1
|
Wang Z, Tang Z, Heidari H, Molaeipour L, Ghanavati R, Kazemian H, Koohsar F, Kouhsari E. Global status of phenotypic pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates: an updated systematic review and meta-analysis. J Chemother 2023; 35:583-595. [PMID: 37211822 DOI: 10.1080/1120009x.2023.2214473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/01/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Pyrazinamide (PZA) is an essential first-line tuberculosis drug for its unique mechanism of action active against multidrug-resistant-TB (MDR-TB). Thus, the aim of updated meta-analysis was to estimate the PZA weighted pooled resistance (WPR) rate in M. tuberculosis isolates based on publication date and WHO regions. We systematically searched the related reports in PubMed, Scopus, and Embase (from January 2015 to July 2022). Statistical analyses were performed using STATA software. The 115 final reports in the analysis investigated phenotypic PZA resistance data. The WPR of PZA was 57% (95% CI 48-65%) in MDR-TB cases. According to the WHO regions, the higher WPRs of PZA were reported in the Western Pacific (32%; 95% CI 18-46%), South East Asian region (37%; 95% CI 31-43%), and the Eastern Mediterranean (78%; 95% CI 54-95%) among any-TB patients, high risk of MDR-TB patients, and MDR-TB patients, respectively. A negligible increase in the rate of PZA resistance were showed in MDR-TB cases (55% to 58%). The rate of PZA resistance has been rising in recent years among MDR-TB cases, underlines the essential for both standard and novel drug regimens development.
Collapse
Affiliation(s)
- Zheming Wang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Zhihua Tang
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing, China
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Leila Molaeipour
- Department of Epidemiology, School of Public Health, University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Zhdanova S, Jiao WW, Sinkov V, Khromova P, Solovieva N, Mushkin A, Mokrousov I, Belopolskaya O, Masharsky A, Vyazovaya A, Rychkova L, Kolesnikova L, Zhuravlev V, Shen AD, Ogarkov O. Insight into Population Structure and Drug Resistance of Pediatric Tuberculosis Strains from China and Russia Gained through Whole-Genome Sequencing. Int J Mol Sci 2023; 24:10302. [PMID: 37373451 DOI: 10.3390/ijms241210302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to determine phenotypic and genotypic drug resistance patterns of Mycobacterium tuberculosis strains from children with tuberculosis (TB) in China and Russia, two high-burden countries for multi/extensively-drug resistant (MDR/XDR) TB. Whole-genome sequencing data of M. tuberculosis isolates from China (n = 137) and Russia (n = 60) were analyzed for phylogenetic markers and drug-resistance mutations, followed by comparison with phenotypic susceptibility data. The Beijing genotype was detected in 126 Chinese and 50 Russian isolates. The Euro-American lineage was detected in 10 Russian and 11 Chinese isolates. In the Russian collection, the Beijing genotype and Beijing B0/W148-cluster were dominated by MDR strains (68% and 94%, respectively). Ninety percent of B0/W148 strains were phenotypically pre-XDR. In the Chinese collection, neither of the Beijing sublineages was associated with MDR/pre-XDR status. MDR was mostly caused by low fitness cost mutations (rpoB S450L, katG S315T, rpsL K43R). Chinese rifampicin-resistant strains demonstrated a higher diversity of resistance mutations than Russian isolates (p = 0.003). The rifampicin and isoniazid resistance compensatory mutations were detected in some MDR strains, but they were not widespread. The molecular mechanisms of M. tuberculosis adaptation to anti-TB treatment are not unique to the pediatric strains, but they reflect the general situation with TB in Russia and China.
Collapse
Affiliation(s)
- Svetlana Zhdanova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Wei-Wei Jiao
- National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
| | - Viacheslav Sinkov
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Polina Khromova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Natalia Solovieva
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Alexander Mushkin
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - Igor Mokrousov
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450012, China
| | - Olesya Belopolskaya
- The Bio-Bank Resource Center, Research Park, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Aleksey Masharsky
- The Bio-Bank Resource Center, Research Park, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna Vyazovaya
- Laboratory of Molecular Epidemiology and Evolutionary Genetics, St. Petersburg Pasteur Institute, 197101 St. Petersburg, Russia
| | - Lubov Rychkova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Lubov Kolesnikova
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| | - Viacheslav Zhuravlev
- St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russia
| | - A-Dong Shen
- National Clinical Research Center for Respiratory Diseases, Beijing Key Laboratory of Pediatric Respiratory Infection Disease, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing 100045, China
- Henan International Joint Laboratory of Children's Infectious Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou Children's Hospital, Zhengzhou 450012, China
| | - Oleg Ogarkov
- Department of Epidemiology and Microbiology, Scientific Centre for Family Health and Human Reproduction Problems, 664003 Irkutsk, Russia
| |
Collapse
|
3
|
Agonafir M, Belay G, Feleke A, Maningi N, Girmachew F, Reta M, Fourie PB. Profile and Frequency of Mutations Conferring Drug-Resistant Tuberculosis in the Central, Southeastern and Eastern Ethiopia. Infect Drug Resist 2023; 16:2953-2961. [PMID: 37201127 PMCID: PMC10187580 DOI: 10.2147/idr.s408567] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose Advances in molecular tools that assess genes harboring drug resistance mutations have greatly improved the detection and treatment of drug-resistant tuberculosis (DR-TB). This study was conducted to determine the frequency and type of mutations that are responsible for resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs) and second-line injectable drugs (SLIDs) in Mycobacterium tuberculosis (MTB) isolates obtained from culture-positive pulmonary tuberculosis (TB) patients in the central, southeastern and eastern Ethiopia. Patients and Methods In total, 224 stored culture-positive MTB isolates from pulmonary TB patients referred to Adama and Harar regional TB laboratories between August 2018 and January 2019 were assessed for mutations conferring RIF, INH, FLQs and SLIDs resistance using GenoType®MTBDRplus (MTBDRplus) and GenoType®MTBDRsl (MTBDRsl). Results RIF, INH, FLQs and SLIDs resistance-conferring mutations were identified in 88/224 (39.3%), 85/224 (38.0%), 7/77 (9.1%), and 3/77% (3.9%) of MTB isolates, respectively. Mutation codons rpoB S531L (59.1%) for RIF, katG S315T (96.5%) for INH, gyrA A90V (42.1%) for FLQs and WT1 rrs (100%) for SLIDs were observed in the majority of the isolates tested. Over a 10th of rpoB mutations detected in the current study were unknown. Conclusion In this study, the most common mutations conferring drug resistance to RIF, INH, FLQs were identified. However, a significant proportion of RIF-resistant isolates manifested unknown rpoB mutations. Similarly, although few in number, all SLID-resistant isolates had unknown rrs mutations. To further elucidate the entire spectrum of mutations, tool such as whole-genome sequencing is imperative. Furthermore, the expansion of molecular drug susceptibility testing services is critical for tailoring patient treatment and preventing disease transmission.
Collapse
Affiliation(s)
- Mulualem Agonafir
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Correspondence: Mulualem Agonafir, Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, P.O. Box 34738, Addis Ababa, Ethiopia, Tel +251911446959, Email
| | - Gurja Belay
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Adey Feleke
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nontuthuko Maningi
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Melese Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - P Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
4
|
Genotypic and phenotypic characteristics of <i>Mycobacterium tuberculosis</i> drug resistance in TB children. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.6.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background. Russian Federation is included in the list of 30 countries with the highest burden of tuberculosis, including MDR tuberculosis. The most important part of this problem is the primary MDR/XDR TB in children.The aim: a comparative analysis of the phenotypic and genotypic profile of drug resistance to anti-tuberculosis drugs (ATP) according to whole genome sequencing of M. tuberculosis strains from children.Materials and methods. Whole genome sequencing (WGS) results of 61 M. tuberculosis isolates from children with tuberculosis in 2006–2020 in the Russian Federation were analyzed for anti-TB drug resistance mutations, according to the WHO catalog and were compared with the results of phenotypic drug sensitivity.Results. The M. tuberculosis belonged to two genetic groups: Beijing genotype – 82 % (50/61) dominant Central Asian Russian (31/50) and B0/W148 (16/50) subtypes, and non-Beijing (Ural, S, LAM) – 18 % (11/61). Three isolates belonged to Asian Ancestral subtype (3/50). Of the 61 isolates, only 14.7 % (9/61) were sensitive to antiTB drugs, 49.2 % (30/61) were MDR and 14.7 % (9/61) were pre-XDR. Comparison of the resistance profile (MDR/pre-XDR) with genotype revealed an upward shift for Beijing isolates, in particular Beijing B0/W148 (15/16) subline compared to other Beijing (19/34) (Chi-square with Yates correction = 5.535; p < 0.05) and nonBeijing (5/12) (Chi-square with Yates correction = 6.741; p < 0.05) subtypes. Discrepancies between genotypic and phenotypic drug resistance profiles were found in 11.5 % (7/61) of cases.Conclusions. Based on the analysis of WGS data, the genotypic characteristics of M. tuberculosis and the most complete set of drug resistance mutations were obtained, indicating a significant prevalence in MDR and pre-XDR TB of cases caused by epidemic subtypes of Beijing (B0/W148 and Central Asian Russian). The molecular mechanisms of adaptation of M. tuberculosis to the treatment of anti-TB drugs are not unique for the child population but reflect the general processes of the spread of MDR/XDR in Russia.
Collapse
|
5
|
Molecular Determinants of Ethionamide Resistance in Clinical Isolates of Mycobacterium tuberculosis. Antibiotics (Basel) 2022; 11:antibiotics11020133. [PMID: 35203736 PMCID: PMC8868424 DOI: 10.3390/antibiotics11020133] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Ethionamide and prothionamide are now included in group C of the WHO recommended drugs for the treatment of tuberculosis resistant to rifampicin and multidrug-resistant tuberculosis. The clinical relevance of ethionamide and prothionamide has increased with the wide spread of resistant tuberculosis. Methods: We retrospectively analyzed 349 clinical isolates obtained between 2016 and 2020. The susceptibility to ethionamide was tested using both the BactecTM MGITTM 960 system and the SensititreTM MYCOTB plate. Results: The MIC of ethionamide increases with the total resistance of the isolates in a row from susceptible to XDR strains. A significant part of the isolates have a MIC below the breakpoint: 25%, 36%, and 50% for XDR, pre-XDR, and MDR strains. Sensitivity and specificity of detection of mutations were 96% and 86% using MGIT resistance as a reference. Conclusions: Phenotypic methods for testing ethionamide are imperfectly correlated, and the isolates with MIC of 5 mg/L have the intermediate resistance. A significant proportion of resistant TB cases are susceptible and eligible for ethionamide treatment. Resistance could be explained using only analysis of loci ethA, PfabG1, and inhA for most isolates in the Moscow region. The promoter mutation PfabG1 c(-15)t predicts resistance to ethionamide with high specificity but low sensitivity.
Collapse
|
6
|
Disputed rpoB Mutations in Mycobacterium tuberculosis and Tuberculosis Treatment Outcomes. Antimicrob Agents Chemother 2021; 65:e0157320. [PMID: 33846134 DOI: 10.1128/aac.01573-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discordant results between genotypic drug susceptibility testing (gDST) and phenotypic DST (pDST) for Mycobacterium tuberculosis isolates with disputed (discordance between gDST and pDST results) mutations affect rifampin (RIF)-resistant (RR) and multidrug-resistant (MDR) tuberculosis (TB) treatments due to a lack of practical clinical guidelines. To investigate the role of disputed rpoB mutations in M. tuberculosis and TB treatment outcomes, initial isolates of 837 clinical RR- or MDR-TB cases confirmed during 2014 to 2018 were retested using agar-based RIF pDST and rpoB gene sequencing. MICs were determined for isolates with disputed rpoB mutations. Disputed rpoB mutations were identified in 77 (9.2%) M. tuberculosis isolates, including 50 (64.9%) and 14 (18.2%) phenotypically RIF- and rifabutin (RFB)-resistant isolates, respectively. The predominant single mutations were those encoding L533P (a change of L to P at position 533) (44.2%) and L511P (20.8%). Most of the isolates harboring mutations encoding L511P (87.5%), H526N (100%), D516Y (70.0%), and L533P (63.6%) had MICs of ≤1 mg/liter, whereas isolates harboring the mutation encoding H526L (75%) had a MIC of >1 mg/liter. Of the 63 cases with treatment outcomes available, 11 (17.5%) cases died, 1 (1.6%) case transferred out, and 51 (81%) cases had favorable outcomes, including 8 and 20 cases treated with standard-dose RIF- and RFB-containing regimens, respectively. Excluding cases that transferred out or received no or 1-day treatment, we observed statistically significant differences between the outcomes using active and inactive fluoroquinolones (FQs) (P = 0.008, odds ratio = 0.05 [95% confidence interval, 0.01 to 0.38]) in 57 cases (where active means a case susceptible to the drug and inactive means a case resistant to the drug or drug not used). We concluded that disputed rpoB mutations are not rare. Depending on the resources available, sequencing and/or MIC testing is recommended for better management of RR- and MDR-TB cases.
Collapse
|
7
|
Song Y, Wang G, Li Q, Liu R, Ma L, Li Q, Gao M. The Value of the inhA Mutation Detection in Predicting Ethionamide Resistance Using Melting Curve Technology. Infect Drug Resist 2021; 14:329-334. [PMID: 33551644 PMCID: PMC7856099 DOI: 10.2147/idr.s268799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/30/2020] [Indexed: 11/24/2022] Open
Abstract
Objective This study aims to analyze the correlation between gene inhA mutations by melting curve technology and phenotypic drug susceptibility (DST) results of ethionamide (ETH), and evaluate whether gene inhA mutations detection can serve as a molecular marker in predicting ETH resistance. Methods A retrospective analysis was conducted on 382 strains of Mycobacterium tuberculosis (MTB) with the anti-tuberculosis drugs isoniazid (INH), rifampicin (RIF), ETH, and others. Phenotypic drug susceptibility and the results of inhA and katG genotypes (mutation and no mutation) were obtained using the melting curve technology MeltPro TB assay. Results Of the 382 clinical strains of MTB tested, 118 (30.9%) were resistant to INH, and 28 (7.3%) were resistant to ETH. Among the 28 phenotypically ETH-resistant strains, inhA mutations accounted for 42.9% (12/28). These ETH-resistant strains comprise 35.3% (12/34) of the 34 inhA mutant strains. Of 8 single inhA mutation strains (without katG or rpoB mutation), 4(50%) were resistant to INH; however, all of these 8 strains were sensitive to ETH. Conclusion The inhA mutation test may not be a reliable predictor of ETH resistance. Mutant inhA strains are not necessarily resistant to ETH. The strains with single inhA mutation (without katG or rpoB mutation) may be effective for ETH treatment. The use of ETH in clinical medicine should be guided by gene (other than inhA alone) detection and phenotypic drug susceptibility testing.
Collapse
Affiliation(s)
- Yanhua Song
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Guirong Wang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Qiang Li
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Rongmei Liu
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Liping Ma
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Qi Li
- Clinical Center on Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| | - Mengqiu Gao
- Department of Tuberculosis, Beijing Chest Hospital, Capital Medical University, Beijing 101149, People's Republic of China
| |
Collapse
|
8
|
Hsu LY, Lai LY, Hsieh PF, Lin TL, Lin WH, Tasi HY, Lee WT, Jou R, Wang JT. Two Novel katG Mutations Conferring Isoniazid Resistance in Mycobacterium tuberculosis. Front Microbiol 2020; 11:1644. [PMID: 32760384 PMCID: PMC7374161 DOI: 10.3389/fmicb.2020.01644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis, is among the top 10 leading causes of death worldwide. The treatment course for TB is challenging; it requires antibiotic administration for at least 6 months, and bacterial drug resistance makes treatment even more difficult. Understanding the mechanisms of resistance is important for improving treatment. To investigate new mechanisms of isoniazid (INH) resistance, we obtained three INH-resistant (INH-R) M. tuberculosis clinical isolates collected by the Taiwan Centers for Disease Control (TCDC) and sequenced genes known to harbor INH resistance-conferring mutations. Then, the relationship between the mutations and INH resistance of these three INH-R isolates was investigated. Sequencing of the INH-R isolates identified three novel katG mutations resulting in R146P, W341R, and L398P KatG proteins, respectively. To investigate the correlation between the observed INH-R phenotypes of the clinical isolates and these katG mutations, wild-type katG from H37Rv was expressed on a plasmid (pMN437-katG) in the isolates, and their susceptibilities to INH were determined. The plasmid expressing H37Rv katG restored INH susceptibility in the two INH-R isolates encoding the W341R KatG and L398P KatG proteins. In contrast, no phenotypic change was observed in the KatG R146P isolate harboring pMN437-katG. H37Rv isogenic mutant with W341R KatG or L398P KatG was further generated. Both showed resistant to INH. In conclusion, W341R KatG and L398P KatG conferred resistance to INH in M. tuberculosis, whereas R146P KatG did not affect the INH susceptibility of M. tuberculosis.
Collapse
Affiliation(s)
- Li-Yu Hsu
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wan-Hsuan Lin
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Taipei, Taiwan.,Diagnostics and Vaccine Center, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Hsing-Yuan Tasi
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Taipei, Taiwan.,Diagnostics and Vaccine Center, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Wei-Ting Lee
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Taipei, Taiwan.,Diagnostics and Vaccine Center, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Ruwen Jou
- Tuberculosis Research Center, Taiwan Centers for Disease Control, Taipei, Taiwan.,Diagnostics and Vaccine Center, Taiwan Centers for Disease Control, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|