1
|
Huang R, Liu Z, Pan Y, Ma Z, Wang H, Wan B, Li J, Chang J. Mechanistic insight into the neurodevelopmental toxicity of the novel pesticide pyrifluquinazon (PFQ) and its major metabolite in early-life stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125469. [PMID: 39643230 DOI: 10.1016/j.envpol.2024.125469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Pyrifluquinazon (PFQ), a novel insecticide containing a heptafluoroisopropyl moiety, has seen increasing use. However, limited research has been conducted on the toxicological effects and mechanisms of PFQ in aquatic organisms. To investigate the toxicity and underlying mechanisms of PFQ and its primary metabolite dPFQ in aquatic organisms, morphological, behavioral, hormonal, multi-omics analyses, and molecular docking studies were conducted on zebrafish larvae after exposure. The results showed that both PFQ and dPFQ induced developmental abnormalities, behavioral impairment, hormonal disruptions, and alterations in neurologically related metabolites and gene expression in early-stage zebrafish. Notably, delayed retinal vascular development was observed, which is also likely linked to the neurodevelopmental toxicity. Subsequently, identification and relative quantification of PFQ metabolites suggested that its toxicity might be primarily attributed to dPFQ. Finally, an Adverse Outcome Pathway (AOP) was proposed, initiating with the binding of dPFQ to the TRPV4 protein and ultimately leading to neurodevelopmental toxicity. This study delineated the neurodevelopmental toxicity of PFQ and its toxicological mechanisms in zebrafish, emphasizing the hazards posed by pesticide metabolites to non-target organisms and highlighting inherent limitations of extrapolating in vitro toxicity experiments.
Collapse
Affiliation(s)
- Rui Huang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zijun Liu
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Yunrui Pan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Zheng Ma
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Huili Wang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Bin Wan
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing, 100049, China
| | - Jianzhong Li
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China
| | - Jing Chang
- Laboratory for Chemical Environmental Risk Assessment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing, 100085, China.
| |
Collapse
|
2
|
Zhang JL, Fan DG, Yin W, Hu B. CM082 suppresses hypoxia-induced retinal neovascularization in larval zebrafish. Front Pharmacol 2024; 15:1336249. [PMID: 39135806 PMCID: PMC11317304 DOI: 10.3389/fphar.2024.1336249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2023] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Retinal neovascularization is a common feature of several ocular neovascular diseases, which are the leading cause of blindness in the world. Current treatments are administered through invasive intravitreal injections, leading to poor patient compliance, serious ocular complications and heavy economic burdens. Thus, an alternative less or non-invasive therapeutic strategy is in demand. Here, a non-invasive oral tyrosine kinase inhibitor, CM082, was evaluated in a retinal neovascularization model induced by hypoxia in zebrafish larvae. We found that CM082 effectively suppressed retinal neovascularization, rescued cell loss in the retinal ganglion cell layer, and rescued the visual function deficiency. Our results elucidated that CM082 mediated its therapeutic efficacy primarily through the inhibition of Vegfr2 phosphorylation. The findings demonstrated that CM082 possessed strong antiangiogenic effects and may serve as a potential treatment for angiogenesis in ocular neovascular diseases.
Collapse
Affiliation(s)
- Jun-long Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ding-gang Fan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Wu Yin
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Geriatric Immunology and Nutrition Therapy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Bing Hu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Song N, Tang Y, Wang Y, Guan X, Yu W, Jiang T, Lu L, Gu Y. A SIRT6 Inhibitor, Marine-Derived Pyrrole-Pyridinimidazole Derivative 8a, Suppresses Angiogenesis. Mar Drugs 2023; 21:517. [PMID: 37888452 PMCID: PMC10608785 DOI: 10.3390/md21100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/28/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Angiogenesis refers to the process of growing new blood vessels from pre-existing capillaries or post-capillary veins. This process plays a critical role in promoting tumorigenesis and metastasis. As a result, developing antiangiogenic agents has become an attractive strategy for tumor treatment. Sirtuin6 (SIRT6), a member of nicotinamide adenine (NAD+)-dependent histone deacetylases, regulates various biological processes, including metabolism, oxidative stress, angiogenesis, and DNA damage and repair. Some SIRT6 inhibitors have been identified, but the effects of SIRT6 inhibitors on anti-angiogenesis have not been reported. We have identified a pyrrole-pyridinimidazole derivative 8a as a highly effective inhibitor of SIRT6 and clarified its anti-pancreatic-cancer roles. This study investigated the antiangiogenic roles of 8a. We found that 8a was able to inhibit the migration and tube formation of HUVECs and downregulate the expression of angiogenesis-related proteins, including VEGF, HIF-1α, p-VEGFR2, and N-cadherin, and suppress the activation of AKT and ERK pathways. Additionally, 8a significantly blocked angiogenesis in intersegmental vessels in zebrafish embryos. Notably, in a pancreatic cancer xenograft mouse model, 8a down-regulated the expression of CD31, a marker protein of angiogenesis. These findings suggest that 8a could be a promising antiangiogenic and cancer therapeutic agent.
Collapse
Affiliation(s)
- Nannan Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Yanfei Tang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Yangui Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Xian Guan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
| | - Wengong Yu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Ling Lu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China (T.J.)
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
| | - Yuchao Gu
- Laboratory for Marine Drugs and Bioproducts of Laoshan Laboratory, Qingdao 266237, China
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
4
|
Dai L, Luo J, Feng M, Wang M, Zhang J, Cao X, Yang X, Li J. Nanoplastics exposure induces vascular malformation by interfering with the VEGFA/VEGFR pathway in zebrafish (Danio rerio). CHEMOSPHERE 2023; 312:137360. [PMID: 36427586 DOI: 10.1016/j.chemosphere.2022.137360] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The widespread accumulation and adverse effects of nanoplastics (NPs) are a growing concern for environmental and human health. However, the potential toxicological effects of nanoplastics, especially on vascular development, have not been well studied. In this study, the zebrafish model was utilized to systematically study the developmental toxicity of nanoplastics exposure at different concentrations with morphological, histological, and molecular levels. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations of nanoplastics. Specifically, the morphological deformities, including pericardial oedema and spine curvature, as well as the abnormal body length and the rates of survival and hatching were induced after nanoplastics exposure in zebrafish embryos. In addition, we found that nanoplastics exposure could induce vascular malformation, including the ectopic sprouting of intersegmental vessels (ISVs), malformation of superficial ocular vessels (SOVs), and overgrowth of the common cardinal vein (CCV), as well as the disorganized vasculature of the subintestinal venous plexus (SIVP). Moreover, further study indicated that SU5416, a specific vascular endothelial growth factor receptor (VEGFR) inhibitor, partially rescued the nanoplastics exposure-impaired vasculature, suggesting that the VEGFA/VEGFR pathway might be associated with nanoplastics-induced vascular malformation in zebrafish embryos. Further quantitative polymerase chain reaction assays revealed that the mRNA levels of VEGFA/VEGFR pathway-related genes, including vegfa, nrp1, klf6a, flt1, fih-1, flk1, cldn5a, and rspo3, were altered in different groups, indicating that nanoplastics exposure interferes with the VEGFA/VEGFR pathway, thereby inducing vascular malformation during the early developmental stage in zebrafish embryos. Therefore, our findings illustrated that nanoplastics might induce vascular malformation by regulating VEGFA/VEGFR pathway-related genes at the early developmental stage in zebrafish.
Collapse
Affiliation(s)
- Lu Dai
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Juanjuan Luo
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Meilan Feng
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Maya Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Jiannan Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaoqian Cao
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Xiaojun Yang
- Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, Shantou, China.
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yang G, Wang L, Qin X, Chen X, Liang Y, Jin X, Chen C, Zhang W, Pan W, Li H. Heterogeneities of zebrafish vasculature development studied by a high throughput light-sheet flow imaging system. BIOMEDICAL OPTICS EXPRESS 2022; 13:5344-5357. [PMID: 36425637 PMCID: PMC9664872 DOI: 10.1364/boe.470058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/11/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Zebrafish is one of the ideal model animals to study the structural and functional heterogeneities in development. However, the lack of high throughput 3D imaging techniques has limited studies to only a few samples, despite zebrafish spawning tens of embryos at once. Here, we report a light-sheet flow imaging system (LS-FIS) based on light-sheet illumination and a continuous flow imager. LS-FIS enables whole-larva 3D imaging of tens of samples within half an hour. The high throughput 3D imaging capability of LS-FIS was demonstrated with the developmental study of the zebrafish vasculature from 3 to 9 days post-fertilization. Statistical analysis shows significant variances in trunk vessel development but less in hyaloid vessel development.
Collapse
Affiliation(s)
- Guang Yang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Linbo Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xiaofei Qin
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xiaohu Chen
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yong Liang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xin Jin
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Chong Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215163, China
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Wenjuan Zhang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijun Pan
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Li
- Jiangsu Key Laboratory of Medical Optics,
Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
6
|
Ma C, Wu Z, Wang X, Huang M, Wei X, Wang W, Qu H, Qiaolongbatu X, Lou Y, Jing L, Fan G. A systematic comparison of anti-angiogenesis efficacy and cardiotoxicity of receptor tyrosine kinase inhibitors in zebrafish model. Toxicol Appl Pharmacol 2022; 450:116162. [PMID: 35830948 DOI: 10.1016/j.taap.2022.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Pathological angiogenesis is fundamental to progression of cancerous tumors and blinding eye diseases. Anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) are in broad use for the treatment of these diseases. With more and more TKIs available, it is a challenge to make an optimal choice. It remains unclear whether TKIs demonstrate similar anti-angiogenesis activities in different tissues. Many TKIs have shown varying degrees of toxic effects that should also be considered in clinical use. This study investigates the anti-angiogenic effects of 13 FDA-approved TKIs on the intersegmental vessels (ISVs), subintestinal vessels (SIVs) and retinal vasculature in zebrafish embryos. The results show that vascular endothelial growth factor receptor TKIs (VEGFR-TKIs) exhibit anti-angiogenic abilities similarly on ISVs and SIVs, and their efficacy is consistent with their IC50 values against VEGFR2. In addition, VEGFR-TKIs selectively induces the apoptosis of endothelial cells in immature vessels. Among all TKIs tested, axitinib demonstrates a strong inhibition on retinal neovascularization at a low dose that do not strongly affect ISVs and SIVs, supporting its potential application for retinal diseases. Zebrafish embryos demonstrate cardiotoxicity after VEGFR-TKIs treatment, and ponatinib and sorafenib show a narrow therapeutic window, suggesting that these two drugs may need to be dosed more carefully in patients. We propose that zebrafish is an ideal model for studying in vivo antiangiogenic efficacy and cardiotoxicity of TKIs.
Collapse
Affiliation(s)
- Cui Ma
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Zhenghua Wu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Mengling Huang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Xiaona Wei
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Wei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China
| | - Han Qu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Xijier Qiaolongbatu
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China.
| | - Guorong Fan
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai 200240, PR China; Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
7
|
Mahon N, Slater K, O'Brien J, Alvarez Y, Reynolds A, Kennedy B. Discovery and Development of the Quininib Series of Ocular Drugs. J Ocul Pharmacol Ther 2022; 38:33-42. [PMID: 35089801 DOI: 10.1089/jop.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022] Open
Abstract
The quininib series is a novel collection of small-molecule drugs with antiangiogenic, antivascular permeability, anti-inflammatory, and antiproliferative activity. Quininib was initially identified as a drug hit during a random chemical library screen for determinants of developmental ocular angiogenesis in zebrafish. To enhance drug efficacy, novel quininib analogs were designed by applying medicinal chemistry approaches. The resulting quininib drug series has efficacy in in vitro and ex vivo models of angiogenesis utilizing human cell lines and tissues. In vivo, quininib drugs reduce pathological angiogenesis and retinal vascular permeability in rodent models. Quininib acts as a cysteinyl leukotriene (CysLT) receptor antagonist, revealing new roles of these G-protein-coupled receptors in developmental angiogenesis of the eye and unexpectedly in uveal melanoma (UM). The quininib series highlighted the potential of CysLT receptors as therapeutic targets for retinal vasculopathies (e.g., neovascular age-related macular degeneration, diabetic retinopathy, and diabetic macular edema) and ocular cancers (e.g., UM).
Collapse
Affiliation(s)
- Niamh Mahon
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Kayleigh Slater
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Justine O'Brien
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Alison Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland.,UCD School of Veterinary Medicine, Veterinary Sciences Center, University College Dublin, Dublin, Ireland
| | - Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Jakimiuk E, Radwińska J, Woźny M, Pomianowski A, Brzuzan P, Wojtacha P, Obremski K, Zielonka Ł. The Influence of Zearalenone on Selected Hemostatic Parameters in Sexually Immature Gilts. Toxins (Basel) 2021; 13:625. [PMID: 34564628 PMCID: PMC8473075 DOI: 10.3390/toxins13090625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/18/2022] Open
Abstract
Vascular toxicity induced by xenobiotics is associated with dysfunctions or damage to endothelial cells, changes in vascular permeability or dysregulation of the vascular redox state. The aim of this study was to determine whether per os administration of zearalenone (ZEN) influences selected hemostatic parameters in prepubertal gilts. This study was performed on female gilts divided into a control group which received placebo and an experimental group which received ZEN at a dose of 5.0 µg·kg-1 b.w. × day-1. On days 14, 28 and 42, blood samples were collected from the animals for analyses of hematological, coagulation and fibrinolysis parameters, nitric oxide, von Willebrand factor antigen content and catalase activity. The results demonstrated that the treatment of gilts with ZEN at a dose below no observable adverse effect level did not affect the primary hemostasis and the blood coagulation cascade. However, ZEN could have temporarily affected the selected indicators of endothelial cell function (increase of von Willebrand factor, decrease of nitric oxide levels) and the oxidative status plasma (decrease of catalase activity) of the exposed gilts. In summary, these results suggest that the adaptive response to ZEN-exposure can induce a transient imbalance in the vascular system by acting on vascular endothelial cells.
Collapse
Affiliation(s)
- Ewa Jakimiuk
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| | - Justyna Radwińska
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland; (J.R.); (A.P.)
| | - Maciej Woźny
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709 Olsztyn, Poland;
| | - Andrzej Pomianowski
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 14, 10-718 Olsztyn, Poland; (J.R.); (A.P.)
| | - Paweł Brzuzan
- Department of Environmental Biotechnology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna 45G, 10-709 Olsztyn, Poland;
| | - Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszynski 1, 10-726 Olsztyn, Poland;
| | - Kazimierz Obremski
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13/29, 10-718 Olsztyn, Poland; (K.O.); (Ł.Z.)
| |
Collapse
|
9
|
Ferre-Fernández JJ, Sorokina EA, Thompson S, Collery RF, Nordquist E, Lincoln J, Semina EV. Disruption of foxc1 genes in zebrafish results in dosage-dependent phenotypes overlapping Axenfeld-Rieger syndrome. Hum Mol Genet 2021; 29:2723-2735. [PMID: 32720677 DOI: 10.1093/hmg/ddaa163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The Forkhead Box C1 (FOXC1) gene encodes a forkhead/winged helix transcription factor involved in embryonic development. Mutations in this gene cause dysgenesis of the anterior segment of the eye, most commonly Axenfeld-Rieger syndrome (ARS), often with other systemic features. The developmental mechanisms and pathways regulated by FOXC1 remain largely unknown. There are two conserved orthologs of FOXC1 in zebrafish, foxc1a and foxc1b. To further examine the role of FOXC1 in vertebrates, we generated foxc1a and foxc1b single knockout zebrafish lines and bred them to obtain various allelic combinations. Three genotypes demonstrated visible phenotypes: foxc1a-/- single homozygous and foxc1-/- double knockout homozygous embryos presented with similar characteristics comprised of severe global vascular defects and early lethality, as well as microphthalmia, periocular edema and absence of the anterior chamber of the eye; additionally, fish with heterozygous loss of foxc1a combined with homozygosity for foxc1b (foxc1a+/-;foxc1b-/-) demonstrated craniofacial defects, heart anomalies and scoliosis. All other single and combined genotypes appeared normal. Analysis of foxc1 expression detected a significant increase in foxc1a levels in homozygous and heterozygous mutant eyes, suggesting a mechanism for foxc1a upregulation when its function is compromised; interestingly, the expression of another ARS-associated gene, pitx2, was responsive to the estimated level of wild-type Foxc1a, indicating a possible role for this protein in the regulation of pitx2 expression. Altogether, our results support a conserved role for foxc1 in the formation of many organs, consistent with the features observed in human patients, and highlight the importance of correct FOXC1/foxc1 dosage for vertebrate development.
Collapse
Affiliation(s)
- Jesús-José Ferre-Fernández
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena A Sorokina
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Samuel Thompson
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Ross F Collery
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Emily Nordquist
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Joy Lincoln
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.,Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Elena V Semina
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin and Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.,Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
10
|
Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14080716. [PMID: 34451814 PMCID: PMC8400593 DOI: 10.3390/ph14080716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.
Collapse
Affiliation(s)
| | - Yan Luo
- Correspondence: ; Tel.: +86-020-87335931
| |
Collapse
|
11
|
Dhakal S, Rotem-Bamberger S, Sejd JR, Sebbagh M, Ronin N, Frey RA, Beitsch M, Batty M, Taler K, Blackerby JF, Inbal A, Stenkamp DL. Selective Requirements for Vascular Endothelial Cells and Circulating Factors in the Regulation of Retinal Neurogenesis. Front Cell Dev Biol 2021; 9:628737. [PMID: 33898420 PMCID: PMC8060465 DOI: 10.3389/fcell.2021.628737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2020] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Development of the vertebrate eye requires signaling interactions between neural and non-neural tissues. Interactions between components of the vascular system and the developing neural retina have been difficult to decipher, however, due to the challenges of untangling these interactions from the roles of the vasculature in gas exchange. Here we use the embryonic zebrafish, which is not yet reliant upon hemoglobin-mediated oxygen transport, together with genetic strategies for (1) temporally-selective depletion of vascular endothelial cells, (2) elimination of blood flow through the circulation, and (3) elimination of cells of the erythroid lineage, including erythrocytes. The retinal phenotypes in these genetic systems were not identical, with endothelial cell-depleted retinas displaying laminar disorganization, cell death, reduced proliferation, and reduced cell differentiation. In contrast, the lack of blood flow resulted in a milder retinal phenotype showing reduced proliferation and reduced cell differentiation, indicating that an endothelial cell-derived factor(s) is/are required for laminar organization and cell survival. The lack of erythrocytes did not result in an obvious retinal phenotype, confirming that defects in retinal development that result from vascular manipulations are not due to poor gas exchange. These findings underscore the importance of the cardiovascular system supporting and controlling retinal development in ways other than supplying oxygen. In addition, these findings identify a key developmental window for these interactions and point to distinct functions for vascular endothelial cells vs. circulating factors.
Collapse
Affiliation(s)
- Susov Dhakal
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Shahar Rotem-Bamberger
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Josilyn R Sejd
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Meyrav Sebbagh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Nathan Ronin
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Mya Beitsch
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Megan Batty
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States.,Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Kineret Taler
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Jennifer F Blackerby
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States.,Department of Biology, Gonzaga University, Spokane, WA, United States
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
12
|
Postlethwait JH, Massaquoi MS, Farnsworth DR, Yan YL, Guillemin K, Miller AC. The SARS-CoV-2 receptor and other key components of the Renin-Angiotensin-Aldosterone System related to COVID-19 are expressed in enterocytes in larval zebrafish. Biol Open 2021; 10:bio058172. [PMID: 33757938 PMCID: PMC8015242 DOI: 10.1242/bio.058172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/08/2023] Open
Abstract
People with underlying conditions, including hypertension, obesity, and diabetes, are especially susceptible to negative outcomes after infection with coronavirus SARS-CoV-2, which causes COVID-19. Hypertension and respiratory inflammation are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from rapidly dropping blood pressure via Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II, counteracting its chronic effects, and serves as the SARS-CoV-2 receptor. Ace, the coronavirus, and COVID-19 comorbidities all regulate Ace2, but we do not yet understand how. To exploit zebrafish (Danio rerio) to help understand the relationship of the RAAS to COVID-19, we must identify zebrafish orthologs and co-orthologs of human RAAS genes and understand their expression patterns. To achieve these goals, we conducted genomic and phylogenetic analyses and investigated single cell transcriptomes. Results showed that most human RAAS genes have one or more zebrafish orthologs or co-orthologs. Results identified a specific type of enterocyte as the specific site of expression of zebrafish orthologs of key RAAS components, including Ace, Ace2, Slc6a19 (SARS-CoV-2 co-receptor), and the Angiotensin-related peptide cleaving enzymes Anpep (receptor for the common cold coronavirus HCoV-229E), and Dpp4 (receptor for the Middle East Respiratory Syndrome virus, MERS-CoV). Results identified specific vascular cell subtypes expressing Ang II receptors, apelin, and apelin receptor genes. These results identify genes and cell types to exploit zebrafish as a disease model for understanding mechanisms of COVID-19.
Collapse
Affiliation(s)
| | | | | | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
13
|
Cassar S, Dunn C, Ramos MF. Zebrafish as an Animal Model for Ocular Toxicity Testing: A Review of Ocular Anatomy and Functional Assays. Toxicol Pathol 2020; 49:438-454. [PMID: 33063651 DOI: 10.1177/0192623320964748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Xenobiotics make their way into organisms from diverse sources including diet, medication, and pollution. Our understanding of ocular toxicities from xenobiotics in humans, livestock, and wildlife is growing thanks to laboratory animal models. Anatomy and physiology are conserved among vertebrate eyes, and studies with common mammalian preclinical species (rodent, dog) can predict human ocular toxicity. However, since the eye is susceptible to toxicities that may not involve a histological correlate, and these species rely heavily on smell and hearing to navigate their world, discovering visual deficits can be challenging with traditional animal models. Alternative models capable of identifying functional impacts on vision and requiring minimal amounts of chemical are valuable assets to toxicology. Human and zebrafish eyes are anatomically and functionally similar, and it has been reported that several common human ocular toxicants cause comparable toxicity in zebrafish. Vision develops rapidly in zebrafish; the tiny larvae rely on visual cues as early as 4 days, and behavioral responses to those cues can be monitored in high-throughput fashion. This article describes the comparative anatomy of the zebrafish eye, the notable differences from the mammalian eye, and presents practical applications of this underutilized model for assessment of ocular toxicity.
Collapse
Affiliation(s)
- Steven Cassar
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | - Christina Dunn
- Preclinical Safety, 419726AbbVie, Inc, North Chicago, IL, USA
| | | |
Collapse
|
14
|
Postlethwait JH, Farnsworth DR, Miller AC. An intestinal cell type in zebrafish is the nexus for the SARS-CoV-2 receptor and the Renin-Angiotensin-Aldosterone System that contributes to COVID-19 comorbidities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32908984 DOI: 10.1101/2020.09.01.278366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
People with underlying conditions, including hypertension, obesity, and diabetes, are especially susceptible to negative outcomes after infection with the coronavirus SARS-CoV-2. These COVID-19 comorbidities are exacerbated by the Renin-Angiotensin-Aldosterone System (RAAS), which normally protects from rapidly dropping blood pressure or dehydration via the peptide Angiotensin II (Ang II) produced by the enzyme Ace. The Ace paralog Ace2 degrades Ang II, thus counteracting its chronic effects. Ace2 is also the SARS-CoV-2 receptor. Ace , the coronavirus, and COVID-19 comorbidities all regulate Ace2 , but we don't yet understand how. To exploit zebrafish ( Danio rerio ) as a disease model to understand mechanisms regulating the RAAS and its relationship to COVID-19 comorbidities, we must first identify zebrafish orthologs and co-orthologs of human RAAS genes, and second, understand where and when these genes are expressed in specific cells in zebrafish development. To achieve these goals, we conducted genomic analyses and investigated single cell transcriptomes. Results showed that most human RAAS genes have an ortholog in zebrafish and some have two or more co-orthologs. Results further identified a specific intestinal cell type in zebrafish larvae as the site of expression for key RAAS components, including Ace, Ace2, the coronavirus co-receptor Slc6a19, and the Angiotensin-related peptide cleaving enzymes Anpep and Enpep. Results also identified specific vascular cell subtypes as expressing Ang II receptors, apelin , and apelin receptor genes. These results identify specific genes and cell types to exploit zebrafish as a disease model for understanding the mechanisms leading to COVID-19 comorbidities. SUMMARY STATEMENT Genomic analyses identify zebrafish orthologs of the Renin-Angiotensin-Aldosterone System that contribute to COVID-19 comorbidities and single-cell transcriptomics show that they act in a specialized intestinal cell type.
Collapse
|
15
|
Covello G, Rossello FJ, Filosi M, Gajardo F, Duchemin A, Tremonti BF, Eichenlaub M, Polo JM, Powell D, Ngai J, Allende ML, Domenici E, Ramialison M, Poggi L. Transcriptome analysis of the zebrafish atoh7-/- Mutant, lakritz, highlights Atoh7-dependent genetic networks with potential implications for human eye diseases. FASEB Bioadv 2020; 2:434-448. [PMID: 32676583 PMCID: PMC7354691 DOI: 10.1096/fba.2020-00030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2020] [Revised: 04/02/2020] [Accepted: 04/28/2020] [Indexed: 12/21/2022] Open
Abstract
Expression of the bHLH transcription protein Atoh7 is a crucial factor conferring competence to retinal progenitor cells for the development of retinal ganglion cells. Several studies have emerged establishing ATOH7 as a retinal disease gene. Remarkably, such studies uncovered ATOH7 variants associated with global eye defects including optic nerve hypoplasia, microphthalmia, retinal vascular disorders, and glaucoma. The complex genetic networks and cellular decisions arising downstream of atoh7 expression, and how their dysregulation cause development of such disease traits remains unknown. To begin to understand such Atoh7-dependent events in vivo, we performed transcriptome analysis of wild-type and atoh7 mutant (lakritz) zebrafish embryos at the onset of retinal ganglion cell differentiation. We investigated in silico interplays of atoh7 and other disease-related genes and pathways. By network reconstruction analysis of differentially expressed genes, we identified gene clusters enriched in retinal development, cell cycle, chromatin remodeling, stress response, and Wnt pathways. By weighted gene coexpression network, we identified coexpression modules affected by the mutation and enriched in retina development genes tightly connected to atoh7. We established the groundwork whereby Atoh7-linked cellular and molecular processes can be investigated in the dynamic multi-tissue environment of the developing normal and diseased vertebrate eye.
Collapse
Affiliation(s)
- Giuseppina Covello
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Present address:
Department of BiologyUniversity of PadovaPadovaItaly
| | - Fernando J. Rossello
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- Present address:
University of Melbourne Centre for Cancer ResearchUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Felipe Gajardo
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | | | - Beatrice F. Tremonti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michael Eichenlaub
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Jose M. Polo
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
- BDIMonash University Clayton VICClaytonAustralia
| | - David Powell
- Monash Bioinformatics PlatformMonash University Clayton VICClaytonAustralia
| | - John Ngai
- Department of Molecular and Cell Biology & Helen Wills Neuroscience InstituteUniversity of CaliforniaBerkeleyCAUSA
| | - Miguel L. Allende
- Center for Genome RegulationFacultad de Ciencias, SantiagoUniversidad de ChileSantiagoChile
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Fondazione The Microsoft Research ‐ University of Trento Centre for Computational and Systems BiologyTrentoItaly
| | - Mirana Ramialison
- Australian Regenerative Medicine InstituteMonash University Clayton VICClaytonAustralia
| | - Lucia Poggi
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
- Centre for Organismal StudyHeidelberg UniversityHeidelbergGermany
- Department of PhysiologyDevelopment and NeuroscienceUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
16
|
Cendoya X, Quevedo C, Ipiñazar M, Planes FJ. Computational approach for collection and prediction of molecular initiating events in developmental toxicity. Reprod Toxicol 2020; 94:55-64. [PMID: 32344110 DOI: 10.1016/j.reprotox.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Developmental toxicity is defined as the occurrence of adverse effects on the developing organism as a result from exposure to a toxic agent. These alterations can have long-term acute effects. Current in vitro models present important limitations and the evaluation of toxicity is not entirely objective. In silico methods have also shown limited success, in part due to complex and varied mechanisms of action that mediate developmental toxicity, which are sometimes poorly understood. In this article, we compiled a dataset of compounds with developmental toxicity categories and annotated mechanisms of action for both toxic and non-toxic compounds (DVTOX). With it, we selected a panel of protein targets that might be part of putative Molecular Initiating Events (MIEs) of Adverse Outcome Pathways of developmental toxicity. The validity of this list of candidate MIEs was studied through the evaluation of new drug-target relationships that include such proteins, but were not part of the original database. Finally, an orthology analysis of this protein panel was conducted to select an appropriate animal model to assess developmental toxicity. We tested our approach using the zebrafish embryo toxicity test, finding positive results.
Collapse
Affiliation(s)
- Xabier Cendoya
- TECNUN, University of Navarra, San Sebastian, 20018, Spain
| | | | | | | |
Collapse
|
17
|
Karjosukarso DW, Ali Z, Peters TA, Zhang JQC, Hoogendoorn ADM, Garanto A, van Wijk E, Jensen LD, Collin RWJ. Modeling ZNF408-Associated FEVR in Zebrafish Results in Abnormal Retinal Vasculature. Invest Ophthalmol Vis Sci 2020; 61:39. [PMID: 32097476 PMCID: PMC7329629 DOI: 10.1167/iovs.61.2.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) is an inherited retinal disease in which the retinal vasculature is affected. Patients with FEVR typically lack or have abnormal vasculature in the peripheral retina, the outcome of which can range from mild visual impairment to complete blindness. A missense mutation (p.His455Tyr) in ZNF408 was identified in an autosomal dominant FEVR family. Little, however, is known about the molecular role of ZNF408 and how its defect leads to the clinical features of FEVR. Methods Using CRISPR/Cas9 technology, two homozygous mutant zebrafish models with truncated znf408 were generated, as well as one heterozygous and one homozygous missense znf408 model in which the human p.His455Tyr mutation is mimicked. Results Intriguingly, all three znf408-mutant zebrafish strains demonstrated progressive retinal vascular pathology, initially characterized by a deficient hyaloid vessel development at 5 days postfertilization (dpf) leading to vascular insufficiency in the retina. The generation of stable mutant lines allowed long-term follow up studies, which showed ectopic retinal vascular hyper-sprouting at 90 dpf and extensive vascular leakage at 180 dpf. Conclusions Together, our data demonstrate an important role for znf408 in the development and maintenance of the vascular system within the retina.
Collapse
|
18
|
Haindl R, Deloria AJ, Sturtzel C, Sattmann H, Rohringer W, Fischer B, Andreana M, Unterhuber A, Schwerte T, Distel M, Drexler W, Leitgeb R, Liu M. Functional optical coherence tomography and photoacoustic microscopy imaging for zebrafish larvae. BIOMEDICAL OPTICS EXPRESS 2020; 11:2137-2151. [PMID: 32341872 PMCID: PMC7173920 DOI: 10.1364/boe.390410] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 05/06/2023]
Abstract
We present a dual modality functional optical coherence tomography and photoacoustic microscopy (OCT-PAM) system. The photoacoustic modality employs an akinetic optical sensor with a large imaging window. This imaging window enables direct reflection mode operation, and a seamless integration of optical coherence tomography (OCT) as a second imaging modality. Functional extensions to the OCT-PAM system include Doppler OCT (DOCT) and spectroscopic PAM (sPAM). This functional and non-invasive imaging system is applied to image zebrafish larvae, demonstrating its capability to extract both morphological and hemodynamic parameters in vivo in small animals, which are essential and critical in preclinical imaging for physiological, pathophysiological and drug response studies.
Collapse
Affiliation(s)
- Richard Haindl
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Abigail J. Deloria
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Caterina Sturtzel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Harald Sattmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | | | - Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Martin Distel
- Innovative Cancer Models, St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Margiotta-Casaluci L, Owen SF, Rand-Weaver M, Winter MJ. Testing the Translational Power of the Zebrafish: An Interspecies Analysis of Responses to Cardiovascular Drugs. Front Pharmacol 2019; 10:893. [PMID: 31474857 PMCID: PMC6707810 DOI: 10.3389/fphar.2019.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
The zebrafish is rapidly emerging as a promising alternative in vivo model for the detection of drug-induced cardiovascular effects. Despite its increasing popularity, the ability of this model to inform the drug development process is often limited by the uncertainties around the quantitative relevance of zebrafish responses compared with nonclinical mammalian species and ultimately humans. In this test of concept study, we provide a comparative quantitative analysis of the in vivo cardiovascular responses of zebrafish, rat, dog, and human to three model compounds (propranolol, losartan, and captopril), which act as modulators of two key systems (beta-adrenergic and renin–angiotensin systems) involved in the regulation of cardiovascular functions. We used in vivo imaging techniques to generate novel experimental data of drug-mediated cardiovascular effects in zebrafish larvae. These data were combined with a database of interspecies mammalian responses (i.e., heart rate, blood flow, vessel diameter, and stroke volume) extracted from the literature to perform a meta-analysis of effect size and direction across multiple species. In spite of the high heterogeneity of study design parameters, our analysis highlighted that zebrafish and human responses were largely comparable in >80% of drug/endpoint combinations. However, it also revealed a high intraspecies variability, which, in some cases, prevented a conclusive interpretation of the drug-induced effect. Despite the shortcomings of our study, the meta-analysis approach, combined with a suitable data visualization strategy, enabled us to observe patterns of response that would likely remain undetected with more traditional methods of qualitative comparative analysis. We propose that expanding this approach to larger datasets encompassing multiple drugs and modes of action would enable a rigorous and systematic assessment of the applicability domain of the zebrafish from both a mechanistic and phenotypic standpoint. This will increase the confidence in its application for the early detection of adverse drug reactions in any major organ system.
Collapse
Affiliation(s)
| | - Stewart F Owen
- Global Safety, Health & Environment, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Mariann Rand-Weaver
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Matthew J Winter
- School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Ohnesorge N, Sasore T, Hillary D, Alvarez Y, Carey M, Kennedy BN. Orthogonal Drug Pooling Enhances Phenotype-Based Discovery of Ocular Antiangiogenic Drugs in Zebrafish Larvae. Front Pharmacol 2019; 10:508. [PMID: 31178719 PMCID: PMC6544088 DOI: 10.3389/fphar.2019.00508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Unbiased screening of large randomized chemical libraries in vivo is a powerful tool to find new drugs and targets. However, forward chemical screens in zebrafish can be time consuming and usually >99% of test compounds have no significant effect on the desired phenotype. Here, we sought to find bioactive drugs more efficiently and to comply with the 3R principles of replacement, reduction, and refinement of animals in research. We investigated if pooling of drugs to simultaneously test 8–10 compounds in zebrafish larvae can increase the screening efficiency of an established assay that identifies drugs inhibiting developmental angiogenesis in the eye. In a phenotype-based screen, we tested 1,760 small molecule compounds from the ChemBridge DIVERSet™ chemical library for their ability to inhibit the formation of distinct primary hyaloid vessels in the eye. Applying orthogonal pooling of the chemical library, we treated zebrafish embryos from 3 to 5 days post fertilization with pools of 8 or 10 compounds at 10 μM each. This reduced the number of tests from 1,760 to 396. In 63% of cases, treatment showed sub-threshold effects of <40% reduction of primary hyaloid vessels. From 18 pool hits, we identified eight compounds that reduce hyaloid vessels in the larval zebrafish eye by at least 40%. Compound 4-[4-(1H-benzimidazol-2-yl)phenoxy]aniline ranked as the most promising candidate with reproducible and dose-dependent effects. To our knowledge, this is the first report of a self-deconvoluting matrix strategy applied to drug screening in zebrafish. We conclude that the orthogonal drug pooling strategy is a cost-effective, time-saving, and unbiased approach to discover novel inhibitors of developmental angiogenesis in the eye. Ultimately, this approach may identify new drugs or targets to mitigate disease caused by pathological angiogenesis in the eye, e.g., diabetic retinopathy or age-related macular degeneration, wherein blood vessel growth and leaky vessels lead to vision impairment or clinical blindness.
Collapse
Affiliation(s)
- Nils Ohnesorge
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Temitope Sasore
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Daniel Hillary
- School of Mathematics & Statistics, University College Dublin, Dublin, Ireland
| | - Yolanda Alvarez
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Michelle Carey
- School of Mathematics & Statistics, University College Dublin, Dublin, Ireland
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Sciences, and UCD Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Seda M, Geerlings M, Lim P, Jeyabalan-Srikaran J, Cichon AC, Scambler PJ, Beales PL, Hernandez-Hernandez V, Stoker AW, Jenkins D. An FDA-Approved Drug Screen for Compounds Influencing Craniofacial Skeletal Development and Craniosynostosis. Mol Syndromol 2019; 10:98-114. [PMID: 30976283 PMCID: PMC6422125 DOI: 10.1159/000491567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/01/2023] Open
Abstract
Neural crest stem/progenitor cells (NCSCs) populate a variety of tissues, and their dysregulation is implicated in several human diseases including craniosynostosis and neuroblastoma. We hypothesised that small molecules that inhibit NCSC induction or differentiation may represent potential therapeutically relevant drugs in these disorders. We screened 640 FDA-approved compounds currently in clinical use for other conditions to identify those which disrupt development of NCSC-derived skeletal elements that form the zebrafish jaw. In the primary screen, we used heterozygous transgenic sox10:gfp zebrafish to directly visualise NCSC-derived jaw cartilage. We noted partial toxicity of this transgene in relation to jaw patterning, suggesting that our primary screen was sensitised for NCSC defects, and we confirmed 10 novel, 4 previously reported, and 2 functional analogue drug hits in wild-type embryos. Of these drugs, 9/14 and 7/14, respectively, are known to target pathways implicated in osteoarthritis pathogenesis or to cause reduced bone mineral density/increased fracture risk as side effects in patients treated for other conditions, suggesting that our screen enriched for pathways targeting skeletal tissue homeostasis. We selected one drug that inhibited NCSC induction and one drug that inhibits bone mineralisation for further detailed analyses which reflect our initial hypotheses. These drugs were leflunomide and cyclosporin A, respectively, and their functional analogues, teriflunomide and FK506 (tacrolimus). We identified their critical developmental windows of activity, showing that the severity of defects observed related to the timing, duration, and dose of treatment. While leflunomide has previously been shown to inhibit NCSC induction, we demonstrate additional later roles in cartilage remodelling. Both drugs altered expression of extracellular matrix metalloproteinases. As proof-of-concept, we also tested drug treatment of disease-relevant mammalian cells. While leflunomide treatment inhibited the viability of several human NCSC-derived neuroblastoma cell lines coincident with altered expression of genes involved in ribosome biogenesis and transcription, FK506 enhanced murine calvarial osteoblast differentiation and prevented fusion of the coronal suture in calvarial explants taken from Crouzon syndrome mice.
Collapse
Affiliation(s)
- Marian Seda
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Maartje Geerlings
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | - Peggy Lim
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Ann-Christin Cichon
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Peter J. Scambler
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Philip L. Beales
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| | | | - Andrew W. Stoker
- Developmental Biology and Cancer Programmes, UCL Institute of Child Health, London, UK
| | - Dagan Jenkins
- Genetics and Genomic Medicine, UCL Institute of Child Health, London, UK
| |
Collapse
|
22
|
Lu Y, Boswell W, Boswell M, Klotz B, Kneitz S, Regneri J, Savage M, Mendoza C, Postlethwait J, Warren WC, Schartl M, Walter RB. Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model. Sci Rep 2019; 9:530. [PMID: 30679619 PMCID: PMC6345854 DOI: 10.1038/s41598-018-36656-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2018] [Accepted: 11/22/2018] [Indexed: 12/20/2022] Open
Abstract
Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.
Collapse
Affiliation(s)
- Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Barbara Klotz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Susanne Kneitz
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Janine Regneri
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Cristina Mendoza
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - John Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, USA
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, D-97074, Würzburg, Germany.,Hagler Institute for Advanced Studies and Department of Biology, Texas A&M University, College Station, USA
| | - Ronald B Walter
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
23
|
刘 川, 林 春, 郭 培, 张 昕, 朱 晓. [Exposure to propofol down-regulates myelin basic protein expression in zebrafish embryos: its neurotoxicity on oligodendrocytes and the molecular mechanisms]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1115-1120. [PMID: 30377113 PMCID: PMC6744183 DOI: 10.12122/j.issn.1673-4254.2018.09.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Academic Contribution Register] [Received: 07/09/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the mechanism underlying propofol- induced down-regulation of myelin basic protein (MBP) in zebrafish embryos. METHODS Zebrafish embryos (6-48 h post-fertilization [hpf]) were randomized into 4 equal groups for exposure to dimethyl sulfoxide (DMSO), 20 μg/mL propofol, 30 μg/mL propofol, or no particular treatment (control group). The larvae were collected at 48 or 72 hpf for detecting the mRNA levels of MBP, Olig1, Olig2, and Sox10 using qRT-PCR (n=80). The protein expression of MBP was quantitatively detected using Western blotting (n=80), and the apoptosis of the oligodendrocytes was investigated using TUNEL staining (n=6). RESULTS Exposure to 20 and 30 μg/mL propofol caused significant reductions in the mRNA expressions of Olig1, Olig2, and Sox10 at 48 and 72 hpf (P < 0.05) and also in MBP mRNA and protein levels at 72 hpf (P < 0.05). Exposure to 30 μg/mL propofol induced more obvious reduction in MBP protein expression than 20 μg/mL propofol at 72 hpf (P < 0.05), and the exposures resulted in a significant increase of oligodendrocyte apoptosis at 72 hpf (P < 0.05). CONCLUSIONS Propofol exposure reduces MBP expression at both the mRNA and protein levels in zebrafish embryos by down-regulating the expressions of Olig1, Olig2 and Sox10 mRNA levels and increasing apoptosis of the oligodendrocytes.
Collapse
Affiliation(s)
- 川 刘
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 春水 林
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 培培 郭
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 昕 张
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓勤 朱
- />南方医科大学南方医院麻醉科,广东 广州 510515Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
24
|
Kithcart AP, MacRae CA. Zebrafish assay development for cardiovascular disease mechanism and drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:126-131. [PMID: 30518489 DOI: 10.1016/j.pbiomolbio.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/07/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Calum A MacRae
- Brigham and Women's Hospital, Harvard Medical School, USA.
| |
Collapse
|
25
|
Hocking JC, Famulski JK, Yoon KH, Widen SA, Bernstein CS, Koch S, Weiss O, Agarwala S, Inbal A, Lehmann OJ, Waskiewicz AJ. Morphogenetic defects underlie Superior Coloboma, a newly identified closure disorder of the dorsal eye. PLoS Genet 2018. [PMID: 29522511 PMCID: PMC5862500 DOI: 10.1371/journal.pgen.1007246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
The eye primordium arises as a lateral outgrowth of the forebrain, with a transient fissure on the inferior side of the optic cup providing an entry point for developing blood vessels. Incomplete closure of the inferior ocular fissure results in coloboma, a disease characterized by gaps in the inferior eye and recognized as a significant cause of pediatric blindness. Here, we identify eight patients with defects in tissues of the superior eye, a congenital disorder that we term superior coloboma. The embryonic origin of superior coloboma could not be explained by conventional models of eye development, leading us to reanalyze morphogenesis of the dorsal eye. Our studies revealed the presence of the superior ocular sulcus (SOS), a transient division of the dorsal eye conserved across fish, chick, and mouse. Exome sequencing of superior coloboma patients identified rare variants in a Bone Morphogenetic Protein (Bmp) receptor (BMPR1A) and T-box transcription factor (TBX2). Consistent with this, we find sulcus closure defects in zebrafish lacking Bmp signaling or Tbx2b. In addition, loss of dorsal ocular Bmp is rescued by concomitant suppression of the ventral-specific Hedgehog pathway, arguing that sulcus closure is dependent on dorsal-ventral eye patterning cues. The superior ocular sulcus acts as a conduit for blood vessels, with altered sulcus closure resulting in inappropriate connections between the hyaloid and superficial vascular systems. Together, our findings explain the existence of superior coloboma, a congenital ocular anomaly resulting from aberrant morphogenesis of a developmental structure. Ocular coloboma is a disease characterized by gaps in the lower portion of the eye and can affect the iris, lens, or retina, and cause loss of vision. Coloboma arises from incomplete closure of a transient fissure on the underside of the developing eye. Therefore, our identification of patients with similar tissue defects, but restricted to the superior half of eye, was surprising. Here, we describe an ocular developmental structure, the superior ocular sulcus, as a potential origin for the congenital disorder superior coloboma. Formation and closure of the sulcus are directed by dorsal-ventral eye patterning, and altered patterning interferes with the role of the sulcus as a pathway for blood vessel growth onto the eye.
Collapse
Affiliation(s)
- Jennifer C Hocking
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, Canada.,Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada
| | - Jakub K Famulski
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Department of Biology, University of Kentucky, Lexington, Unites States of America
| | - Kevin H Yoon
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Sonya A Widen
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Cassidy S Bernstein
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Seema Agarwala
- Department of Molecular Biosciences, University of Texas at Austin,Unites States of America.,Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, Unites States of America.,Institute for Neuroscience, University of Texas at Austin, Austin, Unites States of America
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ordan J Lehmann
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Medical Genetics, University of Alberta, Edmonton, Canada.,Department of Ophthalmology, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| | - Andrew J Waskiewicz
- Women & Children's Health Research Institute, University of Alberta, Edmonton, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Neuroscience and Mental Health Research Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
26
|
García-Caballero M, Quesada AR, Medina MA, Marí-Beffa M. Fishing anti(lymph)angiogenic drugs with zebrafish. Drug Discov Today 2017; 23:366-374. [PMID: 29081356 DOI: 10.1016/j.drudis.2017.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2017] [Revised: 10/13/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
Abstract
Zebrafish, an amenable small teleost fish with a complex mammal-like circulatory system, is being increasingly used for drug screening and toxicity studies. It combines the biological complexity of in vivo models with a higher-throughput screening capability compared with other available animal models. Externally growing, transparent embryos, displaying well-defined blood and lymphatic vessels, allow the inexpensive, rapid, and automatable evaluation of drug candidates that are able to inhibit neovascularisation. Here, we briefly review zebrafish as a model for the screening of anti(lymph)angiogenic drugs, with emphasis on the advantages and limitations of the different zebrafish-based in vivo assays.
Collapse
Affiliation(s)
- Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ana R Quesada
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Miguel A Medina
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, and IBIMA (Biomedical Research Institute of Málaga), University of Málaga, Andalucía Tech, Málaga, Spain; Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| | - Manuel Marí-Beffa
- Department of Cellular Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Málaga, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Málaga, Spain.
| |
Collapse
|
27
|
Szabo M, Svensson Akusjärvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS. Cell and small animal models for phenotypic drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1957-1967. [PMID: 28721015 PMCID: PMC5500539 DOI: 10.2147/dddt.s129447] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Abstract
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Collapse
Affiliation(s)
- Mihaly Szabo
- Department of Microbiology Tumor, and Cell Biology
| | | | - Ankur Saxena
- Department of Microbiology Tumor, and Cell Biology
| | - Jianping Liu
- Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | | | | |
Collapse
|
28
|
Tan PL, Garrett ME, Willer JR, Campochiaro PA, Campochiaro B, Zack DJ, Ashley-Koch AE, Katsanis N. Systematic Functional Testing of Rare Variants: Contributions of CFI to Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2017; 58:1570-1576. [PMID: 28282489 PMCID: PMC6022411 DOI: 10.1167/iovs.16-20867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022] Open
Abstract
Purpose Genome-wide association (GWAS) and sequencing studies for AMD have highlighted the importance of coding variants at loci that encode components of the complement pathway. However, assessing the contribution of such alleles to AMD, especially when they are rare, remains coarse, in part because of the persistent challenge in establishing their functional relevance. Others and we have shown previously that rare alleles in complement factor I (CFI) can be tested functionally using a surrogate in vivo assay of retinal vascularization in zebrafish embryos. Here, we have implemented and scaled these tools to assess the overall contribution of rare alleles in CFI to AMD. Methods We performed targeted sequencing of CFI in 731 AMD patients, followed by replication in a second patient cohort of 511 older healthy individuals. Systematic functional testing of all alleles and post-hoc statistical analysis of functional variants was also performed. Results We discovered 20 rare coding nonsynonymous variants, including the previously reported G119R allele. In vivo testing led to the identification of nine variants that alter CFI; six of which are associated with hypoactive complement factor I (FI). Post-hoc analysis in ethnically matched, population controls showed six of these to be present exclusively in cases. Conclusions Taken together, our data argue that multiple rare and ultra-rare alleles in CFI contribute to AMD pathogenesis; they improve the precision of the assessment of the contribution of CFI to AMD; and they offer a rational route to establishing both causality and direction of allele effect for genes associated with this disorder.
Collapse
Affiliation(s)
- Perciliz L Tan
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States 2Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| | - Melanie E Garrett
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States
| | - Jason R Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States
| | - Peter A Campochiaro
- Departments of Ophthalmology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Betsy Campochiaro
- Departments of Ophthalmology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Donald J Zack
- Departments of Ophthalmology, Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, United States 4Center for Stem Cells and Ocular Regenerative Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States 5Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Allison E Ashley-Koch
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States 6Departments of Medicine, Molecular Genetics and Microbiology, Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina, United States
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, United States 2Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, United States
| |
Collapse
|
29
|
Tang X, Gao J, Jia X, Zhao W, Zhang Y, Pan W, He J. Bipotent progenitors as embryonic origin of retinal stem cells. J Cell Biol 2017; 216:1833-1847. [PMID: 28465291 PMCID: PMC5461025 DOI: 10.1083/jcb.201611057] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2016] [Revised: 03/01/2017] [Accepted: 04/03/2017] [Indexed: 01/24/2023] Open
Abstract
In lower vertebrates, retinal stem cells (RSCs) capable of producing all retinal cell types are a resource for retinal tissue growth throughout life. However, the embryonic origin of RSCs remains largely elusive. Using a Zebrabow-based clonal analysis, we characterized the RSC niche in the ciliary marginal zone of zebrafish retina and illustrate that blood vessels associated with RSCs are required for the maintenance of actively proliferating RSCs. Full lineage analysis of RSC progenitors reveals lineage patterns of RSC production. Moreover, in vivo lineage analysis demonstrates that these RSC progenitors are the direct descendants of a set of bipotent progenitors in the medial epithelial layer of developing optic vesicles, suggesting the involvement of the mixed-lineage states in the RSC lineage specification.
Collapse
Affiliation(s)
- Xia Tang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianan Gao
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinling Jia
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wencao Zhao
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Yijie Zhang
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weijun Pan
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200031, China
| | - Jie He
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
30
|
Abstract
Ocular vasculature consists of the central retinal and ciliary vascular systems, which are essential to maintaining visual function. Many researchers have attempted to determine their origins and development; however, the detailed, stepwise process of ocular vasculature formation has not been established. In zebrafish, two angioblast clusters, the rostral and midbrain organizing centers, form almost all of the cranial vasculature, including the ocular vasculature, and these are from where the cerebral arterial and venous angioblast clusters, respectively, differentiate. In this study, we first determined the anatomical architecture of the primary ocular vasculature and then followed its path from the two cerebral angioblast clusters using a time-lapse analysis of living Tg(flk1:EGFP)k7 zebrafish embryos, in which the endothelial cells specifically expressed enhanced green fluorescent protein. We succeeded in capturing images of the primary ocular vasculature formation and were able to determine the origin of each ocular vessel. In zebrafish, the hyaloid and ciliary arterial systems first organized independently, and then anastomosed via the inner optic circle on the surface of the lens by the lateral transfer of the optic vein. Finally, the choroidal vascular plexus formed around the eyeball to complete the primary ocular vasculature formation. To our knowledge, this study is the first to report successful capture of circular integration of the optic artery and vein, lateral transfer of the optic vein to integrate the hyaloidal and superficial ocular vasculatures, and formation of the choroidal vascular plexus. Furthermore, this new morphological information enables us to assess the entire process of the primary ocular vasculature formation, which will be useful for its precise understanding.
Collapse
|
31
|
Wiley DS, Redfield SE, Zon LI. Chemical screening in zebrafish for novel biological and therapeutic discovery. Methods Cell Biol 2016; 138:651-679. [PMID: 28129862 DOI: 10.1016/bs.mcb.2016.10.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/26/2023]
Abstract
Zebrafish chemical screening allows for an in vivo assessment of small molecule modulation of biological processes. Compound toxicities, chemical alterations by metabolism, pharmacokinetic and pharmacodynamic properties, and modulation of cell niches can be studied with this method. Furthermore, zebrafish screening is straightforward and cost effective. Zebrafish provide an invaluable platform for novel therapeutic discovery through chemical screening.
Collapse
Affiliation(s)
- D S Wiley
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - S E Redfield
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| | - L I Zon
- Stem Cell Program and Division of Hematology and Oncology, Childrens' Hospital Boston, Dana-Farber Cancer Institute, Howard Hughes Medical Institute and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
McCollum CW, Conde-Vancells J, Hans C, Vazquez-Chantada M, Kleinstreuer N, Tal T, Knudsen T, Shah SS, Merchant FA, Finnell RH, Gustafsson JÅ, Cabrera R, Bondesson M. Identification of vascular disruptor compounds by analysis in zebrafish embryos and mouse embryonic endothelial cells. Reprod Toxicol 2016; 70:60-69. [PMID: 27838387 DOI: 10.1016/j.reprotox.2016.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/21/2022]
Abstract
To identify vascular disruptor compounds (VDCs), this study utilized an in vivo zebrafish embryo vascular model in conjunction with a mouse endothelial cell model to screen a subset of the U.S. Environmental Protection Agency (EPA) ToxCast Phase I chemical inventory. In zebrafish, 161 compounds were screened and 34 were identified by visual inspection as VDCs, of which 28 were confirmed as VDCs by quantitative image analysis. Testing of the zebrafish VDCs for their capacity to inhibit endothelial tube formation in the murine yolk-sac-derived endothelial cell line C166 identified 22 compounds that both disrupted zebrafish vascular development and murine endothelial in vitro tubulogenesis. Putative molecular targets for the VDCs were predicted using EPA's Toxicological Prioritization Index tool and a VDC signature based on a proposed adverse outcome pathway for developmental vascular toxicity. In conclusion, our screening approach identified 22 novel VDCs, some of which were active at nanomolar concentrations.
Collapse
Affiliation(s)
- Catherine W McCollum
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA
| | - Javier Conde-Vancells
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Charu Hans
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Mercedes Vazquez-Chantada
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | | | | | | | - Shishir S Shah
- Department of Computer Science, University of Houston, Houston, TX 77204, USA
| | - Fatima A Merchant
- Department of Computer Science, University of Houston, Houston, TX 77204, USA; Department of Engineering Technology, University of Houston, Houston, TX 77204, USA
| | - Richard H Finnell
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA; Department of Biosciences and Nutrition, Novum, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Robert Cabrera
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA
| | - Maria Bondesson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX 77204, USA; Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
33
|
Zhao SS, Wang YL, Sun MZ, Lu L, Wang YN, Pfister D, Lee J, Zhao X, Feng XZ, Li L. Drug screening: zebrafish as a tool for studying epileptic-related chemical compounds. Protein Cell 2016; 6:853-7. [PMID: 26404033 PMCID: PMC4624677 DOI: 10.1007/s13238-015-0206-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sha-Sha Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yi-Liao Wang
- Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Ming-Zhu Sun
- Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China
| | - Lu Lu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Ya-Nan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jessica Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Xin Zhao
- Institute of Robotics and Automatic Information Systems, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
34
|
Richardson R, Tracey-White D, Webster A, Moosajee M. The zebrafish eye-a paradigm for investigating human ocular genetics. Eye (Lond) 2016; 31:68-86. [PMID: 27612182 DOI: 10.1038/eye.2016.198] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 01/13/2023] Open
Abstract
Although human epidemiological and genetic studies are essential to elucidate the aetiology of normal and aberrant ocular development, animal models have provided us with an understanding of the pathogenesis of multiple developmental ocular malformations. Zebrafish eye development displays in depth molecular complexity and stringent spatiotemporal regulation that incorporates developmental contributions of the surface ectoderm, neuroectoderm and head mesenchyme, similar to that seen in humans. For this reason, and due to its genetic tractability, external fertilisation, and early optical clarity, the zebrafish has become an invaluable vertebrate system to investigate human ocular development and disease. Recently, zebrafish have been at the leading edge of preclinical therapy development, with their amenability to genetic manipulation facilitating the generation of robust ocular disease models required for large-scale genetic and drug screening programmes. This review presents an overview of human and zebrafish ocular development, genetic methodologies employed for zebrafish mutagenesis, relevant models of ocular disease, and finally therapeutic approaches, which may have translational leads in the future.
Collapse
Affiliation(s)
- R Richardson
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - D Tracey-White
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK
| | - A Webster
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - M Moosajee
- Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.,NIHR Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
35
|
Rezzola S, Paganini G, Semeraro F, Presta M, Tobia C. Zebrafish ( Danio rerio ) embryo as a platform for the identification of novel angiogenesis inhibitors of retinal vascular diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1291-6. [DOI: 10.1016/j.bbadis.2016.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2016] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 12/26/2022]
|
36
|
Planchart A, Mattingly CJ, Allen D, Ceger P, Casey W, Hinton D, Kanungo J, Kullman SW, Tal T, Bondesson M, Burgess SM, Sullivan C, Kim C, Behl M, Padilla S, Reif DM, Tanguay RL, Hamm J. Advancing toxicology research using in vivo high throughput toxicology with small fish models. ALTEX 2016; 33:435-452. [PMID: 27328013 PMCID: PMC5270630 DOI: 10.14573/altex.1601281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Received: 01/31/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022]
Abstract
Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We alsoreview many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Carolyn J. Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Patricia Ceger
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| | - Warren Casey
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - David Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jyotshna Kanungo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Seth W. Kullman
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Tamara Tal
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Maria Bondesson
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | | | - Con Sullivan
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Carol Kim
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME, USA
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Mamta Behl
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - David M. Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - Jon Hamm
- Integrated Laboratory Systems, Inc., Research Triangle Park, NC, USA
| |
Collapse
|
37
|
Abstract
The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines.
Collapse
Affiliation(s)
- Gloria R Garcia
- Oregon State University, Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Corvallis, OR 97331, USA
| | - Pamela D Noyes
- Oregon State University, Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Corvallis, OR 97331, USA
| | - Robert L Tanguay
- Oregon State University, Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Corvallis, OR 97331, USA.
| |
Collapse
|
38
|
Sasagawa S, Nishimura Y, Kon T, Yamanaka Y, Murakami S, Ashikawa Y, Yuge M, Okabe S, Kawaguchi K, Kawase R, Tanaka T. DNA Damage Response Is Involved in the Developmental Toxicity of Mebendazole in Zebrafish Retina. Front Pharmacol 2016; 7:57. [PMID: 27014071 PMCID: PMC4789406 DOI: 10.3389/fphar.2016.00057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 11/13/2022] Open
Abstract
Intestinal helminths cause iron-deficiency anemia in pregnant women, associated with premature delivery, low birth weight, maternal ill health, and maternal death. Although benzimidazole compounds such as mebendazole (MBZ) are highly efficacious against helminths, there are limited data on its use during pregnancy. In this study, we performed in vivo imaging of the retinas of zebrafish larvae exposed to MBZ, and found that exposure to MBZ during 2 and 3 days post-fertilization caused malformation of the retinal layers. To identify the molecular mechanism underlying the developmental toxicity of MBZ, we performed transcriptome analysis of zebrafish eyes. The analysis revealed that the DNA damage response was involved in the developmental toxicity of MBZ. We were also able to demonstrate that inhibition of ATM significantly attenuated the apoptosis induced by MBZ in the zebrafish retina. These results suggest that MBZ causes developmental toxicity in the zebrafish retina at least partly by activating the DNA damage response, including ATM signaling, providing a potential adverse outcome pathway in the developmental toxicity of MBZ in mammals.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| | - Tetsuo Kon
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yukiko Yamanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of MedicineTsu, Japan; Mie University Medical Zebrafish Research CenterTsu, Japan; Department of Systems Pharmacology, Mie University Graduate School of MedicineTsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation InstituteTsu, Japan; Department of Bioinformatics, Mie University Life Science Research CenterTsu, Japan
| |
Collapse
|
39
|
Deal S, Wambaugh J, Judson R, Mosher S, Radio N, Houck K, Padilla S. Development of a quantitative morphological assessment of toxicant-treated zebrafish larvae using brightfield imaging and high-content analysis. J Appl Toxicol 2016; 36:1214-22. [PMID: 26924781 DOI: 10.1002/jat.3290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2015] [Revised: 11/22/2015] [Accepted: 12/15/2015] [Indexed: 11/11/2022]
Abstract
One of the rate-limiting procedures in a developmental zebrafish screen is the morphological assessment of each larva. Most researchers opt for a time-consuming, structured visual assessment by trained human observer(s). The present studies were designed to develop a more objective, accurate and rapid method for screening zebrafish for dysmorphology. Instead of the very detailed human assessment, we have developed the computational malformation index, which combines the use of high-content imaging with a very brief human visual assessment. Each larva was quickly assessed by a human observer (basic visual assessment), killed, fixed and assessed for dysmorphology with the Zebratox V4 BioApplication using the Cellomics® ArrayScan® V(TI) high-content image analysis platform. The basic visual assessment adds in-life parameters, and the high-content analysis assesses each individual larva for various features (total area, width, spine length, head-tail length, length-width ratio, perimeter-area ratio). In developing the computational malformation index, a training set of hundreds of embryos treated with hundreds of chemicals were visually assessed using the basic or detailed method. In the second phase, we assessed both the stability of these high-content measurements and its performance using a test set of zebrafish treated with a dose range of two reference chemicals (trans-retinoic acid or cadmium). We found the measures were stable for at least 1 week and comparison of these automated measures to detailed visual inspection of the larvae showed excellent congruence. Our computational malformation index provides an objective manner for rapid phenotypic brightfield assessment of individual larva in a developmental zebrafish assay. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Samantha Deal
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC, USA.,Division of Pediatrics Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, 6701, Fannin St., Houston, TX, USA
| | - John Wambaugh
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard Judson
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Shad Mosher
- ORISE Fellow, National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Nick Radio
- Thermo Fisher Scientific, Cellular Imaging and Analysis, Pittsburgh, PA, USA
| | - Keith Houck
- National Center for Computational Toxicology, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Stephanie Padilla
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
40
|
Wan Y, Almeida AD, Rulands S, Chalour N, Muresan L, Wu Y, Simons BD, He J, Harris WA. The ciliary marginal zone of the zebrafish retina: clonal and time-lapse analysis of a continuously growing tissue. Development 2016; 143:1099-107. [PMID: 26893352 PMCID: PMC4852496 DOI: 10.1242/dev.133314] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 01/07/2023]
Abstract
Clonal analysis is helping us understand the dynamics of cell replacement in homeostatic adult tissues (Simons and Clevers, 2011). Such an analysis, however, has not yet been achieved for continuously growing adult tissues, but is essential if we wish to understand the architecture of adult organs. The retinas of lower vertebrates grow throughout life from retinal stem cells (RSCs) and retinal progenitor cells (RPCs) at the rim of the retina, called the ciliary marginal zone (CMZ). Here, we show that RSCs reside in a niche at the extreme periphery of the CMZ and divide asymmetrically along a radial (peripheral to central) axis, leaving one daughter in the peripheral RSC niche and the other more central where it becomes an RPC. We also show that RPCs of the CMZ have clonal sizes and compositions that are statistically similar to progenitor cells of the embryonic retina and fit the same stochastic model of proliferation. These results link embryonic and postembryonic cell behaviour, and help to explain the constancy of tissue architecture that has been generated over a lifetime. Summary: A quantitative study of cell proliferation and fate choice in the zebrafish retina - a continuously growing neural tissue - reveals key features of late retinal neurogenesis.
Collapse
Affiliation(s)
- Yinan Wan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147, USA
| | - Alexandra D Almeida
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Steffen Rulands
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Naima Chalour
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Yunmin Wu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Benjamin D Simons
- Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE, UK Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jie He
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
41
|
Reynolds AL, Alvarez Y, Sasore T, Waghorne N, Butler CT, Kilty C, Smith AJ, McVicar C, Wong VHY, Galvin O, Merrigan S, Osman J, Grebnev G, Sjölander A, Stitt AW, Kennedy BN. Phenotype-based Discovery of 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol as a Novel Regulator of Ocular Angiogenesis. J Biol Chem 2016; 291:7242-55. [PMID: 26846851 DOI: 10.1074/jbc.m115.710665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/16/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal angiogenesis is tightly regulated to meet oxygenation and nutritional requirements. In diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, uncontrolled angiogenesis can lead to blindness. Our goal is to better understand the molecular processes controlling retinal angiogenesis and discover novel drugs that inhibit retinal neovascularization. Phenotype-based chemical screens were performed using the ChemBridge Diverset(TM)library and inhibition of hyaloid vessel angiogenesis in Tg(fli1:EGFP) zebrafish. 2-[(E)-2-(Quinolin-2-yl)vinyl]phenol, (quininib) robustly inhibits developmental angiogenesis at 4-10 μmin zebrafish and significantly inhibits angiogenic tubule formation in HMEC-1 cells, angiogenic sprouting in aortic ring explants, and retinal revascularization in oxygen-induced retinopathy mice. Quininib is well tolerated in zebrafish, human cell lines, and murine eyes. Profiling screens of 153 angiogenic and inflammatory targets revealed that quininib does not directly target VEGF receptors but antagonizes cysteinyl leukotriene receptors 1 and 2 (CysLT1-2) at micromolar IC50values. In summary, quininib is a novel anti-angiogenic small-molecule CysLT receptor antagonist. Quininib inhibits angiogenesis in a range of cell and tissue systems, revealing novel physiological roles for CysLT signaling. Quininib has potential as a novel therapeutic agent to treat ocular neovascular pathologies and may complement current anti-VEGF biological agents.
Collapse
Affiliation(s)
- Alison L Reynolds
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yolanda Alvarez
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Temitope Sasore
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nora Waghorne
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Clare T Butler
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Kilty
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Andrew J Smith
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carmel McVicar
- the Centre for Experimental Medicine, Queen's University Belfast, Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Vickie H Y Wong
- the Centre for Experimental Medicine, Queen's University Belfast, Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Orla Galvin
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Stephanie Merrigan
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Janina Osman
- the Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
| | - Gleb Grebnev
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anita Sjölander
- the Division of Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
| | - Alan W Stitt
- the Centre for Experimental Medicine, Queen's University Belfast, Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7BL, United Kingdom, and
| | - Breandán N Kennedy
- From the University College Dublin School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland,
| |
Collapse
|
42
|
|
43
|
Dang M, Fogley R, Zon LI. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:103-24. [PMID: 27165351 DOI: 10.1007/978-3-319-30654-4_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Chemical genetics is the use of small molecules to perturb biological pathways. This technique is a powerful tool for implicating genes and pathways in developmental programs and disease, and simultaneously provides a platform for the discovery of novel therapeutics. The zebrafish is an advantageous model for in vivo high-throughput small molecule screening due to translational appeal, high fecundity, and a unique set of developmental characteristics that support genetic manipulation, chemical treatment, and phenotype detection. Chemical genetic screens in zebrafish can identify hit compounds that target oncogenic processes-including cancer initiation and maintenance, metastasis, and angiogenesis-and may serve as cancer therapies. Notably, by combining drug discovery and animal testing, in vivo screening of small molecules in zebrafish has enabled rapid translation of hit anti-cancer compounds to the clinic, especially through the repurposing of FDA-approved drugs. Future technological advancements in automation and high-powered imaging, as well as the development and characterization of new mutant and transgenic lines, will expand the scope of chemical genetics in zebrafish.
Collapse
Affiliation(s)
- Michelle Dang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.,Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
| | - Rachel Fogley
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA.,Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, 1 Blackfan Circle, Boston, MA, 02115, USA.
| |
Collapse
|
44
|
Jung SH, Kim YS, Lee YR, Kim JS. High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy. Br J Pharmacol 2015; 173:15-26. [PMID: 26276677 DOI: 10.1111/bph.13279] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Although a variety of animal models have been used to test drug candidates and examine the pathogenesis of diabetic retinopathy, time-saving and inexpensive models are still needed to evaluate the increasing number of therapeutic approaches. EXPERIMENTAL APPROACH We developed a model for diabetic retinopathy using the early stage of transgenic zebrafish (flk:EGFP) by treating embryos with 130 mM glucose, from 3-6 days post fertilisation (high-glucose model). On day 6, lenses from zebrafish larvae were isolated and treated with 3% trypsin, and changes in hyaloid-retinal vessels were analysed using fluorescent stereomicroscopy. In addition, expression of tight junction proteins (such as zonula occludens-1), effects of hyperosmolar solutions and of hypoxia, and Vegf expression were assessed by RT -PCR. NO production was assessed with a fluorescent substrate. Effects of inhibitors of the VEGF receptor, NO synthesis and a VEGF antibody (ranibizumab) were also measured. KEY RESULTS In this high-glucose model, dilation of hyaloid-retinal vessels, on day 6, was accompanied by morphological lesions with disruption of tight junction proteins, overproduction of Vegf mRNA and increased NO production. Treatment of this high-glucose model with an inhibitor of VEGF receptor tyrosine kinase or an inhibitor of NO synthase or ranibizumab decreased dilation of hyaloid-retinal vessels. CONCLUSIONS AND IMPLICATIONS These findings suggest that short-term exposure of zebrafish larvae to high-glucose conditions could be used for screening and drug discovery for diabetic retinopathy and particularly for disorders of retinal vessels related to disruption of tight junction proteins and excessive VEGF and NO production.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| | - Yu-Ri Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| | - Jin Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, 305-811, Korea
| |
Collapse
|
45
|
The use of high-throughput screening in identifying chemotherapeutic agents for gastric cancer. Future Med Chem 2015; 6:2103-12. [PMID: 25531971 DOI: 10.4155/fmc.14.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer claims many lives around the world, particularly in Asia. Although diagnosis and treatment has improved, long-term survival of patients is still poor and there is an urgent need to develop more effective treatments for this disease. This review outlines some of the more innovative high-throughput screening-based approaches and strategies that may be used to identify compounds that have new or novel mechanisms of action and could be developed further as possible gastric cancer treatments in the future.
Collapse
|
46
|
Dhakal S, Stevens CB, Sebbagh M, Weiss O, Frey RA, Adamson S, Shelden EA, Inbal A, Stenkamp DL. Abnormal retinal development in Cloche mutant zebrafish. Dev Dyn 2015; 244:1439-1455. [PMID: 26283463 DOI: 10.1002/dvdy.24322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/01/2015] [Revised: 08/04/2015] [Accepted: 08/09/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Functions for the early embryonic vasculature in regulating development of central nervous system tissues, such as the retina, have been suggested by in vitro studies and by in vivo manipulations that caused additional ocular vessels to develop. Here, we use an avascular zebrafish embryo, cloche-/- (clo-/-), to begin to identify necessary developmental functions of the ocular vasculature in regulating development and patterning of the neural retina, in vivo. These studies are possible in zebrafish embryos, which do not yet rely upon the vasculature for tissue oxygenation. RESULTS clo-/- embryos lacked early ocular vasculature and were microphthalmic, with reduced retinal cell proliferation and cell survival. Retinas of clo mutants were disorganized, with irregular synaptic layers, mispatterned expression domains of retinal transcription factors, morphologically abnormal Müller glia, reduced differentiation of specific retinal cell types, and sporadically distributed cone photoreceptors. Blockade of p53-mediated cell death did not completely rescue this phenotype and revealed ectopic cones in the inner nuclear layer. clo-/- embryos did not upregulate a molecular marker for hypoxia. CONCLUSIONS The disorganized retinal phenotype of clo-/- embryos is consistent with a neural and glial developmental patterning role for the early ocular vasculature that is independent of its eventual function in gas exchange.
Collapse
Affiliation(s)
- Susov Dhakal
- Department of Biological Sciences, University of Idaho, Moscow, ID USA.,Neuroscience Graduate Program, University of Idaho, Moscow, ID USA
| | - Craig B Stevens
- Department of Biological Sciences, University of Idaho, Moscow, ID USA
| | - Meyrav Sebbagh
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ruth A Frey
- Department of Biological Sciences, University of Idaho, Moscow, ID USA
| | - Seth Adamson
- Department of Biological Sciences, University of Idaho, Moscow, ID USA
| | - Eric A Shelden
- Department of Molecular Biosciences, Washington State University, Pullman, WA USA
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Deborah L Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, ID USA.,Neuroscience Graduate Program, University of Idaho, Moscow, ID USA
| |
Collapse
|
47
|
Abstract
Diabetic retinopathy (DR) is one of today's main causes of blindness in numerous developed countries worldwide. The underlying pathogenesis of DR is complex and not well understood, thus impeding development of specific, effective treatment modalities. Consequently, the use of animal models of DR is of critical importance for investigating the pathogenesis of and treatment for DR. While rats and mice are the most commonly used animal models of DR, the zebrafish now appears to be a promising model. Nonhuman primates and humans have similar eye structures, and both can develop spontaneous diabetes mellitus (DM). Although various traditionally used animal models of DR undergo a number of pathological changes similar to those of human DR, several human variations, e.g. retinal neovascularization, cannot yet be fully mimicked in any existing animal model of DM. Since both the animal models and the methods chosen for inducing DR have great influence on experimental results, a clear understanding of available animal models is vital for planning an experimental design. In this review, we summarize the mechanisms, methodologies and pros and cons of the most commonly used animal models of DR.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , P.R. China
| | | | | |
Collapse
|
48
|
Kaufman R, Weiss O, Sebbagh M, Ravid R, Gibbs-Bar L, Yaniv K, Inbal A. Development and origins of zebrafish ocular vasculature. BMC DEVELOPMENTAL BIOLOGY 2015; 15:18. [PMID: 25888280 PMCID: PMC4406013 DOI: 10.1186/s12861-015-0066-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/26/2014] [Accepted: 02/28/2015] [Indexed: 01/26/2023]
Abstract
Background The developing eye receives blood supply from two vascular systems, the intraocular hyaloid system and the superficial choroidal vessels. In zebrafish, a highly stereotypic and simple set of vessels develops on the surface of the eye prior to development of choroidal vessels. The origins and formation of this so-called superficial system have not been described. Results We have analyzed the development of superficial vessels by time-lapse imaging and identified their origins by photoconversion experiments in kdrl:Kaede transgenic embryos. We show that the entire superficial system is derived from a venous origin, and surprisingly, we find that the hyaloid system has, in addition to its previously described arterial origin, a venous origin for specific vessels. Despite arising solely from a vein, one of the vessels in the superficial system, the nasal radial vessel (NRV), appears to acquire an arterial identity while growing over the nasal aspect of the eye and this happens in a blood flow-independent manner. Conclusions Our results provide a thorough analysis of the early development and origins of zebrafish ocular vessels and establish the superficial vasculature as a model for studying vascular patterning in the context of the developing eye. Electronic supplementary material The online version of this article (doi:10.1186/s12861-015-0066-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rivka Kaufman
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Meyrav Sebbagh
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Revital Ravid
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Liron Gibbs-Bar
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Karina Yaniv
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| | - Adi Inbal
- Department of Medical Neurobiology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel. .,Department of Medical Neurobiology, Hebrew University Medical School, Ein-Kerem, Jerusalem, 9112002, Israel.
| |
Collapse
|
49
|
Rennekamp AJ, Peterson RT. 15 years of zebrafish chemical screening. Curr Opin Chem Biol 2014; 24:58-70. [PMID: 25461724 DOI: 10.1016/j.cbpa.2014.10.025] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 12/13/2022]
Abstract
In 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature. We found that zebrafish screens have expanded beyond the use of developmental phenotypes to include behavioral, cardiac, metabolic, proliferative and regenerative endpoints. Additionally, many creative strategies have been used to uncover the mechanisms of action of new small molecules including chemical phenocopy, genetic phenocopy, mutant rescue, and spatial localization strategies.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Randall T Peterson
- Cardiovascular Research Center and Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA; Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
50
|
Hartsock A, Lee C, Arnold V, Gross JM. In vivo analysis of hyaloid vasculature morphogenesis in zebrafish: A role for the lens in maturation and maintenance of the hyaloid. Dev Biol 2014; 394:327-39. [PMID: 25127995 DOI: 10.1016/j.ydbio.2014.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 01/11/2023]
Abstract
Two vascular networks nourish the embryonic eye as it develops - the hyaloid vasculature, located at the anterior of the eye between the retina and lens, and the choroidal vasculature, located at the posterior of the eye, surrounding the optic cup. Little is known about hyaloid development and morphogenesis, however. To begin to identify the morphogenetic underpinnings of hyaloid formation, we utilized in vivo time-lapse confocal imaging to characterize morphogenesis of the zebrafish hyaloid through 5 days post fertilization (dpf). Our data segregate hyaloid formation into three distinct morphogenetic stages: Stage I: arrival of hyaloid cells at the lens and formation of the hyaloid loop; Stage II: formation of a branched hyaloid network; Stage III: refinement of the hyaloid network. Utilizing fixed and dissected tissues, distinct Stage II and Stage III aspects of hyaloid formation were quantified over time. Combining in vivo imaging with microangiography, we demonstrate that the hyaloid system becomes fully enclosed by 5dpf. To begin to identify the molecular and cellular mechanisms underlying hyaloid morphogenesis, we identified a recessive mutation in the mab21l2 gene, and in a subset of mab21l2 mutants the lens does not form. Utilizing these "lens-less" mutants, we determined whether the lens was required for hyaloid morphogenesis. Our data demonstrate that the lens is not required for Stage I of hyaloid formation; however, Stages II and III of hyaloid formation are disrupted in the absence of a lens, supporting a role for the lens in hyaloid maturation and maintenance. Taken together, this study provides a foundation on which the cellular, molecular and embryologic mechanisms underlying hyaloid morphogenesis can be elucidated.
Collapse
Affiliation(s)
- Andrea Hartsock
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Chanjae Lee
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Victoria Arnold
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jeffrey M Gross
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, United States.
| |
Collapse
|