1
|
Russo MT, Santin A, Zuccarotto A, Leone S, Palumbo A, Ferrante MI, Castellano I. The first genetic engineered system for ovothiol biosynthesis in diatoms reveals a mitochondrial localization for the sulfoxide synthase OvoA. Open Biol 2023; 13:220309. [PMID: 36722300 PMCID: PMC9890322 DOI: 10.1098/rsob.220309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/20/2022] [Indexed: 02/02/2023] Open
Abstract
Diatoms represent one of the most abundant groups of microalgae in the ocean and are responsible for approximately 20% of photosynthetically fixed CO2 on Earth. Due to their complex evolutionary history and ability to adapt to different environments, diatoms are endowed with striking molecular biodiversity and unique metabolic activities. Their high growth rate and the possibility to optimize their biomass make them very promising 'biofactories' for biotechnological applications. Among bioactive compounds, diatoms can produce ovothiols, histidine-derivatives, endowed with unique antioxidant and anti-inflammatory properties, and occurring in many marine invertebrates, bacteria and pathogenic protozoa. However, the functional role of ovothiols biosynthesis in organisms remains almost unexplored. In this work, we have characterized the thiol fraction of Phaeodactylum tricornutum, providing the first evidence of the presence of ovothiol B in pennate diatoms. We have used P. tricornutum to overexpress the 5-histidylcysteine sulfoxide synthase ovoA, the gene encoding the key enzyme involved in ovothiol biosynthesis and we have discovered that OvoA localizes in the mitochondria, a finding that uncovers new concepts in cellular redox biochemistry. We have also obtained engineered biolistic clones that can produce higher amount of ovothiol B compared to wild-type cells, suggesting a new strategy for the eco-sustainable production of these molecules.
Collapse
Affiliation(s)
- Monia Teresa Russo
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Santin
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Annalisa Zuccarotto
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Serena Leone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Maria Immacolata Ferrante
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Immacolata Castellano
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
2
|
Kadono T, Tomaru Y, Sato N, Watanabe Y, Suzuki K, Yamada K, Adachi M. Characterization of Chaetoceros lorenzianus-infecting DNA virus-derived promoters of genes from open reading frames of unknown function in Phaeodactylum tricornutum. Mar Genomics 2022; 61:100921. [PMID: 35030498 DOI: 10.1016/j.margen.2021.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Promoters are key elements for the regulation of gene expression. Recently, we investigated the activity of promoters derived from marine diatom-infecting viruses (DIVs) in marine diatoms. Previously, we focused on potential promoter regions of the replication-associated protein gene and the capsid protein gene of the DIVs. In addition to these genes, two genes of unknown function (VP1 and VP4 genes) have been found in the DIV genomes. In this study, the promoter regions of the VP1 gene and VP4 gene derived from a Chaetoceros lorenzianus-infecting DNA virus (named ClP3 and ClP4, respectively) were newly isolated. ClP4 was found to be a constitutive promoter and displayed the highest activity. In particular, the 3' region of ClP4 (ClP4 3' region) showed a higher promoter activity than full-length ClP4. The ClP4 3' region might involve high-level promoter activity of ClP4. In addition, the ClP4 3' region may be useful for substance production and metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, National Research and Development Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452, Japan
| | - Nao Sato
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Koji Yamada
- euglena Co., Ltd, G-BASE Tamachi 2nd and 3rd floor 5-29-11 Shiba Minato-ku, Tokyo 108-0014, Japan; Microalgae Production Control Technology Laboratory, RIKEN, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
3
|
Santin A, Caputi L, Longo A, Chiurazzi M, Ribera d'Alcalà M, Russo MT, Ferrante MI, Rogato A. Integrative omics identification, evolutionary and structural analysis of low affinity nitrate transporters in diatoms, diNPFs. Open Biol 2021; 11:200395. [PMID: 33823659 PMCID: PMC8025304 DOI: 10.1098/rsob.200395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Antonella Longo
- BioDiscovery Institute, Denton, TX, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | - Alessandra Rogato
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.,Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
4
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
5
|
Early dynamics of photosynthetic Lhcf2 and Lhcf15 transcription and mRNA stabilities in response to herbivory-related decadienal in Phaeodactylum tricornutum. Sci Rep 2020; 10:2029. [PMID: 32029835 PMCID: PMC7005025 DOI: 10.1038/s41598-020-58885-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Abiotic and biotic stresses widely reduce light harvesting complex (LHC) gene expression in higher plants and algae. However, control mechanisms and functions of these changes are not well understood. During herbivory, marine diatom species release oxylipins that impair grazer reproduction and serve as signaling molecules to nearby undamaged diatoms. To examine LHC mRNA regulation by oxylipin exposure, the diatom Phaeodactylum tricornutum was treated with a sublethal concentration of trans,trans-2,4-decadienal (DD) during the light cycle. Transcriptome analyses revealed extensive suppression of LHC mRNAs and a smaller set of up-regulated LHC mRNAs at 3 h. For two divergently regulated LHCF antennae family mRNAs, in vivo 4-thiouracil metabolic labeling was used to distinguish synthesis and degradation rates. Within 3 h of DD exposure, Lhcf2 mRNA levels and transcription were strongly suppressed and its mRNA half-life decreased. In contrast, Lhcf15 mRNA mainly accumulated between 3-9 h, its transcription increased and its mRNA was highly stabilized. Hence, DD-treated cells utilized transcriptional and mRNA stability control mechanisms which were likely major factors in the differing Lhcf2 and Lhcf15 expression patterns. Widespread LHC mRNA regulation and possible effects on photosynthesis may contribute to enhanced fitness in cells impacted by herbivory and other stresses.
Collapse
|
6
|
bHLH-PAS protein RITMO1 regulates diel biological rhythms in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci U S A 2019; 116:13137-13142. [PMID: 31171659 PMCID: PMC6600994 DOI: 10.1073/pnas.1819660116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Periodic light-dark cycles govern the timing of basic biological processes in organisms inhabiting land as well as the sea, where life evolved. Although prominent marine phytoplanktonic organisms such as diatoms show robust diel rhythms, the mechanisms regulating these processes are still obscure. By characterizing a Phaeodactylum tricornutum bHLH-PAS nuclear protein, hereby named RITMO1, we shed light on the regulation of the daily life of diatoms. Alteration of RITMO1 expression levels and timing by ectopic overexpression results in lines with deregulated diurnal gene expression profiles compared with the wild-type cells. Reduced gene expression oscillations are also observed in these lines in continuous darkness, showing that the regulation of rhythmicity by RITMO1 is not directly dependent on light inputs. We also describe strong diurnal rhythms of cellular fluorescence in wild-type cells, which persist in continuous light conditions, indicating the existence of an endogenous circadian clock in diatoms. The altered rhythmicity observed in RITMO1 overexpression lines in continuous light supports the involvement of this protein in circadian rhythm regulation. Phylogenetic analysis reveals a wide distribution of RITMO1-like proteins in the genomes of diatoms as well as in other marine algae, which may indicate a common function in these phototrophs. This study adds elements to our understanding of diatom biology and offers perspectives to elucidate timekeeping mechanisms in marine organisms belonging to a major, but under-investigated, branch of the tree of life.
Collapse
|
7
|
Russo MT, Aiese Cigliano R, Sanseverino W, Ferrante MI. Assessment of genomic changes in a CRISPR/Cas9 Phaeodactylum tricornutum mutant through whole genome resequencing. PeerJ 2018; 6:e5507. [PMID: 30310734 PMCID: PMC6174884 DOI: 10.7717/peerj.5507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/30/2018] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, co-opted from a bacterial defense natural mechanism, is the cutting edge technology to carry out genome editing in a revolutionary fashion. It has been shown to work in many different model organisms, from human to microbes, including two diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana. Transforming P. tricornutum by bacterial conjugation, we have performed CRISPR/Cas9-based mutagenesis delivering the nuclease as an episome; this allowed for avoiding unwanted perturbations due to random integration in the genome and for excluding the Cas9 activity when it was no longer required, reducing the probability of obtaining off-target mutations, a major drawback of the technology. Since there are no reports on off-target occurrence at the genome level in microalgae, we performed whole-genome Illumina sequencing and found a number of different unspecific changes in both the wild type and mutant strains, while we did not observe any preferential mutation in the genomic regions in which off-targets were predicted. Our results confirm that the CRISPR/Cas9 technology can be efficiently applied to diatoms, showing that the choice of the conjugation method is advantageous for minimizing unwanted changes in the genome of P. tricornutum.
Collapse
Affiliation(s)
- Monia Teresa Russo
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | |
Collapse
|
8
|
Kroth PG, Bones AM, Daboussi F, Ferrante MI, Jaubert M, Kolot M, Nymark M, Río Bártulos C, Ritter A, Russo MT, Serif M, Winge P, Falciatore A. Genome editing in diatoms: achievements and goals. PLANT CELL REPORTS 2018; 37:1401-1408. [PMID: 30167805 DOI: 10.1007/s00299-018-2334-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/07/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.
Collapse
Affiliation(s)
- Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Fayza Daboussi
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Maria I Ferrante
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Marianne Jaubert
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Misha Kolot
- Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Biochemistry and Molecular Biology, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Marianne Nymark
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | | | - Andrés Ritter
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France
| | - Monia T Russo
- Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Naples, 80121, Italy
| | - Manuel Serif
- LISBP, Université de Toulouse, CNRS, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Angela Falciatore
- Laboratoire de Biologie Computationnelle et Quantitative, Institut de Biologie Paris-Seine, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
9
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
10
|
Wang X, Liu YH, Wei W, Zhou X, Yuan W, Balamurugan S, Hao TB, Yang WD, Liu JS, Li HY. Enrichment of Long-Chain Polyunsaturated Fatty Acids by Coordinated Expression of Multiple Metabolic Nodes in the Oleaginous Microalga Phaeodactylum tricornutum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7713-7720. [PMID: 28721723 DOI: 10.1021/acs.jafc.7b02397] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microalgal long-chain polyunsaturated fatty acids (LC-PUFAs) have emerged as promising alternatives to depleting fish oils. However, the overproduction of LC-PUFAs in microalgae has remained challenging. Here, we report a sequential metabolic engineering strategy that systematically overcomes the metabolic bottlenecks and overproduces LC-PUFAs. Malonyl CoA-acyl carrier protein transacylase, catalyzing the first committed step in type II fatty acid synthesis, and desaturase 5b, involved in fatty acid desaturation, were coordinately expressed in Phaeodactylum tricornutum. Engineered microalgae hyper-accumulated LC-PUFAs, with arachidonic acid (ARA) and docosahexaenoic acid (DHA) contents of up to 18.98 μg/mg and 9.15 μg/mg (dry weight), respectively. Importantly, eicosapentaenoic acid (EPA) was accumulated up to a highest record of 85.35 μg/mg by metabolic engineering. ARA and EPA were accumulated mainly in triacylglycerides, whereas DHA was found exclusively in phospholipids. Combinatorial expression of these critical enzymes led to the optimal increment of LC-PUFAs without unbalanced metabolic flux and demonstrated the practical feasibility of generating sustainable LC-PUFA production.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Yu-Hong Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wei Wei
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Xia Zhou
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wasiqi Yuan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Srinivasan Balamurugan
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Ting-Bin Hao
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University , Guangzhou 510632, China
| |
Collapse
|
11
|
Streubel J, Baum H, Grau J, Stuttman J, Boch J. Dissection of TALE-dependent gene activation reveals that they induce transcription cooperatively and in both orientations. PLoS One 2017; 12:e0173580. [PMID: 28301511 PMCID: PMC5354296 DOI: 10.1371/journal.pone.0173580] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Plant-pathogenic Xanthomonas bacteria inject transcription activator-like effector proteins (TALEs) into host cells to specifically induce transcription of plant genes and enhance susceptibility. Although the DNA-binding mode is well-understood it is still ambiguous how TALEs initiate transcription and whether additional promoter elements are needed to support this. To systematically dissect prerequisites for transcriptional initiation the activity of one TALE was compared on different synthetic Bs4 promoter fragments. In addition, a large collection of artificial TALEs spanning the OsSWEET14 promoter was compared. We show that the presence of a TALE alone is not sufficient to initiate transcription suggesting the requirement of additional supporting promoter elements. At the OsSWEET14 promoter TALEs can initiate transcription from various positions, in a synergistic manner of multiple TALEs binding in parallel to the promoter, and even by binding in reverse orientation. TALEs are known to shift the transcriptional start site, but our data show that this shift depends on the individual position of a TALE within a promoter context. Our results implicate that TALEs function like classical enhancer-binding proteins and initiate transcription in both orientations which has consequences for in planta target gene prediction and design of artificial activators.
Collapse
Affiliation(s)
- Jana Streubel
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Baum
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jan Grau
- Institute of Computer Science, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Johannes Stuttman
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Boch
- Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
- Department of Plant Genetics, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
12
|
Chu L, Ewe D, Río Bártulos C, Kroth PG, Gruber A. Rapid induction of GFP expression by the nitrate reductase promoter in the diatom Phaeodactylum tricornutum. PeerJ 2016; 4:e2344. [PMID: 27635322 PMCID: PMC5012323 DOI: 10.7717/peerj.2344] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
An essential prerequisite for a controlled transgene expression is the choice of a suitable promoter. In the model diatom Phaeodactylum tricornutum, the most commonly used promoters for trans-gene expression are the light dependent lhcf1 promoters (derived from two endogenous genes encoding fucoxanthin chlorophyll a/c binding proteins) and the nitrate dependent nr promoter (derived from the endogenous nitrate reductase gene). In this study, we investigated the time dependent expression of the green fluorescent protein (GFP) reporter under control of the nitrate reductase promoter in independently genetically transformed P. tricornutum cell lines following induction of expression by change of the nitrogen source in the medium via flow cytometry, microscopy and western blotting. In all investigated cell lines, GFP fluorescence started to increase 1 h after change of the medium, the fastest increase rates were observed between 2 and 3 h. Fluorescence continued to increase slightly for up to 7 h even after transfer of the cells to ammonium medium. The subsequent decrease of GFP fluorescence was much slower than the increase, probably due to the stability of GFP. The investigation of several cell lines transformed with nr based constructs revealed that, also in the absence of nitrate, the promoter may show residual activity. Furthermore, we observed a strong variation of gene expression between independent cell lines, emphasising the importance of a thorough characterisation of genetically modified cell lines and their individual expression patterns.
Collapse
Affiliation(s)
- Lili Chu
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany; Current affiliation: Centre Algatech, Institute of Microbiology, The Czech Academy of Science, Třeboň, Czech Republic
| | | | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz , Konstanz , Germany
| |
Collapse
|
13
|
Abstract
The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems.
Collapse
|
14
|
Characterization of marine diatom-infecting virus promoters in the model diatom Phaeodactylum tricornutum. Sci Rep 2015; 5:18708. [PMID: 26692124 PMCID: PMC4686930 DOI: 10.1038/srep18708] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/24/2015] [Indexed: 01/27/2023] Open
Abstract
Viruses are considered key players in phytoplankton population control in oceans. However, mechanisms that control viral gene expression in prominent microalgae such as diatoms remain largely unknown. In this study, potential promoter regions isolated from several marine diatom-infecting viruses (DIVs) were linked to the egfp reporter gene and transformed into the Pennales diatom Phaeodactylum tricornutum. We analysed their activity in cells grown under different conditions. Compared to diatom endogenous promoters, novel DIV promoter (ClP1) mediated a significantly higher degree of reporter transcription and translation. Stable expression levels were observed in transformants grown under both light and dark conditions, and high levels of expression were reported in cells in the stationary phase compared to the exponential phase of growth. Conserved motifs in the sequence of DIV promoters were also found. These results allow the identification of novel regulatory regions that drive DIV gene expression and further examinations of the mechanisms that control virus-mediated bloom control in diatoms. Moreover, the identified ClP1 promoter can serve as a novel tool for metabolic engineering of diatoms. This is the first report describing a promoter of DIVs that may be of use in basic and applied diatom research.
Collapse
|