1
|
Thibodeau AJ, Barret M, Mouchet F, Nguyen VX, Pinelli E. The potential contribution of aquatic wildlife to antibiotic resistance dissemination in freshwater ecosystems: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123894. [PMID: 38599270 DOI: 10.1016/j.envpol.2024.123894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
Antibiotic resistance (AR) is one of the major health threats of our time. The presence of antibiotics in the environment and their continuous release from sewage treatment plants, chemical manufacturing plants and animal husbandry, agriculture and aquaculture, result in constant selection pressure on microbial organisms. This presence leads to the emergence, mobilization, horizontal gene transfer and a selection of antibiotic resistance genes, resistant bacteria and mobile genetic elements. Under these circumstances, aquatic wildlife is impacted in all compartments, including freshwater organisms with partially impermeable microbiota. In this narrative review, recent advancements in terms of occurrence of antibiotics and antibiotic resistance genes in sewage treatment plant effluents source compared to freshwater have been examined, occurrence of antibiotic resistance in wildlife, as well as experiments on antibiotic exposure. Based on this current state of knowledge, we propose the hypothesis that freshwater aquatic wildlife may play a crucial role in the dissemination of antibiotic resistance within the environment. Specifically, we suggest that organisms with high bacterial density tissues, which are partially isolated from the external environment, such as fishes and amphibians, could potentially be reservoirs and amplifiers of antibiotic resistance in the environment, potentially favoring the increase of the abundance of antibiotic resistance genes and resistant bacteria. Potential avenues for further research (trophic transfer, innovative exposure experiment) and action (biodiversity eco-engineering) are finally proposed.
Collapse
Affiliation(s)
- Alexandre J Thibodeau
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France.
| | - Maialen Barret
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Florence Mouchet
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Van Xuan Nguyen
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| | - Eric Pinelli
- CRBE, Centre de Recherche sur la Biodiversité et l'Environnement, UMR5300, 31326 Auzeville-Tolosane, Av. de l'Agrobiopole, France
| |
Collapse
|
2
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|
3
|
McDougall FK, Speight N, Funnell O, Boardman WSJ, Power ML. Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. MICROBIAL ECOLOGY 2024; 87:39. [PMID: 38332161 PMCID: PMC10853082 DOI: 10.1007/s00248-024-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Fiona K McDougall
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia.
| | - Natasha Speight
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Oliver Funnell
- Zoos South Australia, Frome Rd, Adelaide, SA, 5001, Australia
| | - Wayne S J Boardman
- School of Animal and Veterinary Sciences, Faculty of Sciences, Engineering and Technology, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Michelle L Power
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
4
|
Liu H, Pan S, Cheng Y, Luo L, Zhou L, Fan S, Wang L, Jiang S, Zhou Z, Liu H, Zhang S, Ren Z, Ma X, Cao S, Shen L, Wang Y, Cai D, Gou L, Geng Y, Peng G, Yan Q, Luo Y, Zhong Z. Distribution and associations for antimicrobial resistance and antibiotic resistance genes of Escherichia coli from musk deer (Moschus berezovskii) in Sichuan, China. PLoS One 2023; 18:e0289028. [PMID: 38011149 PMCID: PMC10681177 DOI: 10.1371/journal.pone.0289028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/08/2023] [Indexed: 11/29/2023] Open
Abstract
This study aimed to investigate the antimicrobial resistance (AMR), antibiotic resistance genes (ARGs) and integrons in 157 Escherichia coli (E. coli) strains isolated from feces of captive musk deer from 2 farms (Dujiang Yan and Barkam) in Sichuan province. Result showed that 91.72% (144/157) strains were resistant to at least one antimicrobial and 24.20% (38/157) strains were multi-drug resistant (MDR). The antibiotics that most E. coli strains were resistant to was sulfamethoxazole (85.99%), followed by ampicillin (26.11%) and tetracycline (24.84%). We further detected 13 ARGs in the 157 E. coli strains, of which blaTEM had the highest occurrence (91.72%), followed by aac(3')-Iid (60.51%) and blaCTX-M (16.56%). Doxycycline, chloramphenicol, and ceftriaxone resistance were strongly correlated with the presence of tetB, floR and blaCTX-M, respectively. The strongest positive association among AMR phenotypes was ampicillin/cefuroxime sodium (OR, 828.000). The strongest positive association among 16 pairs of ARGs was sul1/floR (OR, 21.667). Nine pairs positive associations were observed between AMR phenotypes and corresponding resistance genes and the strongest association was observed for CHL/floR (OR, 301.167). Investigation of integrons revealed intl1 and intl2 genes were detected in 10.19% (16/157) and 1.27% (2/157) E. coli strains, respectively. Only one type of gene cassettes (drA17-aadA5) was detected in class 1 integron positive strains. Our data implied musk deer is a reservoir of ARGs and positive associations were common observed among E. coli strains carrying AMRs and ARGs.
Collapse
Affiliation(s)
- Hang Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shulei Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yuehong Cheng
- Sichuan Wolong National Natural Reserve Administration Bureau, Wenchuan, Sichuan, China
| | - Lijun Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Lei Zhou
- Sichuan Institute of Musk Deer Breeding, Dujiangyan, China
| | - Siping Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, China
| | - Shaoqi Jiang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Shaqiu Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Ya Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Dongjie Cai
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Liping Gou
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Yan Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Key Laboratory of Animal Disease and Human Health of Sichuan, Chengdu, China
| |
Collapse
|
5
|
Cardoso MD, Gonçalves VD, Grael AS, Pedroso VM, Pires JR, Travassos CEPF, Domit C, Vieira-Da-Motta O, Dos Prazeres Rodrigues D, Siciliano S. Detection of Escherichia coli and other Enterobacteriales members in seabirds sampled along the Brazilian coast. Prev Vet Med 2023; 218:105978. [PMID: 37544079 DOI: 10.1016/j.prevetmed.2023.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Escherichia coli, an Enterobacterales member, is a normal representative of the microbiota of homeothermic animals. Most strains are commensal, but several pathotypes can cause disease, and numerous antimicrobial resistance factors have been identified. These bacteria have spread rapidly in recent years, highlighting the importance of screening the environment and non-human reservoirs for virulent strains and/or those presenting resistance factors, in addition to other microorganisms of public health importance. In this context, this study aimed to survey Enterobacteriales present in seabirds sampled along the Brazilian coast, comparing findings between migratory and resident birds, as well as between wrecked and non-wrecked animals. Escherichia coli pathotypes were also characterized through rapid seroagglutination and polymerase chain reaction techniques and antimicrobial resistance profiles were investigated through the disc agar diffusion method. Cloacal, ocular, oral, tracheal, and skin lesion swabs, as well as fresh feces, were collected from 122 seabirds. The findings indicate these animals as important hosts for opportunistic human pathogens. Escherichia coli strains were identified in 70 % of the analyzed seabirds, 62 % of which displaying resistant or intermediate profiles to at least one antimicrobial, while 7% were multiresistant. Resistance to tetracycline (22 %), nalidixic acid (15 %), trimethoprim-sulfamethozaxol (14 %) and ampicillin (12 %) were the most prevalent. Resistance to cefoxitin, a critically important antimicrobial for human medicine, was also detected. Virulence genes for one of the EAEC, ETEC or EPEC pathotypes were detected in 30 % of the identified strains, the first two described in seabirds for the first time. The EAEC gene was detected in 25 % of the sampled seabirds, all resident, 8 % of which exhibited a multidrug-resistant profile. Thus, seabirds comprise important reservoirs for this pathotype. Escherichia coli was proven an ubiquitous and well-distributed bacterium, present in all evaluated bird species and sampling sites (except Marajó Island). According to the chi-square test, no significant differences between E. coli prevalences or antimicrobial resistance profiles between migratory and resident and between wrecked and non-wrecked seabirds were observed. Thus, migratory birds do not seem to contribute significantly to E. coli frequencies, pathotypes or antimicrobial resistance rates on the Brazilian coast.
Collapse
Affiliation(s)
- Maíra Duarte Cardoso
- Programa de Pós-Graduação em Saúde Pública e Meio Ambiente, Escola Nacional de Saúde Pública Sérgio Arouca, Fundação Oswaldo Cruz, Rua Leopoldo Bulhões, 1480, Manguinhos, Rio de Janeiro 21041-210, RJ, Brazil.
| | - Verônica Dias Gonçalves
- Laboratório de Referência Nacional de Enteroinfecções Bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, sala 316, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Andrea Soffiatti Grael
- Setor de Animais Selvagens, Hospital Universitário de Medicina Veterinária Firmino Mársico Filho, Faculdade de Veterinária, Universidade Federal Fluminense, Avenida Almirante Ary Parreiras, 503, Vital Brazil, Niterói 24220-000, RJ, Brazil.
| | - Vanessa Marques Pedroso
- Centro de Recuperação de Animais Marinhos, Universidade Federal do Rio Grande, Rua Tenente Capitão Heitor Perdigão, 10, Centro, Rio Grande 96200-580, RS, Brazil.
| | - Jeferson Rocha Pires
- Centro de Recuperação de Fauna Silvestre, Universidade Estácio de Sá - Estrada da Boca do Mato, 850, Vargem Pequena, Rio de Janeiro 22783-320, RJ, Brazil.
| | - Carlos Eurico Pires Ferreira Travassos
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Horto, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Camila Domit
- Laboratório de Ecologia e Conservação, Centro de Estudos do Mar, Universidade Federal do Paraná, Paraná CEP 83255-000, Brazil.
| | - Olney Vieira-Da-Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamego, 2000, Horto, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil.
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Referência Nacional de Enteroinfecções Bacterianas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Pavilhão Rocha Lima, sala 316, Manguinhos, Rio de Janeiro 21040-360, RJ, Brazil.
| | - Salvatore Siciliano
- Departamento de Ciências Biológicas, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rua Leopoldo Bulhões, 1.480, Manguinhos, Rio de Janeiro 21041-910, RJ, Brazil.
| |
Collapse
|
6
|
Dreyer S, Globig A, Bachmann L, Schütz AK, Schaufler K, Homeier-Bachmann T. Longitudinal Study on Extended-Spectrum Beta-Lactamase- E. coli in Sentinel Mallard Ducks in an Important Baltic Stop-Over Site for Migratory Ducks in Germany. Microorganisms 2022; 10:1968. [PMID: 36296245 PMCID: PMC9612239 DOI: 10.3390/microorganisms10101968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 08/17/2023] Open
Abstract
Antimicrobial resistance (AMR) is a serious global health threat with extended-spectrum beta-lactamase (ESBL)-producing Enterobacterales as the most critical ones. Studies on AMR in wild birds imply a possible dissemination function and indicate their potential role as sentinel animals. This study aimed to gain a deeper insight into the AMR burden of wild waterfowl by sampling semi-wild mallard ducks used as sentinels and to identify if AMR bacteria could be recommended to be added to the pathogens of public health risks to be screened for. In total, 376 cloacal and pooled fecal samples were collected from the sentinel plant over a period of two years. Samples were screened for ESBL-carrying E. coli and isolates found further analyzed using antimicrobial susceptibility testing and whole-genome sequencing. Over the sampling period, 4.26% (16/376) of the samples were positive for ESBL-producing E. coli. BlaCTX-M-1 and blaCTX-M-32 were the most abundant CTX-M types. Although none of the top global sequence types (ST) could be detected, poultry-derived ST115 and non-poultry-related STs were found and could be followed over time. The current study revealed low cases of ESBL-producing E. coli in semi-wild mallard ducks, which proves the suitability of sentinel surveillance for AMR detection in water-associated wildlife.
Collapse
Affiliation(s)
- Sylvia Dreyer
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Anja Globig
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Lisa Bachmann
- Faculty of Agriculture and Food Science, University of Applied Science Neubrandenburg, 17033 Neubrandenburg, Germany
| | - Anne K. Schütz
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany
- Institute of Infection Medicine, Christian-Albrecht University Kiel and University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | | |
Collapse
|
7
|
McDougall F, Boardman W, Power M. High Prevalence of Beta-Lactam-Resistant Escherichia coli in South Australian Grey-Headed Flying Fox Pups ( Pteropus poliocephalus). Microorganisms 2022; 10:1589. [PMID: 36014007 PMCID: PMC9416314 DOI: 10.3390/microorganisms10081589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of antimicrobial-resistant Escherichia coli in wildlife is concerning-especially resistance to clinically important beta-lactam antibiotics. Wildlife in closer proximity to humans, including in captivity and in rescue/rehabilitation centres, typically have a higher prevalence of antimicrobial-resistant E. coli compared to their free-living counterparts. Each year, several thousand Australian fruit bat pups, including the grey-headed flying fox (GHFF; Pteropus poliocephalus), require rescuing and are taken into care by wildlife rescue and rehabilitation groups. To determine the prevalence of beta-lactam-resistant E. coli in rescued GHFF pups from South Australia, faecal samples were collected from 53 pups in care. A combination of selective culture, PCR, antimicrobial susceptibility testing, whole-genome sequencing, and phylogenetic analysis was used to identify and genetically characterise beta-lactam-resistant E. coli isolates. The prevalence of amoxicillin-, amoxicillin-plus-clavulanic-acid-, and cephalosporin-resistant E. coli in the 53 pups was 77.4% (n = 41), 24.5% (n = 13), and 11.3% (n = 6), respectively. GHFF beta-lactam-resistant E. coli also carried resistance genes to aminoglycosides, trimethoprim plus sulphonamide, and tetracyclines in 37.7% (n = 20), 35.8% (n = 19), and 26.4% (n = 14) of the 53 GHFF pups, respectively, and 50.9% (n = 27) of pups carried multidrug-resistant E. coli. Twelve E. coli strain types were identified from the 53 pups, with six strains having extraintestinal pathogenic traits, indicating that they have the potential to cause blood, lung, or wound infections in GHFFs. Two lineages-E. coli ST963 and ST58 O8:H25-were associated with human extraintestinal infections. Phylogenetic analyses determined that all 12 strains were lineages associated with humans and/or domestic animals. This study demonstrates high transmission of anthropogenic-associated beta-lactam-resistant E. coli to GHFF pups entering care. Importantly, we identified potential health risks to GHFF pups and zoonotic risks for their carers, highlighting the need for improved antibiotic stewardship and biosafety measures for GHFF pups entering care.
Collapse
Affiliation(s)
- Fiona McDougall
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wayne Boardman
- School of Animal and Veterinary Sciences, University of Adelaide, Adelaide, SA 5371, Australia
| | - Michelle Power
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Fulham M, McDougall F, Power M, McIntosh RR, Gray R. Carriage of antibiotic resistant bacteria in endangered and declining Australian pinniped pups. PLoS One 2022; 17:e0258978. [PMID: 35089935 PMCID: PMC8797192 DOI: 10.1371/journal.pone.0258978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) is a major concern for wildlife and ecosystem health globally. Genetic determinants of AMR have become indicators of anthropogenic pollution due to their greater association with humans and rarer presence in environments less affected by humans. The objective of this study was to determine the distribution and frequency of the class 1 integron, a genetic determinant of AMR, in both the faecal microbiome and in Escherichia coli isolated from neonates of three pinniped species. Australian sea lion (Neophoca cinerea), Australian fur seal (Arctocephalus pusillus doriferus) and long-nosed fur seal (Arctocephalus forsteri) pups from eight breeding colonies along the Southern Australian coast were sampled between 2016-2019. DNA from faecal samples (n = 309) and from E. coli (n = 795) isolated from 884 faecal samples were analysed for class 1 integrons using PCRs targeting the conserved integrase gene (intI) and the gene cassette array. Class 1 integrons were detected in A. p. doriferus and N. cinerea pups sampled at seven of the eight breeding colonies investigated in 4.85% of faecal samples (n = 15) and 4.52% of E. coli isolates (n = 36). Integrons were not detected in any A. forsteri samples. DNA sequencing of the class 1 integron gene cassette array identified diverse genes conferring resistance to four antibiotic classes. The relationship between class 1 integron carriage and the concentration of five trace elements and heavy metals was also investigated, finding no significant association. The results of this study add to the growing evidence of the extent to which antimicrobial resistant bacteria are polluting the marine environment. As AMR determinants are frequently associated with bacterial pathogens, their occurrence suggests that these pinniped species are vulnerable to potential health risks. The implications for individual and population health as a consequence of AMR carriage is a critical component of ongoing health investigations.
Collapse
Affiliation(s)
- Mariel Fulham
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Fiona McDougall
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, New South Wales, Australia
| | - Michelle Power
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, New South Wales, Australia
| | | | - Rachael Gray
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Ewbank AC, Esperón F, Sacristán C, Sacristán I, Neves E, Costa-Silva S, Antonelli M, Rocha Lorenço J, Kolesnikovas CKM, Catão-Dias JL. Occurrence and Quantification of Antimicrobial Resistance Genes in the Gastrointestinal Microbiome of Two Wild Seabird Species With Contrasting Behaviors. Front Vet Sci 2021; 8:651781. [PMID: 33829054 PMCID: PMC8019699 DOI: 10.3389/fvets.2021.651781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/24/2021] [Indexed: 01/24/2023] Open
Abstract
Antimicrobial resistance genes (ARGs) are environmental pollutants and anthropization indicators. We evaluated human interference in the marine ecosystem through the ocurrence and quantification (real-time PCRs) of 21 plasmid-mediated ARGs in enema samples of 25 wild seabirds, upon admission into rehabilitation: kelp gull (Larus dominicanus, n = 14) and Magellanic penguin (Spheniscus magellanicus, n = 11). Overall, higher resistance values were observed in kelp gulls (non-migratory coastal synanthropic) in comparison with Magellanic penguins (migratory pelagic non-synanthropic). There were significant differences between species (respectively, kelp gull and Magellanic penguin): ARGs occurrence (bla TEM [p = 0.032]; tetM [p = 0.015]; tetA [p = 0.003]; and sulII [p = 0.007]), mean number of ARGs per sample (p = 0.031), ARGs mean load percentage (aadA [p = 0.045], tetA [p = 0.031], tetM [p = 0.016], bla TEM [p = 0.032], sulII [p = 0.008]), percentage of genes conferring resistance to an antimicrobial class (betalactams [p = 0.036] and sulfonamides [p = 0.033]), mean number of genes conferring resistance to one or more antimicrobial classes (p = 0.024]), percentage of multiresistant microbiomes (p = 0.032), and clustering (p = 0.006). These differences are likely due to these species' contrasting biology and ecology - key factors in the epidemiology of ARGs in seabirds. Additionally, this is the first report of mecA in seabirds in the Americas. Further studies are necessary to clarify the occurrence and diversity of ARGs in seabirds, and their role as potential sources of infection and dispersal within the One Health chain of ARGs.
Collapse
Affiliation(s)
- Ana Carolina Ewbank
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernando Esperón
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Madrid, Spain
| | - Carlos Sacristán
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Irene Sacristán
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Elena Neves
- Group of Epidemiology and Environmental Health, Animal Health Research Centre (INIA-CISA), Madrid, Spain
| | | | | | | | | | - José Luiz Catão-Dias
- Laboratory of Wildlife Comparative Pathology, Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|