1
|
Bhagat P, Upadhyay LSB. A review towards sustainable analyte detection: Biomimetic inspiration in biosensor technology. J Biotechnol 2025; 398:51-65. [PMID: 39615792 DOI: 10.1016/j.jbiotec.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/15/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
The branch of biomimetics has witnessed a profound impact on the field of biosensor technology, reflected in sustainable analyte detection. A vast array of biosensor platforms with improved/upgraded performance have been developed and reported. No wonder the motivation from the field of biomimetics has a huge impact on generating detection systems with escalated degrees of manipulation and tunability at different levels. More recently, biomimetic biosensor technology has found potential in constructing bio-inspired materials such as aptamers, MIPs, nanozymes, DNAzymes, Synzymes, etc. to be integrated with biosensor fabrication. The establishment of a sensing setup is not limited to the bioreceptor fabrication; the construction of transducing element using biomimetic material have been reported too. Moreover, to serve a biosensing of target analyte from a fatal diseased sample different biomimetic architectures can be designed that mimic in-vivo microenvironmental surroundings to get an exact microenvironment equivalent to natural conditions leading towards designing of a precise treatment strategy. This research area is ever-evolving as there is a scope for upgradation and refinement due to advancing technologies including nanotechnology, biomimetic nanomaterials, microfluidics, optical sensors, etc. This review is an attempt to comprehend and juxtapose the very primary innovations in the field of biomimetic biosensor technology to realize its comprehensive and wide-range scope and possibilities.
Collapse
Affiliation(s)
- Pratistha Bhagat
- National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India.
| | - Lata Sheo Bachan Upadhyay
- National Institute of Technology, Raipur, Department of Biotechnology, Raipur, Chhattisgarh 492010, India.
| |
Collapse
|
2
|
López-Sánchez C, de Andrés F, Ríos Á. Implications of analytical nanoscience in pharmaceutical and biomedical fields: A critical view. J Pharm Biomed Anal 2024; 243:116118. [PMID: 38513499 DOI: 10.1016/j.jpba.2024.116118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
This review summarizes recent progress performed in the design and application of analytical tools and methodologies using nanomaterials for pharmaceutical analysis, and specifically new nanomedicines at distinct phases of development and translation from preclinical to clinical stages. Over the last 10-15 years, a growing number of studies have utilized various nanomaterials, including carbon-based, metallic nanoparticles, polymeric nanomaterials, materials based on biological molecules, and composite nanomaterials as tools for improving the analysis of pharmaceutical products. New and more complex nanomaterials are currently being explored to influence different stages of the analytical process. These materials provide unique properties to support the extraction of analytes in complex samples, increase the selectivity and efficiency of chromatographic separations, and improve the analytical properties of many sensor applications. Indeed, nanomaterials, including electrochemical detection approaches and biosensing, are expanding at a remarkable rate. Furthermore, the analytical performance of numerous approaches to determine drugs in different matrices can be significantly improved in terms of precision, detection limits, selectivity, and time of analysis. However, the quality control and metrological characterization of the currently synthesized nanomaterials still depend on the development of new and improved analytical methodologies, and the application of specific and improved instrumentation. Therefore, there is still much to explore about the properties of nanomaterials which need to be determined even more precisely and accurately.
Collapse
Affiliation(s)
- Claudia López-Sánchez
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain
| | - Fernando de Andrés
- Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, Dr. José María Sánchez Ibáñez Av. s/n, Albacete 02071, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain; Regional Institute for Applied Scientific Research, IRICA, University of Castilla-La Mancha, Camilo José Cela Av. s/n, Ciudad Real 13071, Spain.
| |
Collapse
|
3
|
Pathak A, Verma N, Tripathi S, Mishra A, Poluri KM. Nanosensor based approaches for quantitative detection of heparin. Talanta 2024; 273:125873. [PMID: 38460425 DOI: 10.1016/j.talanta.2024.125873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Heparin, being a widely employed anticoagulant in numerus clinical complications, requires strict quantification and qualitative screening to ensure the safety of patients from potential threat of thrombocytopenia. However, the intricacy of heparin's chemical structures and low abundance hinders the precise monitoring of its level and quality in clinical settings. Conventional laboratory assays have limitations in sensitivity and specificity, necessitating the development of innovative approaches. In this context, nanosensors emerged as a promising solution due to enhanced sensitivity, selectivity, and ability to detect heparin even at low concentrations. This review delves into a range of sensing approaches including colorimetric, fluorometric, surface-enhanced Raman spectroscopy, and electrochemical techniques using different types of nanomaterials, thus providing insights of its principles, capabilities, and limitations. Moreover, integration of smart-phone with nanosensors for point of care diagnostics has also been explored. Additionally, recent advances in nanopore technologies, artificial intelligence (AI) and machine learning (ML) have been discussed offering specificity against contaminants present in heparin to ensure its quality. By consolidating current knowledge and highlighting the potential of nanosensors, this review aims to contribute to the advancement of efficient, reliable, and economical heparin detection methods providing improved patient care.
Collapse
Affiliation(s)
- Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Nishchay Verma
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Shweta Tripathi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Liu Y, Zhang Y, Liu C, Wang C, Xu B, Zhao L. Construction of a highly sensitive detection platform for heparin based on a "turn-off" cationic fluorescent dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123670. [PMID: 38006866 DOI: 10.1016/j.saa.2023.123670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
A highly sensitive detection platform for heparin was constructed via the utilization of a commercially available cationic fluorescent dye (cresyl violet acetate, CV) as a fluorescence probe. The electrostatic binding between CV and heparin quenched the fluorescence in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic (HEPES) buffer solution (10 mM, pH 7.1). CV was highly selective towards heparin over other potential inferring substances. The detection limit of heparin detection was 5.19 ng/mL, and the linear working range was 0 ∼ 1 μg/mL in HEPES solution. In 1 % serum, the detection platform based on the fluorescence "turn-off" behavior of CV was also successfully constructed with a detection limit of 5.86 ng/mL in the linear range of 0 ∼ 0.8 μg/mL. Moreover, the CV-heparin complex was considered a potential sensor platform for the detection of protamine because of its stronger affinity for heparin and protamine.
Collapse
Affiliation(s)
- Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Zhang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Changyao Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
5
|
An ultrasensitive and selective method for visual detection of heparin in 100 % human plasma. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Metallic deep eutectic solvents-assisted synthesis of Cu, Cl-doped carbon dots as oxidase-like and peroxidase-like nanozyme for colorimetric assay of hydroquinone and H2O2. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Chen F, Zhu H, Lv N, Li Q, Ma T, Wang L, Zhou M, Cao S, Luo X, Cheng C. π-Conjugated Copper Phthalocyanine Nanoparticles as Highly Sensitive Sensor for Colorimetric Detection of Biomarkers. Chemistry 2022; 28:e202104591. [PMID: 35394659 DOI: 10.1002/chem.202104591] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 02/05/2023]
Abstract
Though numerous nanomaterials with enzyme-like activities have been utilized as probes and sensors for detecting biological molecules, it is still challenging to construct highly sensitive detectors for biomarkers using polymeric materials. Benefiting from the π-d delocalization effect of electrons, excellent metal-chelating property, high electron transferability, and good chemical stability of π-conjugated phthalocyanine, the design of the copper phthalocyanine-based conjugated polymer nanoparticles (Cu-PcCP NPs) as a colorimetric sensor for a variety of biomarkers is reported. The Cu-PcCP NPs are synthesized through a simple microwave-assisted polymerization, and their chemical structures are thoroughly characterized. The colorimetric results of Cu-PcCP NPs demonstrate excellent peroxidase-like detecting activity and also great substrate selectivity than most of the reported Cu-based nanomaterials. The Cu-PcCP NPs can achieve a detection limit of 4.88 μM for the H2 O2 , 4.27 μM for the L-cysteine, and 21.10 μM for the glucose via a cascade catalytic system, which shows comparable detecting sensitivity as that of many earlier reported enzyme-like nanomaterials. Moreover, Cu-PcCP NPs present remarkable resistance to harsh conditions, including high temperature, low pH, and excessive salts. These highly specific π-conjugated copper-phthalocyanine nanoparticles not only overcome the current limitation of polymeric material-based sensors but also provide a new direction for designing next-generation enzyme-like nanomaterial-based colorimetric biosensors.
Collapse
Affiliation(s)
- Fan Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Huang Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ning Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liyun Wang
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Sujiao Cao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
8
|
A facile nanozyme based catalytic platform for the selective and sensitive detection of thrombin. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
A cationic aggregation-induced emission luminogen for colorimetric and fluorimetric detection of heparin with a dual-read approach, stability and applicability in a 10% serum matrix. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Liu B, Wang Y, Chen Y, Guo L, Wei G. Biomimetic two-dimensional nanozymes: synthesis, hybridization, functional tailoring, and biosensor applications. J Mater Chem B 2021; 8:10065-10086. [PMID: 33078176 DOI: 10.1039/d0tb02051f] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Biological enzymes play important roles in mediating the biological reactions in vitro and in vivo due to their high catalytic activity, strong bioactivity, and high specificity; however, they have also some disadvantages such as high cost, low environmental stability, weak reusability, and difficult production. To overcome these shortcomings, functional nanomaterials including metallic nanoparticles, single atoms, metal oxides, alloys, and others have been utilized as nanozymes to mimic the properties and functions of natural enzymes. Due to the development of the synthesis and applications of two-dimensional (2D) materials, 2D nanomaterials have shown high potential to be used as novel nanozymes in biosensing, bioimaging, therapy, logic gates, and environmental remediation due to their unique physical, chemical, biological, and electronic properties. In this work, we summarize recent advances in the preparation and functionalization, as well as biosensor and immunoassay applications of various 2D material-based nanozymes. To achieve this aim, first we demonstrate the preparation strategies of 2D nanozymes such as chemical reduction, templated synthesis, chemical exfoliation, calcination, electrochemical deposition, hydrothermal synthesis, and many others. Meanwhile, the structure and properties of the 2D nanozymes prepared by conjugating 2D materials with nanoparticles, metal oxides, biomolecules, polymers, ions, and 2D heteromaterials are introduced and discussed in detail. Then, the applications of the prepared 2D nanozymes in colorimetric, electrochemical, fluorescent, and electrochemiluminescent sensors are demonstrated.
Collapse
Affiliation(s)
- Bin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | |
Collapse
|
11
|
Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F. Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Tang Q, Cao S, Ma T, Xiang X, Luo H, Borovskikh P, Rodriguez RD, Guo Q, Qiu L, Cheng C. Engineering Biofunctional Enzyme‐Mimics for Catalytic Therapeutics and Diagnostics. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007475] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qing Tang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Sujiao Cao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Tian Ma
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Xi Xiang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials Sichuan University Chengdu 610064 China
| | - Pavel Borovskikh
- Martin‐Luther‐University Halle‐Wittenberg Universitätsplatz 10 Halle (Saale) 06108 Germany
| | | | - Quanyi Guo
- Chinese PLA General Hospital Beijing Key Lab of Regenerative Medicine in Orthopedics No. 28 Fuxing Road, Haidian District Beijing 100853 China
| | - Li Qiu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Department of Ultrasound West China Hospital Sichuan University Chengdu 610065 China
- Department of Chemistry and Biochemistry Freie Universität Berlin Takustrasse 3 Berlin 14195 Germany
| |
Collapse
|
13
|
Lu C, Liu Y, Wen Q, Liu Y, Wang Y, Rao H, Shan Z, Zhang W, Wang X. Ratiometric fluorescence assay for L-Cysteine based on Fe-doped carbon dot nanozymes. NANOTECHNOLOGY 2020; 31:445703. [PMID: 32659751 DOI: 10.1088/1361-6528/aba578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a ratiometric fluorescence method based on nanozyme was fabricated to determine L-Cysteine. Taking silkworm feces as a carbon source, together with Fe3+, Fe-doped carbon dots (Fe-CDs) were synthesized through a hydrothermal method. Fe-CDs were able to oxidize the enzyme substrate o-phenylenediamine (OPD) to produce oxidized OPD (Ox-OPD) when H2O2 coexisted with them. Based on the fluorescence property of Fe-CDs and Ox-OPD, a dual-emission system was built. Since L-Cysteine contains reductive thiols that can inhibit the production of Ox-OPD, the addition of L-Cysteine caused a decrease in the fluorescence intensity of Ox-OPD. The results showed that the ratio of fluorescence intensities at 450 and 560 nm (I450/I560) varied linearly with the concentration of L-Cysteine in the range of 0.25-90 μM and the limit of detection is as low as 0.047 μM. Furthermore, using this ratiometric fluorescence system to determine L-Cysteine in serum and tap-water samples, average recoveries were evaluated to reach 98.75%-103.27% with the relative standard deviation of no more than 4.5%. Based on the fluorescence property and nanozyme-like activity, this work provides an inspiration to open a new horizon in using natural carbon source to synthesize CDs and for the application of CDs as a nanozyme.
Collapse
Affiliation(s)
- Changfang Lu
- College of Science, Sichuan Agricultural University, Chengdu 611130, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yang H, He Q, Chen Y, Shen D, Xiao H, Eremin SA, Cui X, Zhao S. Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone. Mikrochim Acta 2020; 187:592. [DOI: 10.1007/s00604-020-04528-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/21/2020] [Indexed: 11/25/2022]
|
15
|
Hasan A, Nanakali NMQ, Salihi A, Rasti B, Sharifi M, Attar F, Derakhshankhah H, Mustafa IA, Abdulqadir SZ, Falahati M. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta 2020; 215:120939. [PMID: 32312429 DOI: 10.1016/j.talanta.2020.120939] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023]
Abstract
Mercury (Hg) is known as a poisonous heavy metal which stimulates a wide range of adverse effects on the human health. Therefore, development of some feasible, practical and highly sensitive platforms would be desirable in determination of Hg2+ level as low as nmol L-1 or pmol L-1. Different approaches such as ICP-MS, AAS/AES, and nanomaterial-based nanobiosensors have been manipulated for determination of Hg2+ level. However, these approaches suffer from expensive instruments and complicated sample preparation. Recently, nanozymes have been assembled to address some disadvantages of conventional methods in the detection of Hg2+. Along with the outstanding progress in nanotechnology and computational approaches, pronounced improvement has been attained in the field of nanozymes, recently. To accentuate these progresses, this review presents an overview on the different reports of Hg2+-induced toxicity on the different tissues followed by various conventional approaches validated for the determination of Hg2+ level. Afterwards, different types of nanozymes like AuNPs, PtNPs for quantitative detection of Hg2+ were surveyed. Finally, the current challenges and the future directions were explored to alleviate the limitation of nanozyme-based platforms with potential engineering in detection of heavy metals, namely Hg2+. The current overview can provide outstanding information to develop nano-based platforms for improvement of LOD and LOQ of analytical methods in sensitive detection of Hg2+ and other heavy metals.
Collapse
Affiliation(s)
- Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Biology, College of Science, Cihan University-Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry and Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Inaam Ahmad Mustafa
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Shang Ziyad Abdulqadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
16
|
Zhang X, Han G, Zhang R, Huang Z, Shen H, Su P, Song J, Yang Y. Co2V2O7 Particles with Intrinsic Multienzyme Mimetic Activities as an Effective Bioplatform for Ultrasensitive Fluorometric and Colorimetric Biosensing. ACS APPLIED BIO MATERIALS 2020; 3:1469-1480. [DOI: 10.1021/acsabm.9b01107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaotong Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Gaojie Han
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruiqi Zhang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ze Huang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Hao Shen
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ping Su
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Jiayi Song
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Yi Yang
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
17
|
Ourri B, Vial L. Lost in (Clinical) Translation: Recent Advances in Heparin Neutralization and Monitoring. ACS Chem Biol 2019; 14:2512-2526. [PMID: 31682398 DOI: 10.1021/acschembio.9b00772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heparin family, which includes unfractionated heparin, low-molecular heparin, and fondaparinux, is a class of drugs clinically used as intravenous blood thinners. To date, issues related to both the reversal of anticoagulation and the blood level determination of the anticoagulant at the point-of-care remain: while the only U.S. Food and Drug Administration (FDA) approved antidote for heparin displays serious efficacy and safety drawbacks, the current assays for heparin monitoring are indirect measurements subject to their own limitations and variations. Herein, we provide an update on the numerous recent chemical approaches to tackle these issues, from which it is clear that some new antidotes and sensors for heparin certainly have the potential to exceed current clinical standards. This review aims to review a field that requires close collaborations between physicians, biologists, and chemists in order to foster advances toward clinical translation.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Laurent Vial
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
18
|
Li X, Huang Q, Li W, Zhang J, Fu Y. N-Acety-L-Cysteine-Stabilized Pt Nanozyme for Colorimetric Assay of Heparin. JOURNAL OF ANALYSIS AND TESTING 2019. [DOI: 10.1007/s41664-019-00108-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhang X, Li G, Wu D, Li X, Hu N, Chen J, Chen G, Wu Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens Bioelectron 2019; 137:178-198. [DOI: 10.1016/j.bios.2019.04.061] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/20/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
|