical vein endothelial cells (HUVECs) stimulated with polyclonal IgG with or without ATL. RESULTS Women with SN-OAPS showed increased circulating levels of nitrites and nitrotyrosine. Likewise, polyclonal IgG from either SN-OAPS or VT patients stimulated nitrotyrosine expression in HUVECs. ATL decreased the nitrotyrosine expression induced by polyclonal IgG from the SN-OAPS group. ATL also recovered the reduced eNOS phosphorylation at Ser1177 in HUVECs stimulated with polyclonal IgG from women with PM/VT or SN-OAPS. CONCLUSIONS Increased nitrosative stress present in serum of women with SN-OAPS is associated with IgG-mediated impaired endothelial NO synthesis in endothelial cells. ATL prevent these cellular changes.
Collapse
Affiliation(s)
- Manuel Granada-Gómez
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Manuela Velásquez-Berrío
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Carolina Rúa Molina
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Sebastián San Martín
- Biomedical Research Center School of Medicine, Universidad de Valparaiso, Valparaiso, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
| | - Carlos Escudero
- Vascular Physiology Laboratory, Basic Sciences Department, Faculty of Sciences, Universidad del Bio-Bio, Chillán, Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillan, Chile
- Red Iberoamericana de Alteraciones Vasculares Asociadas a TRanstornos del EMbarazo (RIVATREM)
| | - Angela M Alvarez
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
| | - Angela P Cadavid
- Grupo Reproducción, Facultad de Medicina, Dpto. Microbiología y Parasitología, Universidad de Antioquia UdeA, Medellín, Colombia
- Grupo de Investigación en Trombosis, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares Asociadas a TRanstornos del EMbarazo (RIVATREM)
| |
Collapse
|
7
|
Changes in Arterial Stiffness in Response to Various Types of Exercise Modalities: A Narrative Review on Physiological and Endothelial Senescence Perspectives. Cells 2022; 11:cells11223544. [PMID: 36428973 PMCID: PMC9688701 DOI: 10.3390/cells11223544] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
Arterial stiffness is a reliable independent predictor of cardiovascular events. Exercise training might enhance arterial compliance through improved metabolic health status. Different modes of exercise may have different effects on arterial stiffness. However, the interactions among different modes of exercise on endothelial senescence, the development of arterial vascular stiffness, and the associated molecular mechanisms are not completely understood. In this narrative review, we evaluate the current evidence focusing on the effects of various exercise modes on arterial stiffness and vascular health, and the known underlying physiological mechanisms are discussed as well. Here, we discuss the most recent evidence of aerobic exercise, high-intensity interval training (HIIT), and resistance exercise (RE) on arterial stiffness and endothelial senescence in physiological and cellular studies. Indeed, aerobic, HIIT, and progression RE-induced arterial compliance may reduce arterial stiffness by effectively promoting nitric oxide (NO) bioavailability and reducing endothelial senescence. However, the transient increase in inflammation and sympathetic activation may contribute to the temporary elevation in arterial stiffness following whole-body high-intensity acute resistance exercise.
Collapse
|
8
|
Shannon OM, Clifford T, Seals DR, Craighead DH, Rossman MJ. Nitric oxide, aging and aerobic exercise: Sedentary individuals to Master's athletes. Nitric Oxide 2022; 125-126:31-39. [PMID: 35705144 DOI: 10.1016/j.niox.2022.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022]
Abstract
Aging is associated with a decline in physiological function and exercise performance. These effects are mediated, at least in part, by an age-related decrease in the bioavailability of nitric oxide (NO), a ubiquitous gasotransmitter and regulator of myriad physiological processes. The decrease in NO bioavailability with aging is especially apparent in sedentary individuals, whereas older, physically active individuals maintain higher levels of NO with advancing age. Strategies which enhance NO bioavailability (including nutritional supplementation) have been proposed as a potential means of reducing the age-related decrease in physiological function and enhancing exercise performance and may be of interest to a range of older individuals including those taking part in competitive sport. In this brief review we discuss the effects of aging on physiological function and endurance exercise performance, and the potential role of changes in NO bioavailability in these processes. We also provide a summary of current evidence for dietary supplementation with substrates for NO production - including inorganic nitrate and nitrite, l-arginine and l-citrulline - for improving exercise capacity/performance in older adults. Additionally, we discuss the (limited) evidence on the effects of (poly)phenols and other dietary antioxidants on NO bioavailability in older individuals. Finally, we provide suggestions for future research.
Collapse
Affiliation(s)
- Oliver M Shannon
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Tom Clifford
- School of Sport, Exercise and Health Science, Loughborough University, Loughborough, UK
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel H Craighead
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
9
|
Nunan E, Wright CL, Semola OA, Subramanian M, Balasubramanian P, Lovern PC, Fancher IS, Butcher JT. Obesity as a premature aging phenotype - implications for sarcopenic obesity. GeroScience 2022; 44:1393-1405. [PMID: 35471692 PMCID: PMC9213608 DOI: 10.1007/s11357-022-00567-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/10/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and aging have both seen dramatic increases in prevalence throughout society. This review seeks to highlight common pathologies that present with obesity, along with the underlying risk factors, that have remarkable similarity to what is observed in the aged. These include skeletal muscle dysfunction (loss of quantity and quality), significant increases in adiposity, systemic alterations to autonomic dysfunction, reduction in nitric oxide bioavailability, increases in oxidant stress and inflammation, dysregulation of glucose homeostasis, and mitochondrial dysfunction. This review is organized by the aforementioned indices and succinctly highlights literature that demonstrates similarities between the aged and obese phenotypes in both human and animal models. As aging is an inevitability and obesity prevalence is unlikely to significantly decrease in the near future, these two phenotypes will ultimately combine as a multidimensional syndrome (a pathology termed sarcopenic obesity). Whether the pre-mature aging indices accompanying obesity are additive or synergistic upon entering aging is not yet well defined, but the goal of this review is to illustrate the potential consequences of a double aged phenotype in sarcopenic obesity. Clinically, the modifiable risk factors could be targeted specifically in obesity to allow for increased health span in the aged and sarcopenic obese populations.
Collapse
Affiliation(s)
- Emily Nunan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Carson L Wright
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Oluwayemisi A Semola
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Madhan Subramanian
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Priya Balasubramanian
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Pamela C Lovern
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Ibra S Fancher
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, USA
| | - Joshua T Butcher
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA.
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
10
|
The Potential of Dietary Bioactive Compounds against SARS-CoV-2 and COVID-19-Induced Endothelial Dysfunction. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051623. [PMID: 35268723 PMCID: PMC8912066 DOI: 10.3390/molecules27051623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 is an endothelial disease. All the major comorbidities that increase the risk for severe SARS-CoV-2 infection and severe COVID-19 including old age, obesity, diabetes, hypertension, respiratory disease, compromised immune system, coronary artery disease or heart failure are associated with dysfunctional endothelium. Genetics and environmental factors (epigenetics) are major risk factors for endothelial dysfunction. Individuals with metabolic syndrome are at increased risk for severe SARS-CoV-2 infection and poor COVID-19 outcomes and higher risk of mortality. Old age is a non-modifiable risk factor. All other risk factors are modifiable. This review also identifies dietary risk factors for endothelial dysfunction. Potential dietary preventions that address endothelial dysfunction and its sequelae may have an important role in preventing SARS-CoV-2 infection severity and are key factors for future research to address. This review presents some dietary bioactives with demonstrated efficacy against dysfunctional endothelial cells. This review also covers dietary bioactives with efficacy against SARS-CoV-2 infection. Dietary bioactive compounds that prevent endothelial dysfunction and its sequelae, especially in the gastrointestinal tract, will result in more effective prevention of SARS-CoV-2 variant infection severity and are key factors for future food research to address.
Collapse
|
11
|
Carge MJ, Liberati DM, Diebel LN. A biomimetic shock model on the effect of endothelial aging on vascular barrier properties. J Trauma Acute Care Surg 2021; 91:849-855. [PMID: 34695061 DOI: 10.1097/ta.0000000000003207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aging is characterized by a decline in cellular function, which has an adverse effect on the biologic response to injury. Both aging and trauma/hemorrhagic shock (T/HS) increase oxidative stress which impairs the vascular endothelium (EC) and glycocalyx (EG). The additive effect of aging on EC and EG damage following T/HS are unknown. This was studied in an in vitro model. METHODS Confluent endothelial cell monolayers from primary aortic endothelial cells from 10-week-old mice ("young" cells) or primary aortic cells from 65-week-old mice ("aged" cells) were established in microfluidic devices (MFDs) and perfused at constant shear conditions overnight. Mouse endothelial cell monolayers were then exposed to hypoxia/reoxygenation alone and/or epinephrine or norepinephrine. Endothelial glycocalyx degradation was indexed as well as subsequent endothelial injury/activation. RESULTS Aged endothelial cells showed increase glycocalyx shedding and subsequent loss of glycocalyx thickness. This lead to a more pronounced level of EC injury/activation compared with young endothelial cells. Although exposure to biomimetic shock conditions exacerbated both endothelial glycocalyx shedding and endothelial injury in both aged and young endothelial cells, the effect was significantly more pronounced in aged cells. CONCLUSION Advanced age is associated with worse outcomes in severely injured trauma patients. Our study demonstrates that there is increased EG shedding and a diminished EG layer in aged compared to "young" endothelial cell layers. Biomimetic shock conditions lead to an even greater impairment of the endothelial glycocalyx in aged versus young endothelial cell monolayers. It appears that these effects are a consequence of aging related oxidative stress at both baseline and shock conditions. This exacerbates shock-induced endotheliopathy and may contribute to untoward effects on patient outcomes in this population.
Collapse
Affiliation(s)
- Michael J Carge
- From the Michael and Marian Ilitch Department of Surgery (M.J.C., D.M.L., L.N.D.), Wayne State University School of Medicine, Detroit, Michigan
| | | | | |
Collapse
|
12
|
Kassem M, El Habhab A, Kreutter G, Amoura L, Baltzinger P, Abbas M, Sbat N, Zobairi F, Schini-Kerth VB, Kessler L, Toti F. In Vitro Impact of Pro-Senescent Endothelial Microvesicles on Isolated Pancreatic Rat Islets Function. Transplant Proc 2021; 53:1736-1743. [PMID: 33934912 DOI: 10.1016/j.transproceed.2021.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/15/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Ischemia-driven islet isolation procedure is one of the limiting causes of pancreatic islet transplantation. Ischemia-reperfusion process is associated with endothelium dysfunction and the release of pro-senescent microvesicles. We investigated whether pro-senescent endothelial microvesicles prompt islet senescence and dysfunction in vitro. MATERIAL AND METHODS Pancreatic islets were isolated from male young rats. Replicative endothelial senescence was induced by serial passaging of primary porcine coronary artery endothelial cells, and microvesicles were isolated either from young passage 1 (P1) or senescent passage 3 (P3) endothelial cells. Islet viability was assessed by fluorescence microscopy, apoptosis by flow cytometry, and Western blot. Function was assessed by insulin secretion and islet senescence markers p53, p21, and p16 by Western blot. Microvesicles were stained by the PKH26 lipid fluorescent probe and their islet integration assessed by microscopy and flow cytometry. RESULTS Regardless of the passage, half microvesicles were integrated in target islets after 24 hours incubation. Insulin secretion significantly decreased after treatment by senescent microvesicles (P3: 1.7 ± 0.2 vs untreated islet: 2.7 ± 0.2, P < .05) without altering the islet viability (89.47% ± 1.69 vs 93.15% ± 0.97) and with no significant apoptosis. Senescent microvesicles significantly doubled the expression of p53, p21, and p16 (P < .05), whereas young microvesicles had no significant effect. CONCLUSION Pro-senescent endothelial microvesicles specifically accelerate the senescence of islets and alter their function. These data suggest that islet isolation contributes to endothelial driven islet senescence.
Collapse
Affiliation(s)
- Mohamad Kassem
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Ali El Habhab
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Guillaume Kreutter
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Lamia Amoura
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Philippe Baltzinger
- Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Malak Abbas
- UMR CNRS 7213, Laboratory of Biophotonics and Pharmacology, Faculty of Pharmacy, University of Strasbourg, Illkirch-Graffenstaden, France
| | - Noura Sbat
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Fatiha Zobairi
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Valérie B Schini-Kerth
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Laurence Kessler
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France; Department of Diabetes and Nutrition Endocrinology, University Hospital of Strasbourg, Strasbourg, France
| | - Florence Toti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Faculty of Medicine, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
13
|
Guan SP, Seet RCS, Kennedy BK. Does eNOS derived nitric oxide protect the young from severe COVID-19 complications? Ageing Res Rev 2020; 64:101201. [PMID: 33157320 PMCID: PMC7609225 DOI: 10.1016/j.arr.2020.101201] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/19/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Aging is the largest risk factors for severity and mortality in adult COVID-19. Severe cases of COVID-19 are related to vascular damage with evidence of direct viral infection in the endothelial cells. Increase risk of COVID-19 death are also highly related to disease with lower vascular Nitric Oxide (NO) level. Vascular viral defence by endothelial nitric oxide synthase (eNOS) derive NO may be the protecting factor for the young. eNOS polymorphism could potentially explain the disparity of COVID-19 mortality between Asian and non-Asian countries.
The COVID-19 pandemic poses an imminent threat to humanity, especially to the elderly. The molecular mechanisms underpinning the age-dependent disparity for disease progression is not clear. COVID-19 is both a respiratory and a vascular disease in severe patients. The damage endothelial system provides a good explanation for the various complications seen in COVID-19 patients. These observations lead us to suspect that endothelial cells are a barrier that must be breached before progression to severe disease. Endothelial intracellular defences are largely dependent of the activation of the interferon (IFN) system. Nevertheless, low type I and III IFNs are generally observed in COVID-19 patients suggesting that other intracellular viral defence systems are also activated to protect the young. Intriguingly, Nitric oxide (NO), which is the main intracellular antiviral defence, has been shown to inhibit a wide array of viruses, including SARS-CoV-1. Additionally, the increased risk of death with diseases that have underlying endothelial dysfunction suggest that endothelial NOS-derived nitric oxide could be the main defence mechanism. NO decreases dramatically in the elderly, the hyperglycaemic and the patients with low levels of vitamin D. However, eNOS derived NO occurs at low levels, unless it is during inflammation and co-stimulated by bradykinin. Regrettably, the bradykinin-induced vasodilation also progressively declines with age, thereby decreasing anti-viral NO production as well. Intriguingly, the inverse correlation between the percentage of WT eNOS haplotype and death per 100K population could potentially explain the disparity of COVID-19 mortality between Asian and non-Asian countries. These changes with age, low bradykinin and NO, may be the fundamental reasons that intracellular innate immunity declines with age leading to more severe COVID-19 complications.
Collapse
|
14
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
15
|
Tracy E, Rowe G, LeBlanc AJ. Cardiac tissue remodeling in healthy aging: the road to pathology. Am J Physiol Cell Physiol 2020; 319:C166-C182. [PMID: 32432929 DOI: 10.1152/ajpcell.00021.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review aims to highlight the normal physiological remodeling that occurs in healthy aging hearts, including changes that occur in contractility, conduction, valve function, large and small coronary vessels, and the extracellular matrix. These "normal" age-related changes serve as the foundation that supports decreased plasticity and limited ability for tissue remodeling during pathophysiological states such as myocardial ischemia and heart failure. This review will identify populations at greater risk for poor tissue remodeling in advanced age along with present and future therapeutic strategies that may ameliorate dysfunctional tissue remodeling in aging hearts.
Collapse
Affiliation(s)
- Evan Tracy
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
16
|
Ser-Tyr and Asn-Ala, vasorelaxing dipeptides found by comprehensive screening, reduce blood pressure via different age-dependent mechanisms. Aging (Albany NY) 2019; 11:9492-9499. [PMID: 31685714 PMCID: PMC6874431 DOI: 10.18632/aging.102400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/26/2019] [Indexed: 11/25/2022]
Abstract
To understand the changes in physiological responses due to aging, a number of bioactive probes based on different signal transduction pathways are necessary. In this study, we comprehensively and systematically investigated changes in blood vessel function with age using a 336-dipeptide library. In the early stage of hypertension, the most potent vasorelaxant dipeptide was Ser-Tyr (SY) in the mesenteric artery isolated from spontaneously hypertensive rats (SHR). SY-induced vasorelaxation and anti-hypertensive effects were blocked by L-NAME, an inhibitor of nitric oxide synthase (NOS), suggesting that SY activates the NO system. On the other hand, the patterns of dipeptides with vasorelaxation activity in early and advanced stages of hypertension were different. In the advanced stage, the most potent vasorelaxing dipeptide was Asn-Ala (NA). Orally administered NA (1.5 mg/kg) reduced the blood pressure in the advanced stage, at which drugs were sometimes less effective, and the anti-hypertensive effects lasted for 6 hr. The NA-induced vasorelaxation and anti-hypertensive activity was blocked by lorglumide, an antagonist of the cholecystokinin CCK1 receptor, suggesting that NA activated the CCK system. Taken together, in the early and advanced stages of hypertension, SY and NA exhibited vasorelaxing and anti-hypertensive effects via the NO and CCK systems, respectively.
Collapse
|
17
|
McCluskey C, Mooney L, Paul A, Currie S. Compromised cardiovascular function in aged rats corresponds with increased expression and activity of calcium/calmodulin dependent protein kinase IIδ in aortic endothelium. Vascul Pharmacol 2019; 118-119:106560. [PMID: 31051256 DOI: 10.1016/j.vph.2019.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/16/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
Ageing is the greatest risk factor for cardiovascular disease. Calcium/calmodulin dependent protein kinase IIδ (CaMKIIδ) plays a fundamental role in the pathology of heart disease yet a potential role for CaMKIIδ in cardiovascular pathology associated with ageing remains unclear. Taking a combined in vivo and in vitro approach, we have for the first time investigated whether CaMKIIδ expression and CaMKII activity may be altered following age-related cardiovascular deterioration. Both cardiac contractility and aortic blood flow are compromised in aged rats and we have shown that this occurs in parallel with increased inflammation and crucially, autonomous activation of CaMKII. Endothelial cells isolated from young and aged aortae exhibit differences in cell phenotype and physiology. In line with observations in aortic tissue, aged aortic endothelial cells also show increased basal levels of pro-inflammatory markers and oxidative stress with concurrent increased basal activation of CaMKII. These results are the first to demonstrate that elevated CaMKIIδ expression and CaMKII activation occur in parallel with the pathological progression associated with ageing of the heart and vasculature. Specifically, CaMKIIδ expression is significantly increased and activated in the endothelium of aged aorta. As such, CaMKIIδ could serve as an important marker of endothelial dysfunction that accompanies the ageing process and may be an appropriate candidate for investigating targeted therapeutic intervention.
Collapse
Affiliation(s)
- Claire McCluskey
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Laura Mooney
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Andrew Paul
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Susan Currie
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom.
| |
Collapse
|
18
|
Bitar MS. Diabetes Impairs Angiogenesis and Induces Endothelial Cell Senescence by Up-Regulating Thrombospondin-CD47-Dependent Signaling. Int J Mol Sci 2019; 20:ijms20030673. [PMID: 30720765 PMCID: PMC6386981 DOI: 10.3390/ijms20030673] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/03/2019] [Accepted: 01/06/2019] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction, impaired angiogenesis and cellular senescence in type 2 diabetes constitute dominant risk factors for chronic non-healing wounds and other cardiovascular disorders. Studying these phenomena in the context of diabetes and the TSP1-CD-47 signaling dictated the use of the in vitro wound endothelial cultured system and an in vivo PVA sponge model of angiogenesis. Herein we report that diabetes impaired the in vivo sponge angiogenic capacity by decreasing cell proliferation, fibrovascular invasion and capillary density. In contrast, a heightened state of oxidative stress and elevated expression of TSP1 and CD47 both at the mRNA and protein levels were evident in this diabetic sponge model of wound healing. An in vitro culturing system involving wound endothelial cells confirmed the increase in ROS generation and the up-regulation of TSP1-CD47 signaling as a function of diabetes. We also provided evidence that diabetic wound endothelial cells (W-ECs) exhibited a characteristic feature that is consistent with cellular senescence. Indeed, enhanced SA-β-gal activity, cell cycle arrest, increased cell cycle inhibitors (CKIs) p53, p21 and p16 and decreased cell cycle promoters including Cyclin D1 and CDK4/6 were all demonstrated in these cells. The functional consequence of this cascade of events was illustrated by a marked reduction in diabetic endothelial cell proliferation, migration and tube formation. A genetic-based strategy in diabetic W-ECs using CD47 siRNA significantly ameliorated in these cells the excessiveness in oxidative stress, attenuation in angiogenic potential and more importantly the inhibition in cell cycle progression and its companion cellular senescence. To this end, the current data provide evidence linking the overexpression of TSP1-CD47 signaling in diabetes to a number of parameters associated with endothelial dysfunction including impaired angiogenesis, cellular senescence and a heightened state of oxidative stress. Moreover, it may also point to TSP1-CD47 as a potential therapeutic target in the treatment of the aforementioned pathologies.
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology& Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
19
|
Moriya J, Minamino T. Angiogenesis, Cancer, and Vascular Aging. Front Cardiovasc Med 2017; 4:65. [PMID: 29114540 PMCID: PMC5660731 DOI: 10.3389/fcvm.2017.00065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Several lines of evidence have revealed that the angiogenic response to ischemic injury declines with age, which might account for the increased morbidity and mortality of cardiovascular disease (CVD) among the elderly. While impairment of angiogenesis with aging leads to delayed wound healing or exacerbation of atherosclerotic ischemic diseases, it also inhibits the progression of cancer. Age-related changes of angiogenesis have been considered to at least partly result from vascular aging or endothelial cell senescence. There is considerable evidence supporting the hypothesis that vascular cell senescence contributes to the pathogenesis of age-related CVD, suggesting that vascular aging could be an important therapeutic target. Since therapeutic angiogenesis is now regarded as a promising concept for patients with ischemic CVD, it has become even more important to understand the detailed molecular mechanisms underlying impairment of angiogenesis in older patients. To improve the usefulness of therapeutic angiogenesis, approaches are needed that can compensate for impaired angiogenic capacity in the elderly while not promoting the development or progression of malignancy. In this review, we briefly outline the mechanisms of angiogenesis and vascular aging, followed by a description of how vascular aging leads to impairment of angiogenesis. We also examine potential therapeutic approaches that could enhance angiogenesis and/or vascular function in the elderly, as well as discussing the possibility of anti-senescence therapy or reversal of endothelial cell senescence.
Collapse
Affiliation(s)
- Junji Moriya
- Office of Cellular and Tissue-Based Products, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
20
|
Rossman MJ, Kaplon RE, Hill SD, McNamara MN, Santos-Parker JR, Pierce GL, Seals DR, Donato AJ. Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. Am J Physiol Heart Circ Physiol 2017; 313:H890-H895. [PMID: 28971843 DOI: 10.1152/ajpheart.00416.2017] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 09/22/2017] [Indexed: 01/27/2023]
Abstract
Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 (r = -0.49, P = 0.003), p21 (r = -0.38, P = 0.03), and p16 (r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed (P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age.NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function.
Collapse
Affiliation(s)
- Matthew J Rossman
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado;
| | - Rachelle E Kaplon
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Sierra D Hill
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Molly N McNamara
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | | - Gary L Pierce
- Health and Human Physiology, University of Iowa, Iowa City, Iowa; and
| | - Douglas R Seals
- Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | | |
Collapse
|
21
|
The aryl hydrocarbon receptor promotes aging phenotypes across species. Sci Rep 2016; 6:19618. [PMID: 26790370 PMCID: PMC4726214 DOI: 10.1038/srep19618] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
The ubiquitously expressed aryl hydrocarbon receptor (AhR) induces drug metabolizing enzymes as well as regulators of cell growth, differentiation and apoptosis. Certain AhR ligands promote atherosclerosis, an age-associated vascular disease. Therefore, we investigated the role of AhR in vascular functionality and aging. We report a lower pulse wave velocity in young and old AhR-deficient mice, indicative of enhanced vessel elasticity. Moreover, endothelial nitric oxide synthase (eNOS) showed increased activity in the aortas of these animals, which was reflected in increased NO production. Ex vivo, AhR activation reduced the migratory capacity of primary human endothelial cells. AhR overexpression as well as treatment with a receptor ligand, impaired eNOS activation and reduced S-NO content. All three are signs of endothelial dysfunction. Furthermore, AhR expression in blood cells of healthy human volunteers positively correlated with vessel stiffness. In the aging model Caenorhabditis elegans, AhR-deficiency resulted in increased mean life span, motility, pharynx pumping and heat shock resistance, suggesting healthier aging. Thus, AhR seems to have a negative impact on vascular and organismal aging. Finally, our data from human subjects suggest that AhR expression levels could serve as an additional, new predictor of vessel aging.
Collapse
|
22
|
Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev 2015; 146-148:81-7. [PMID: 25959712 DOI: 10.1016/j.mad.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
Abstract
Ageing is a cellular process with many facets, some of which are currently undergoing a paradigm change. It is the case of "mitochondrial theory of ageing", which, interestingly, has been found lately to cross paths with another ageing dysfunctional process - intracellular signalling - in an unexpected point (or place) - caveolae. The latter represent membrane microdomains altered in senescent cells, scaffolded by proteins modified (posttranslational or as expression) with ageing. An important determinant of these alterations is oxidative stress, through increased production of reactive oxygen species that originate at mitochondrial site. Spanning from physical contact points, to shared structural proteins and similar function domains, caveolae and mitochondria might have more in common than originally thought. By reviewing recent data on oxidative stress impact on caveolae and caveolins, as well as possible interactions between caveolae and mitochondria, we propose a hypothesis for senescence-related involvement of caveolins.
Collapse
|
23
|
The protective effect of lipoic acid on selected cardiovascular diseases caused by age-related oxidative stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:313021. [PMID: 25949771 PMCID: PMC4407629 DOI: 10.1155/2015/313021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/16/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022]
Abstract
Oxidative stress is considered to be the primary cause of many cardiovascular diseases, including endothelial dysfunction in atherosclerosis and ischemic heart disease, hypertension, and heart failure. Oxidative stress increases during the aging process, resulting in either increased reactive oxygen species (ROS) production or decreased antioxidant defense. The increase in the incidence of cardiovascular disease is directly related to age. Aging is also associated with oxidative stress, which in turn leads to accelerated cellular senescence and organ dysfunction. Antioxidants may help lower the incidence of some pathologies of cardiovascular diseases and have antiaging properties. Lipoic acid (LA) is a natural antioxidant which is believed to have a beneficial effect on oxidative stress parameters in relation to diseases of the cardiovascular system.
Collapse
|
24
|
Kilic U, Gok O, Erenberk U, Dundaroz MR, Torun E, Kucukardali Y, Elibol-Can B, Uysal O, Dundar T. A remarkable age-related increase in SIRT1 protein expression against oxidative stress in elderly: SIRT1 gene variants and longevity in human. PLoS One 2015; 10:e0117954. [PMID: 25785999 PMCID: PMC4365019 DOI: 10.1371/journal.pone.0117954] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 01/05/2015] [Indexed: 02/07/2023] Open
Abstract
Aging is defined as the accumulation of progressive organ dysfunction. Controlling the rate of aging by clarifying the complex pathways has a significant clinical importance. Nowadays, sirtuins have become famous molecules for slowing aging and decreasing age-related disorders. In the present study, we analyzed the SIRT1 gene polymorphisms (rs7895833 A>G, rs7069102 C>G and rs2273773 C>T) and its relation with levels of SIRT1, eNOS, PON-1, cholesterol, TAS, TOS, and OSI to demonstrate the association between genetic variation in SIRT1 and phenotype at different ages in humans. We observed a significant increase in the SIRT1 level in older people and found a significant positive correlation between SIRT1 level and age in the overall studied population. The oldest people carrying AG genotypes for rs7895833 have the highest SIRT1 level suggesting an association between rs7895833 SNP and lifespan longevity. Older people have lower PON-1 levels than those of adults and children which may explain the high levels of SIRT1 protein as a compensatory mechanism for oxidative stress in the elderly. The eNOS protein level was significantly decreased in older people as compared to adults. There was no significant difference in the eNOS level between older people and children. The current study is the first to demonstrate age-related changes in SIRT1 levels in humans and it is important for a much better molecular understanding of the role of the longevity gene SIRT1 and its protein product in aging. It is also the first study presenting the association between SIRT1 expression in older people and rs7895833 in SIRT1 gene.
Collapse
Affiliation(s)
- Ulkan Kilic
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
- * E-mail:
| | - Ozlem Gok
- Department of Medical Biology and Regenerative and Restorative Medicine Research Center (REMER), International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ufuk Erenberk
- Department of Pediatrics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Mehmet Rusen Dundaroz
- Department of Pediatrics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Emel Torun
- Department of Pediatrics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yasar Kucukardali
- Department of Internal Medicine, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Birsen Elibol-Can
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Tolga Dundar
- Department of Neurosurgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
25
|
Ma L, Wang K, Shang J, Cao C, Zhen P, Liu X, Wang W, Zhang H, Du Y, Liu H. Anti-peroxynitrite treatment ameliorated vasorelaxation of resistance arteries in aging rats: involvement with NO-sGC-cGKs pathway. PLoS One 2014; 9:e104788. [PMID: 25117910 PMCID: PMC4130589 DOI: 10.1371/journal.pone.0104788] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 07/12/2014] [Indexed: 12/20/2022] Open
Abstract
Declined vasorelaxation function in aging resistance arteries is responsible for aging-related multiple organ dysfunctions. The aim of the present study is to explore the role of peroxynitrite (ONOO-) in aging resistance arterial vasorelaxation dysfunction and the possible mechanism. In the present study, young (3-4 months olds) and aging (20 months olds) male SD rats were randomized to receive vehicle (Saline) or FeTMPyP (ONOO- scavenger) for 2 weeks. The vasorelaxation of resistance arteries was determined in vitro; NOx level was tested by a colorimetric assay; the expression of nitrotyrosine (NT), soluble Guanylate Cyclase (sGC), vasodilator-stimulated phosphoprotein (VASP), phosphorylated VASP (P-VASP) and cGMP in resistance arteries were detected by immunohistochemical staining. In the present study, endothelium-dependent dilation in aging resistance arteries was lower than in those from young rats (young vs. aging: 68.0% ± 4.5% vs. 50.4% ± 2.9%, P<0.01). And the endothelium-independent dilation remained constant. Compared with young rats, aging increased nitrative stress in resistance arteries, evidenced by elevated NOx production in serum (5.3 ± 1.0 nmol/ml vs. 3.3 ± 1.4 nmol/ml, P<0.05) and increased NT expression (P<0.05). ONOO- was responsible for the vasorelaxation dysfunction, evidenced by normalized vasorelaxation after inhibit ONOO- or its sources (P<0.05) and suppressed NT expression after FeTMPyP treatment (P<0.05). The expression of sGC was not significantly different between young and aging resistance arteries, but the cGMP level and P-VASP/VASP ratio (biochemical marker of NO-sGC-cGKs signaling) decreased, which was reversed by FeTMPyP treatment in vivo (P<0.05). The present study suggested that ONOO- mediated the decline of endothelium-dependent vasorelaxation of aging resistance arteries by induction of the NO-sGC-cGKs pathway dysfunction.
Collapse
Affiliation(s)
- Lu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Ke Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Jianyu Shang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Chengzhang Cao
- Department of Chest Surgery, First Hospital of Longyan, Fujian Medical University, Fujian, PR China
| | - Panpan Zhen
- Department of Pathology, Luhe Hospital, Capital Medical University, Beijing, PR China
| | - Xin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Hui Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Yunhui Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, PR China
- Beijing Key Laboratory of Metabolic Disturbance Related Cardiovascular Disease, Beijing, PR China
- * E-mail:
| |
Collapse
|
26
|
Oakley R, Tharakan B. Vascular hyperpermeability and aging. Aging Dis 2014; 5:114-25. [PMID: 24729937 DOI: 10.14336/ad.2014.0500114] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/31/2014] [Accepted: 02/09/2014] [Indexed: 12/25/2022] Open
Abstract
Vascular hyperpermeability, the excessive leakage of fluid and proteins from blood vessels to the interstitial space, commonly occurs in traumatic and ischemic injuries. This hyperpermeability causes tissue vasogenic edema, which often leads to multiple organ failure resulting in patient death. Vascular hyperpermeability occurs most readily in small blood vessels as their more delicate physical constitution makes them an easy target for barrier dysfunction. A single layer of endothelial cells, linked to one another by cell adhesion molecules, covers the interior surface of each blood vessel. The cell adhesion molecules play a key role in maintaining barrier functions like the regulation of permeability. Aging is a major risk factor for microvascular dysfunction and hyperpermeability. Apart from age-related remodeling of the vascular wall, endothelial barrier integrity and function declines with the advancement of age. Studies that address the physiological and molecular basis of vascular permeability regulation in aging are currently very limited. There have been many cellular and molecular mechanisms proposed to explain aging-related endothelial dysfunction but their true relationship to barrier dysfunction and hyperpermeability is not clearly known. Among the several mechanisms that promote vascular dysfunction and hyperpermeability, the following are considered major contributors: oxidative stress, inflammation, and the activation of apoptotic signaling pathways. In this review we highlighted (a) the physiological, cellular and molecular changes that occur in the vascular system as a product of aging; (b) the potential mechanisms by which aging leads to barrier dysfunction and vascular hyperpermeability in the peripheral and the blood-brain barrier; (c) the mechanisms by which the age-related increases in oxidative stress, inflammatory markers and apoptotic signaling etc. cause endothelial dysfunction and their relationship to hyperpermeability; and (d) the relationship between aging, vascular permeability and traumatic injuries.
Collapse
Affiliation(s)
| | - Binu Tharakan
- Department of Surgery, Texas A&M University Health Science Center College of Medicine & Baylor Scott & White Healthcare, Temple, Texas, USA
| |
Collapse
|
27
|
Age-related alterations in endothelial function of femoral artery in young SHR and WKY rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:658479. [PMID: 24772431 PMCID: PMC3977421 DOI: 10.1155/2014/658479] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/10/2014] [Indexed: 02/07/2023]
Abstract
The present study was designed to evaluate the effects of vascular aging in juvenescence on endothelial function in femoral arteries and to assess differences between normotensive and hypertensive rats. The aim of the study was to determine if age affected nitric oxide- (NO-) mediated relaxations in normotensive and hypertensive rats. Juvenile (7-week-old) and young adult (22-week-old) male Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were used in this study. Femoral artery (FA) reactivity was determined by wire myograph and NO synthase activity by conversion of [3H]-L-arginine. During juvenescence systolic blood pressure (tail-cuff) increased significantly only in SHR, while NO synthesis decreased significantly in both strains. Endothelium-dependent relaxations to acetylcholine were reduced in the FA of SHR compared to age-matched WKY at both ages, yet these parameters were unchanged in adult rats compared with juvenile animals. The NO-dependent component of vasorelaxation was markedly reduced, whereas the NO-independent component was increased in adult compared to juvenile rats in both strains. The endothelial dysfunction in SHR at both ages was associated with reduction of NO-independent mechanisms. In conclusion, aging in early periods of life was associated with reduction of vascular NO production and bioavailability in both strains investigated. This reduction was however fully compensated by accentuation of NO-independent mechanisms.
Collapse
|
28
|
Effect of age and exercise training on protein:protein interactions among eNOS and its regulatory proteins in rat aortas. Eur J Appl Physiol 2013; 113:2761-8. [DOI: 10.1007/s00421-013-2715-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
|
29
|
Rogers SC, Zhang X, Azhar G, Luo S, Wei JY. Exposure to high or low glucose levels accelerates the appearance of markers of endothelial cell senescence and induces dysregulation of nitric oxide synthase. J Gerontol A Biol Sci Med Sci 2013; 68:1469-81. [PMID: 23585419 DOI: 10.1093/gerona/glt033] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To test the hypothesis that aging impairs endothelial cell response to glucose stress, we utilized a human umbilical vein endothelial cell in vitro model in which clinically relevant concentrations of normal (5.5 mM), high (25 mM), and low (1.5mM) glucose were tested. With advancing population doubling, exposure to normal glucose gradually decreased endothelial nitric oxide synthase expression and activity, resulting in slow, progressive development of markers of cell senescence (by population doubling level [PDL] 44). High or low glucose treatment accelerated the appearance of markers of senescence (by ~PDL 35) along with declines in endothelial nitric oxide synthase expression and activity. Human umbilical vein endothelial cells exposed to alternating low and high glucose gave even more rapid acceleration in the appearance of markers of senescence (by ~PDL 18) and reduction in endothelial nitric oxide synthase levels. Thus, exposure to low and high glucose induces earlier appearance of markers of endothelial cell senescence and dysregulation of the nitric oxide synthase gene and protein expression and function. These findings will help to elucidate endothelial dysfunction associated with glucose intolerance and improve future therapy for diabetic seniors.
Collapse
Affiliation(s)
- Steven C Rogers
- Reynolds Institute on Aging, University of Arkansas for Medical Sciences, 629 Jack Stephens Drive, Little Rock, AR 72205.
| | | | | | | | | |
Collapse
|
30
|
Common polymorphisms in nitric oxide synthase (NOS) genes influence quality of aging and longevity in humans. Biogerontology 2013; 14:177-86. [PMID: 23572278 DOI: 10.1007/s10522-013-9421-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/03/2013] [Indexed: 12/22/2022]
Abstract
Nitric oxide (NO) triggers multiple signal transduction pathways and contributes to the control of numerous cellular functions. Previous studies have shown in model organisms that the alteration of NO production has important effects on aging and lifespan. We studied in a large sample (763 subjects, age range 19-107 years) the variability of the three human genes (NOS1, -2, -3) coding for the three isoforms of the NADPH-dependent enzymes named NO synthases (NOS) which are responsible of NO synthesis. We have then verified if the variability of these genes is associated with longevity, and with a number of geriatric parameters. We found that gene variation of NOS1 and NOS2 was associated with longevity. In addition NOS1 rs1879417 was also found to be associated with a lower cognitive performance, while NOS2 rs2297518 polymorphism showed to be associated with physical performance. Moreover, SNPs in the NOS1 and NOS3 genes were respectively associated with the presence of depression symptoms and disability, two of the main factors affecting quality of life in older individuals. On the whole, our study shows that genetic variability of NOS genes has an effect on common age related phenotypes and longevity in humans as well as previously reported for model organisms.
Collapse
|
31
|
Bachschmid MM, Schildknecht S, Matsui R, Zee R, Haeussler D, Cohen RA, Pimental D, Loo BVD. Vascular aging: chronic oxidative stress and impairment of redox signaling-consequences for vascular homeostasis and disease. Ann Med 2013; 45:17-36. [PMID: 22380696 PMCID: PMC3717565 DOI: 10.3109/07853890.2011.645498] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Characteristic morphological and molecular alterations such as vessel wall thickening and reduction of nitric oxide occur in the aging vasculature leading to the gradual loss of vascular homeostasis. Consequently, the risk of developing acute and chronic cardiovascular diseases increases with age. Current research of the underlying molecular mechanisms of endothelial function demonstrates a duality of reactive oxygen and nitrogen species in contributing to vascular homeostasis or leading to detrimental effects when formed in excess. Furthermore, changes in function and redox status of vascular smooth muscle cells contribute to age-related vascular remodeling. The age-dependent increase in free radical formation causes deterioration of the nitric oxide signaling cascade, alters and activates prostaglandin metabolism, and promotes novel oxidative posttranslational protein modifications that interfere with vascular and cell signaling pathways. As a result, vascular dysfunction manifests. Compensatory mechanisms are initially activated to cope with age-induced oxidative stress, but become futile, which results in irreversible oxidative modifications of biological macromolecules. These findings support the 'free radical theory of aging' but also show that reactive oxygen and nitrogen species are essential signaling molecules, regulating vascular homeostasis.
Collapse
Affiliation(s)
- Markus M Bachschmid
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
MicroRNAs in Vascular Biology. Int J Vasc Med 2012; 2012:794898. [PMID: 23056947 PMCID: PMC3463915 DOI: 10.1155/2012/794898] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/17/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023] Open
Abstract
Vascular inflammation is an important component of the pathophysiology of cardiovascular diseases, such as hypertension, atherosclerosis, and aneurysms. All vascular cells, including endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and infiltrating cells, such as macrophages, orchestrate a series of pathological events. Despite dramatic improvements in the treatment of atherosclerosis, the molecular basis of vascular inflammation is not well understood. In the last decade, microRNAs (miRNAs) have been revealed as novel regulators of vascular inflammation. Each miRNAs suppresses a set of genes, forming complex regulatory network. This paper provides an overview of current advances that have been made in revealing the roles of miRNAs during vascular inflammation. Recent studies show that miRNAs not only exist inside cells but also circulate in blood. These circulating miRNAs are useful biomarkers for diagnosis of cardiovascular diseases. Furthermore, recent studies demonstrate that circulating miRNAs are delivered into certain recipient cells and act as messengers. These studies suggest that miRNAs provide new therapeutic opportunities.
Collapse
|
33
|
Ginsenoside Rb1 reverses H2O2-induced senescence in human umbilical endothelial cells: involvement of eNOS pathway. J Cardiovasc Pharmacol 2012; 59:222-30. [PMID: 22030897 DOI: 10.1097/fjc.0b013e31823c1d34] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Senescence of endothelial cells has been implicated in endothelial dysfunction and atherogenesis. This study investigated the effects of Rb1, a major ginsenoside in ginseng, on H2O2-induced senescence in primary human umbilical vein endothelial cells (HUVECs). METHODS AND RESULTS Real-time PCR and Western blot were used to detect the mRNA and protein expression, respectively. H2O2 (40∼100 μmol/L) effectively increased SA-β-gal activity and PAI-1 mRNA levels, two important senescence related biomarkers, in HUVECs, which were dramatically inhibited by Rb1 pre-incubation. Furthermore, Rb1 administration reversed the H2O2-decreased protein and mRNA levels of eNOS and its phosphorylation at Ser-1177, and the increased eNOS phosphorylation at Thr-495. As a result, Rb1 pretreatment restored the NO generation, as assayed by nitrate reductase method. However, pretreatment with L-NAME, a NOS inhibitor, abolished all the inhibitory effects of Rb1 on senescence. Importantly, Rb1 modulated the H2O2-altered caveolin-1 and pAkt, two most important regulators of eNOS expression and activity, in HUVECs. CONCLUSIONS We showed that Rb1 effectively protects HUVECs from senescence through eNOS modulation.
Collapse
|
34
|
Cau SBA, Carneiro FS, Tostes RC. Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 2012; 3:218. [PMID: 22737132 PMCID: PMC3382417 DOI: 10.3389/fphys.2012.00218] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/31/2012] [Indexed: 12/24/2022] Open
Abstract
Vascular aging is the term that describes the structural and functional disturbances of the vasculature with advancing aging. The molecular mechanisms of aging-associated endothelial dysfunction are complex, but reduced nitric oxide (NO) bioavailability and altered vascular expression and activity of NO synthase (NOS) enzymes have been implicated as major players. Impaired vascular relaxation in aging has been attributed to reduced endothelial NOS (eNOS)-derived NO, while increased inducible NOS (iNOS) expression seems to account for nitrosative stress and disrupted vascular homeostasis. Although eNOS is considered the main source of NO in the vascular endothelium, neuronal NOS (nNOS) also contributes to endothelial cells-derived NO, a mechanism that is reduced in aging. Pharmacological modulation of NO generation and expression/activity of NOS isoforms may represent a therapeutic alternative to prevent the progression of cardiovascular diseases. Accordingly, this review will focus on drugs that modulate NO bioavailability, such as nitrite anions and NO-releasing non-steroidal anti-inflammatory drugs, hormones (dehydroepiandrosterone and estrogen), statins, resveratrol, and folic acid, since they may be useful to treat/to prevent aging-associated vascular dysfunction. The impact of these therapies on life quality in elderly and longevity will be discussed.
Collapse
Affiliation(s)
- Stefany B A Cau
- Department of Pharmacology, Medical School of Ribeirao Preto Ribeirao Preto, Brazil
| | | | | |
Collapse
|
35
|
Abstract
Aging is a dominant risk factor for most forms of cardiovascular disease. Impaired angiogenesis and endothelial dysfunction likely contribute to the increased prevalence of both cardiovascular diseases and their adverse sequelae in the elderly. Angiogenesis is both an essential adaptive response to physiological stress and an endogenous repair mechanism after ischemic injury. In addition, induction of angiogenesis is a promising therapeutic approach for ischemic diseases. For these reasons, understanding the basis of age-related impairment of angiogenesis and endothelial function has important implications for understanding and managing cardiovascular disease. In this review, we discuss the molecular mechanisms that contribute to impaired angiogenesis in the elderly and potential therapeutic approaches to improving vascular function and angiogenesis in aging patients.
Collapse
Affiliation(s)
- Johanna Lähteenvuo
- Cardiovascular Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
36
|
Novella S, Dantas AP, Segarra G, Medina P, Hermenegildo C. Vascular Aging in Women: is Estrogen the Fountain of Youth? Front Physiol 2012; 3:165. [PMID: 22685434 PMCID: PMC3368545 DOI: 10.3389/fphys.2012.00165] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/08/2012] [Indexed: 11/13/2022] Open
Abstract
Aging is associated with structural and functional changes in the vasculature, including endothelial dysfunction, arterial stiffening and remodeling, impaired angiogenesis, and defective vascular repair, and with increased prevalence of atherosclerosis. Cardiovascular risk is similar for older men and women, but lower in women during their fertile years. This age- and sex-related difference points to estrogen as a protective factor because menopause is marked by the loss of endogenous estrogen production. Experimental and some clinical studies have attributed most of the protective effects of estrogen to its modulatory action on vascular endothelium. Estrogen promotes endothelial-derived NO production through increased expression and activity of endothelial nitric oxide synthase, and modulates prostacyclin and thromboxane A(2) release. The thromboxane A(2) pathway is key to regulating vascular tone in females. Despite all the experimental evidence, some clinical trials have reported no cardiovascular benefit from estrogen replacement therapy in older postmenopausal women. The "Timing Hypothesis," which states that estrogen-mediated vascular benefits occur only before the detrimental effects of aging are established in the vasculature, offers a possible explanation for these discrepancies. Nevertheless, a gap remains in current knowledge of cardiovascular aging mechanisms in women. This review comprises clinical and experimental data on the effects of aging, estrogens, and hormone replacement therapy on vascular function of females. We aim to clarify how menopause and aging contribute jointly to vascular aging and how estrogen modulates vascular response at different ages.
Collapse
Affiliation(s)
- Susana Novella
- Departamento de Fisiología, Universitat de València Valencia, Spain
| | | | | | | | | |
Collapse
|
37
|
Rippe C, Blimline M, Magerko KA, Lawson BR, LaRocca TJ, Donato AJ, Seals DR. MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Exp Gerontol 2011; 47:45-51. [PMID: 22037549 DOI: 10.1016/j.exger.2011.10.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/05/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023]
Abstract
A senescent phenotype in endothelial cells is associated with increased apoptosis, reduced endothelial nitric oxide synthase (eNOS) and inflammation, which are implicated in arterial dysfunction and disease in humans. We tested the hypothesis that changes in microRNAs are associated with a senescent phenotype in human aortic endothelial cells (HAEC). Compared with early-passage HAEC, late-passage HAEC had a reduced proliferation rate and increased staining for senescence-associated beta-galactosidase and the tumor suppressor p16(INK4a). Late-passage senescent HAEC had reduced expression of proliferation-stimulating/apoptosis-suppressing miR-21, miR-214 and miR-92 and increased expression of tumor suppressors and apoptotic markers. eNOS-suppressing miR-221 and miR-222 were increased and eNOS protein and eNOS activation (phosphorylation at serine1177) were lower in senescent HAEC. Caveolin-1 inhibiting miR-133a was reduced and caveolin-1, a negative regulator of eNOS activity, was elevated in senescent HAEC. Inflammation-repressing miR-126 was reduced and inflammation-stimulating miR-125b was increased, whereas inflammatory proteins were greater in senescent HAEC. Development of a senescent arterial endothelial cell phenotype featuring reduced cell proliferation, enhanced apoptosis and inflammation and reduced eNOS is associated with changes in miRNAs linked to the regulation of these processes. Our results support the hypothesis that miRNAs could play a critical role in arterial endothelial cell senescence.
Collapse
Affiliation(s)
- Catarina Rippe
- Department of Integrative Physiology, University of Colorado at Boulder, Boulder, CO 80309, United States.
| | | | | | | | | | | | | |
Collapse
|
38
|
Vassilopoulos SI, Tosios KI, Panis VG, Vrotsos JA. Endothelial cells of oral pyogenic granulomas express eNOS and CD105/endoglin: an immunohistochemical study. J Oral Pathol Med 2010; 40:345-51. [DOI: 10.1111/j.1600-0714.2010.00969.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|