1
|
Jonare L, Wattrang E, Östlund E, Wall H, Jacobson M, Jansson DS. Subcutaneous inoculation of Escherichia coli in broiler chickens causes cellulitis and elicits innate and specific immune responses. BMC Vet Res 2024; 20:545. [PMID: 39623373 PMCID: PMC11610265 DOI: 10.1186/s12917-024-04392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/19/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Cellulitis caused by Escherichia coli is a common cause of condemnation of broiler chickens at slaughter worldwide and is associated with economic losses and a possible negative impact on animal welfare. The study objective was to monitor clinical signs and immune responses after subcutaneous E. coli inoculation (1.1-1.8 × 107 CFU), aiming to induce cellulitis. Three groups of broiler chickens (n = 15/group) were inoculated with well-characterized E. coli strains (group A: ECA18 O24:H4/ST117 and group B: ECB11 O153:H9/ST38) or with saline (control) at 22 days-of-age. Clinical signs of disease, body weight and immune parameters were monitored until euthanasia 12-14 days after inoculation followed by post-mortem examination. RESULTS The daily weight gain of the inoculated chickens was significantly lower one day after inoculation compared to the controls. Seven (23%) of the inoculated chickens displayed clinical signs: ruffled feathers, mild weakness, open-beak breathing and/or reluctance to stand, of which two birds were euthanized and one bird died. Five chickens in group B were observed with bacteraemia, which lasted up to three days after inoculation for two chickens. A transient increase in chicken mannose receptor MRC1L-B expression on circulating monocytes was observed one day after inoculation in both E. coli inoculated groups, with a more pronounced increase in group B. On day 7 after inoculation, the in vitro adherence of heterophils, monocytes and thrombocytes to the inoculated strain was increased in group B. Antibody titers to the inoculation strains were increased in some chickens in both groups on days 7 and 14 after inoculation, with the highest titers in group B. Seven (47%) and 13 (87%) of the chickens in group A and B, respectively, were diagnosed with cellulitis at post-mortem examination. In most birds, lesions consisted of plaque-like material embedded in the subcutaneous tissue of the abdominal wall. CONCLUSIONS Inoculation of E. coli caused cellulitis and prompted a rapid activation/redistribution of circulating monocytes followed by antibody production. The responses were most pronounced in chickens inoculated with E. coli strain ECB11, presumably because of a higher virulence.
Collapse
Affiliation(s)
- Liv Jonare
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden.
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Emma Östlund
- Department of Microbiology, Swedish Veterinary Agency, 751 89, Uppsala, Sweden
| | - Helena Wall
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Box 7024, 750 07, Uppsala, Sweden
| | - Magdalena Jacobson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| | - Désirée S Jansson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Box 7054, 750 07, Uppsala, Sweden
| |
Collapse
|
2
|
Zhang H, Dong M, Xu H, Li H, Zheng A, Sun G, Jin W. Recombinant Lactococcus lactis Expressing Human LL-37 Prevents Deaths from Viral Infections in Piglets and Chicken. Probiotics Antimicrob Proteins 2024; 16:2150-2160. [PMID: 37743432 DOI: 10.1007/s12602-023-10155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Novel antibiotic substitutes are increasingly in demand in the animal husbandry industry. An oral recombinant Lactococcus lactis (L. lactis) expressing human LL-37 (oral LL-37) was developed and its safety and antiviral effectiveness in vivo was tested. In addition to impairing liposome integrity, LL-37 polypeptide from recombinant L. lactis could prevent the host cell infection by a variety of viruses, including recombinant SARS, SARS-CoV-2, Ebola virus, and vesicular stomatitis virus G. Subchronic toxicity studies performed on Sprague-Dawley rats showed that no cumulative toxicity was found during short-term intervention. Oral LL-37 treatment after the onset of fever could reduce mortality in piglets infected with porcine reproductive and respiratory syndrome virus. Moreover, body weight gain of piglets receiving treatment was progressively restored, and nucleic acid positive rebound was not undetected after discontinuation. Oral LL-37 consistently increased the lifespan of chickens infected with Newcastle viruses. These findings suggested a potential use of recombinantly modified microorganisms in veterinary medicine.
Collapse
Affiliation(s)
- Hanlin Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huihui Xu
- Jilin Yuanheyuan Bioengineering Co., Ltd. Changchun, Jilin Province, 130000, China
| | - Hongyue Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gang Sun
- Department of Gastroenterology and Hepatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Mátis G, Tráj P, Hanyecz V, Mackei M, Márton RA, Vörösházi J, Kemény Á, Neogrády Z, Sebők C. Immunomodulatory properties of chicken cathelicidin-2 investigated on an ileal explant culture. Vet Res Commun 2024; 48:2527-2535. [PMID: 38871866 PMCID: PMC11315780 DOI: 10.1007/s11259-024-10428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
As the threat posed by antimicrobial resistance grows more crucial, the development of compounds that can replace antibiotics becomes increasingly vital. Chicken cathelicidin-2 (Cath-2) belongs to the group of Host Defense Peptides (HDPs), which could provide a feasible solution for the treatment of gastrointestinal infections in poultry. It is a small peptide produced by the heterophil granulocytes of chickens as part of the innate immune response, and its immunomodulatory activity has already been demonstrated in several cell types. In this study, the effects of Cath-2 on the intestinal immune response were examined using ileal explant cultures isolated from chicken. Regarding our results, Cath-2 displayed a potent anti-inflammatory effect as it alleviated the LTA-caused elevation of interleukin (IL)-6 and IL-2 concentrations, and that of the IFN-γ/IL-10 ratio, furthermore, it increased the concentration of IL-10, alleviating the LTA-evoked decreased level of the anti-inflammatory cytokine. Moreover, when applied alone, it elevated the concentrations of IL-6, CXCLi2, and IL-2, providing evidence of its complex immunomodulatory mechanisms. In summary, Cath-2 was able to modulate the immune response of the intestinal wall not only by reducing pro-inflammatory cytokine release, but also through immune stimulation, demonstrating that it has the ability to improve innate immunity via a complex mechanism that may make it a suitable candidate for the control of intestinal infections.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Viktória Hanyecz
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary
- Department of Medical Biology, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary.
| |
Collapse
|
4
|
Márton RA, Sebők C, Mackei M, Tráj P, Vörösházi J, Kemény Á, Neogrády Z, Mátis G. Pap12-6: A host defense peptide with potent immunomodulatory activity in a chicken hepatic cell culture. PLoS One 2024; 19:e0302913. [PMID: 38728358 PMCID: PMC11086923 DOI: 10.1371/journal.pone.0302913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
In the fight against antimicrobial resistance, host defense peptides (HDPs) are increasingly referred to as promising molecules for the design of new antimicrobial agents. In terms of their future clinical use, particularly small, synthetic HDPs offer several advantages, based on which their application as feed additives has aroused great interest in the poultry sector. However, given their complex mechanism of action and the limited data about the cellular effects in production animals, their investigation is of great importance in these species. The present study aimed to examine the immunomodulatory activity of the synthetic HDP Pap12-6 (PAP) solely and in inflammatory environments evoked by lipoteichoic acid (LTA) and polyinosinic-polycytidylic acid (Poly I:C), in a primary chicken hepatocyte-non-parenchymal cell co-culture. Based on the investigation of the extracellular lactate dehydrogenase (LDH) activity, PAP seemed to exert no cytotoxicity on hepatic cells, suggesting its safe application. Moreover, PAP was able to influence the immune response, reflected by the decreased production of interleukin (IL)-6, IL-8, and "regulated on activation, normal T cell expressed and secreted"(RANTES), as well as the reduced IL-6/IL-10 ratio in Poly I:C-induced inflammation. PAP also diminished the levels of extracellular H2O2 and nuclear factor erythroid 2-related factor 2 (Nrf2) when applied together with Poly I:C and in both inflammatory conditions, respectively. Consequently, PAP appeared to display potent immunomodulatory activity, preferring to act towards the cellular anti-inflammatory and antioxidant processes. These findings confirm that PAP might be a promising alternative for designing novel antimicrobial immunomodulatory agents for chickens, thereby contributing to the reduction of the use of conventional antibiotics.
Collapse
Affiliation(s)
- Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Department of Medical Biology, Medical School, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
| | - Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, Budapest, Hungary
- National Laboratory of Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
5
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
van Dijk A, Guabiraba R, Bailleul G, Schouler C, Haagsman HP, Lalmanach AC. Evolutionary diversification of defensins and cathelicidins in birds and primates. Mol Immunol 2023; 157:53-69. [PMID: 36996595 DOI: 10.1016/j.molimm.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Divergent evolution for more than 310 million years has resulted in an avian immune system that is complex and more compact than that of primates, sharing much of its structure and functions. Not surprisingly, well conserved ancient host defense molecules, such as defensins and cathelicidins, have diversified over time. In this review, we describe how evolution influenced the host defense peptides repertoire, its distribution, and the relationship between structure and biological functions. Marked features of primate and avian HDPs are linked to species-specific characteristics, biological requirements, and environmental challenge.
Collapse
|
7
|
Peng L, Tian H, Lu Y, Jia K, Ran J, Tao Q, Li G, Wan C, Ye C, Veldhuizen EJA, Chen H, Fang R. Chicken cathelicidin-2 promotes NLRP3 inflammasome activation in macrophages. Vet Res 2022; 53:69. [PMID: 36064470 PMCID: PMC9446576 DOI: 10.1186/s13567-022-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chicken cathelicidin-2 (CATH-2) as a host defense peptide has been identified to have potent antimicrobial and immunomodulatory activities. Here, we reported the mechanism by which CATH-2 modulates NLRP3 inflammasome activation. Our results show that CATH-2 and ATP as a positive control induced secretion of IL-1β and IL-1α in LPS-primed macrophages but did not affect secretion of IL-6, IL-12 and TNF-α. Furthermore, CATH-2 induced caspase-1 activation and oligomerization of apoptosis-associated speck-like protein containing a carboxy- terminal caspase recruitment domain (ASC), which is essential for NLRP3 inflammasome activation. However, CATH-2 failed to induce IL-1β secretion in Nlrp3-/-, Asc-/- and Casp1-/- macrophages. Notably, IL-1β and NLRP3 mRNA expression were not affected by CATH-2. In addition, CATH-2-induced NLRP3 inflammasome activation was mediated by K+ efflux but independent of the P2X7 receptor that is required for ATP-mediated K+ efflux. Gene interference of NEK7 kinase which has been identified to directly interact with NLRP3, significantly reduced IL-1β secretion and caspase-1 activation induced by CATH-2. Furthermore, confocal microscopy shows that CATH-2 significantly induced lysosomal leakage with the diffusion of dextran fluorescent signal. Cathepsin B inhibitors completely abrogated IL-1β secretion and caspase-1 activation as well as attenuating the formation of ASC specks induced by CATH-2. These results all indicate that CATH-2-induced activation of NLRP3 inflammasome is mediated by K+ efflux, and involves the NEK7 protein and cathepsin B. In conclusion, our study shows that CATH-2 acts as a second signal to activate NLRP3 inflammasome. Our study provides new insight into CATH-2 modulating immune response.
Collapse
Affiliation(s)
- Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Jinrong Ran
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Wan
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China. .,Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
8
|
Cho DS, Schmitt RE, Dasgupta A, Ducharme AM, Doles JD. ACUTE AND SUSTAINED ALTERATIONS TO THE BONE MARROW IMMUNE MICROENVIRONMENT FOLLOWING POLYMICROBIAL INFECTION. Shock 2022; 58:45-55. [PMID: 35984760 DOI: 10.1097/shk.0000000000001951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Sepsis is a highly prevalent cause of death in intensive care units. Characterized by severe immune cell derangements, sepsis is often associated with multiorgan dysfunction. For many sepsis survivors, these deficits can persist long after clinical resolution of the underlying infection. Although many studies report on the impact of sepsis on individual immune cell subtypes, a comprehensive analysis of sepsis-induced alterations within and across the immune cell landscape is lacking. In this study, we used single-cell RNA sequencing to assess sepsis-associated transcriptional changes in immune cells isolated from bone marrow at single-cell resolution. We used a high-survival fecal-induced peritonitis sepsis model using Friend leukemia virus B mice. Single-cell RNA sequencing classified 3402 single cells from control subjects into 14 clusters representing long-term hematopoietic stem cell (HSC), short-term HSC, basophil, dendritic cell, eosinophil, erythroblast, erythrocyte, macrophage, neutrophil, natural killer cell, plasma cell, plasmacytoid dendritic cell, pre-B cell, and T memory cell lineages. One day following experimentally induced sepsis, cell type compositions shifted significantly and included notable decreases in HSC and myeloid cell abundance. In addition to proportional cell composition changes, acute sepsis induced significant transcriptional alterations in most immune cell types analyzed-changes that failed to completely resolve 1 month after sepsis. Taken together, we report widespread and persistent transcriptional changes in diverse immune cells in response to polymicrobial infection. This study will serve as a valuable resource for future work investigating acute and/or long-term sepsis-associated immune cell derangements.
Collapse
Affiliation(s)
- Dong Seong Cho
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | |
Collapse
|
9
|
Wattrang E, Sørensen Dalgaard T, Brødsgaard Kjaerup R, Naghizadeh M, Kabell S, Eriksson H, Söderlund R. Erysipelothrix rhusiopathiae-specific T-cell responses after experimental infection of chickens selectively bred for high and low serum levels of mannose-binding lectin. Vet Res 2022; 53:105. [PMID: 36510306 PMCID: PMC9743643 DOI: 10.1186/s13567-022-01126-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Erysipelas, caused by infection with Erysipelothrix rhusiopathiae (ER) is an important emerging disease in laying hens. We have earlier observed prominent mannose-binding lectin (MBL) acute phase responses in experimentally ER infected chickens. The present study aimed to further examine immune responses to ER by using chickens selectively bred for high (L10H) and low (L10L) serum MBL levels. Chickens were infected with ER at 3 weeks of age and immune parameters and bacterial load were monitored in blood until day 18 after infection. Blood and spleen leukocytes collected on day 18 were stimulated in vitro with ER antigens and blast transformation of different T-cell populations was assessed. The ER infection gave a very varied outcome and no clear differences were observed between L10H and L10L chickens with respect to leukocyte counts, bacterial load or clinical outcome. Nonetheless, rapid innate responses, e.g., heterophilia and increased serum MBL levels were noted in bacteraemic chickens. All ER infected chickens also showed transient increased expression of mannose receptor MRC1L-B and decreased expression of major histocompatibility complex II on monocytes day 1 after infection indicating monocyte activation or relocation. In vitro ER stimulation showed antigen specific blast transformation of CD4+, TCRγ/δ-CD8αβ+ and TCRγ/δ+CD8αβ+ spleen cells from all infected chickens. For CD4+ and TCRγ/δ-CD8αβ+ cells the proportions of blast transformed cells were significantly higher for samples from L10L chickens than those for samples from L10H chickens. This is the first observation of ER-specific T-cells in chickens and interestingly a Th1-type response comprising cytotoxic T-cells was indicated.
Collapse
Affiliation(s)
- Eva Wattrang
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Tina Sørensen Dalgaard
- grid.7048.b0000 0001 1956 2722Department of Animal Science, Aarhus University, Tjele, Denmark
| | | | - Mohammad Naghizadeh
- grid.7048.b0000 0001 1956 2722Department of Animal Science, Aarhus University, Tjele, Denmark ,grid.5254.60000 0001 0674 042XPresent Address: Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | | | - Helena Eriksson
- grid.419788.b0000 0001 2166 9211Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Robert Söderlund
- grid.419788.b0000 0001 2166 9211Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
10
|
Nazeer N, Uribe-Diaz S, Rodriguez-Lecompte JC, Ahmed M. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br Poult Sci 2021; 62:672-685. [PMID: 33908289 DOI: 10.1080/00071668.2021.1919993] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. This review describes different classes of antimicrobial peptides (AMP) found in the gastrointestinal (GI) tract of avian species, and their antimicrobial and immunomodulatory activities. The potential benefits of synthetic AMP in poultry production are examined, in the context of the use of AMP as alternatives to antimicrobial growth promoters (AGP).2. Since the mid-1950s, antibiotic growth promoters (AGP) have been used in feed at low prophylactic doses to modulate the homoeostasis of intestinal microbiota, decreasing the risk of intestinal dysbacteriosis and the growth of pathogens within the avian gut. Over the last three decades, AGP have faced major regulatory restrictions due to concerns of generating antimicrobial resistance (AMR). It is now well documented that the rate of infectious disease outbreaks is higher in flocks that are not fed prophylactic antibiotics, resulting in a compensatory increase in antimicrobial use for therapeutic purposes.3. Endogenous natural AMP production is associated with the presence of microbiota and their interaction with the intestinal epithelial and lamina propria lymphoid cells. Their antimicrobial activity shapes the beneficial microbiota population and controls intestinal pathogens such Clostridium and Salmonella spp., and stimulates the development and maturation of the local immune system.4. Similar to AGP, AMP can establish a well-balanced gut beneficial microbiota for adequate immune-competence, animal health and high growth performance parameters such as feed intake, daily weight, feed conversion and accumulated mortality.5. Antimicrobial proteins and peptides constitute an essential part of the innate immune system of all organisms and protect the host from invading pathogenic bacteria, viruses, fungi, and parasites by interacting with the negatively charged pathogen membranes.
Collapse
Affiliation(s)
- N Nazeer
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| | - S Uribe-Diaz
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada.,Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - M Ahmed
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
11
|
Wang T, Zou C, Wen N, Liu X, Meng Z, Feng S, Zheng Z, Meng Q, Wang C. The effect of structural modification of antimicrobial peptides on their antimicrobial activity, hemolytic activity, and plasma stability. J Pept Sci 2021; 27:e3306. [PMID: 33554385 DOI: 10.1002/psc.3306] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
In this article, a series of modifications were made on an antimicrobial peptide F2,5,12 W, including altering the amino acid sequence, introducing cysteine and other typical amino acids, developing peptide dimers via disulfide bonds, and conjugating with mPEG, in order to enhance the antimicrobial activity, plasma stability, and reduce the hemolytic activity of peptides. The results showed that mPEG conjugation could significantly improve the plasma stability and reduce the hemolytic activity of peptides, while the antimicrobial activity decreased meanwhile. However, altering the sequence of the peptide without changing its amino acid composition had little impact on its antimicrobial activity and plasma stability. The introduction of cysteine enhanced the plasma stability of peptides conspicuously, but at the same time, the increased hydrophobicity of peptides increased their hemolysis. The antimicrobial mechanism and cytotoxicity of the peptides with relatively high antimicrobial activity were also studied. In general, this study provided some ideas for the rational design and structure optimization of antimicrobial peptides.
Collapse
Affiliation(s)
- Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Cunbin Zou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Na Wen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xingdong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
12
|
Wang Y, Wang M, Shan A, Feng X. Avian host defense cathelicidins: structure, expression, biological functions, and potential therapeutic applications. Poult Sci 2020; 99:6434-6445. [PMID: 33248558 PMCID: PMC7704953 DOI: 10.1016/j.psj.2020.09.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 08/14/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Host defense peptides (HDP) are multifunctional effectors of the innate immune system, which has antimicrobial and pleiotropic immunomodulatory functions. Although there is a very sophisticated superposition of adaptive immune systems in vertebrates, this system is still essential. As an important family of HDP, cathelicidins are also known for their broad-spectrum antibacterial activity against bacteria, fungi, and enveloped viruses. It has been found in humans and other species, including cattle, pigs, sheep, goats, chickens, rabbits, and some kind of fish. Among them, cathelicidins in birds were described for the first time in 2005. This review focuses on the structure, biological activities, expression, and regulation of avian cathelicidin, especially main effects of host defense cathelicidin on potential therapeutic applications. According to the results obtained both in vitro and in vivo, good perspectives have been opened for cathelicidin. Nevertheless, further studies are needed to better characterize the mechanisms of action underlying the beneficial effects of cathelicidin as novel therapeutic alternatives to antibiotics.
Collapse
Affiliation(s)
- Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Min Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
13
|
Wattrang E, Eriksson H, Jinnerot T, Persson M, Bagge E, Söderlund R, Naghizadeh M, Dalgaard TS. Immune responses upon experimental Erysipelothrix rhusiopathiae infection of naïve and vaccinated chickens. Vet Res 2020; 51:114. [PMID: 32928307 PMCID: PMC7488726 DOI: 10.1186/s13567-020-00830-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/11/2020] [Indexed: 01/29/2023] Open
Abstract
Erysipelas, a disease caused by Erysipelothrix rhusiopathiae (ER), is an increasing problem in laying hens housed in cage-free systems. This study aimed to monitor immune responses during ER infection of naïve chickens and chickens vaccinated intra muscularly with a commercial inactivated ER vaccine. Chickens were infected intra muscularly with ER at 30 days of age and blood leukocyte counts, serum levels of mannose binding lectin (MBL) and ER-specific IgY were monitored until the experiment was terminated at day 15 after infection. ER was detected in blood from more chickens and at higher bacterial counts in the naïve group (day 1: 1 of 7 chickens; day 3: 6 of 6 chickens) than in the vaccinated group (day 1: 0 of 7 chickens; day 3: 1 of 6 chickens). During the acute phase of infection transient increases in circulating heterophil numbers and serum MBL levels were detected in all ER infected chickens but these responses were prolonged in chickens from the naïve group compared to vaccinated chickens. Before infection IgY titers to ER in vaccinated chickens did not differ significantly from those of naïve chickens but vaccinated chickens showed significantly increased IgY titers to ER earlier after infection compared to chickens in the naïve group. In conclusion, the ER infection elicited prompt acute innate responses in all chickens. Vaccinated chickens did not have high IgY titers to ER prior to infection but did however show lower levels of bacteraemia and their acute immune responses were of shorter duration.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Helena Eriksson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Tomas Jinnerot
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Maria Persson
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Elisabeth Bagge
- Department of Animal Health and Antimicrobial Strategies, National Veterinary Institute, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | | | | |
Collapse
|
14
|
Xiao Y, Lyu W, Yang H, Xu X, Zhou C, Lu L, Zhang L. Molecular characterization, mRNA gene expression, and antimicrobial activity of 2 new cathelicidin genes in goose. Poult Sci 2020; 99:2983-2991. [PMID: 32475433 PMCID: PMC7597728 DOI: 10.1016/j.psj.2020.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/30/2020] [Accepted: 03/09/2020] [Indexed: 01/15/2023] Open
Abstract
Cathelicidins represent a major group of host defense peptides (HDPs) that share a highly conserved cathelin-like domain. In birds, this gene family has been identified in many species. However, no information was available in the goose until now. In this study, we present the molecular characterization of 2 goose cathelicidin genes, namely goose CATH2 and goose CATH3, for the first time. The complete cDNA of goose CATH2 and goose CATH3 were 571 bp and 573 bp in length, respectively, and the deduced amino acid sequences exhibited high similarity with other avian cathelicidins. Furthermore, evolutionary analyses indicated that all known cathelicidins form 3 distinct clusters from reptiles, while the oldest cathelicidin member, which is known as CATHB1, is very likely absent in the goose genome. Meanwhile, highly expressed goose CATH2 and goose CATH3 were also observed in primary and secondary lymphoid tissues, same as the observations in other avian species. In addition, chemically synthesized mature peptides of the 2 cathelicidins exerted optimal antimicrobial abilities to a range of gram-negative and gram-positive bacteria. The discovery and characterization of goose cathelicidins complete the knowledge for goose HDPs and might contribute to understanding the evolution of avian cathelicidins as well as for the development of antibacterial agents.
Collapse
Affiliation(s)
- Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaoqin Xu
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Caiquan Zhou
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Long Zhang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, China.
| |
Collapse
|
15
|
Kraaij MD, van Dijk A, Scheenstra MR, van Harten RM, Haagsman HP, Veldhuizen EJA. Chicken CATH-2 Increases Antigen Presentation Markers on Chicken Monocytes and Macrophages. Protein Pept Lett 2020; 27:60-66. [PMID: 31362652 PMCID: PMC6978643 DOI: 10.2174/0929866526666190730125525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/01/2022]
Abstract
Abstract: Background Cathelicidins are a family of Host Defense Peptides (HDPs), that play an important role in the innate immune response. They exert both broad-spectrum antimicrobial activity against pathogens, and strong immunomodulatory functions that affect the response of innate and adaptive immune cells. Objective The aim of this study was to investigate immunomodulation by the chicken cathelicidin CATH-2 and compare its activities to those of the human cathelicidin LL-37. Methods Chicken macrophages and chicken monocytes were incubated with cathelicidins. Activation of immune cells was determined by measuring surface markers Mannose Receptor C-type 1 (MRC1) and MHC-II. Cytokine production was measured by qPCR and nitric oxide production was determined using the Griess assay. Finally, the effect of cathelicidins on phagocytosis was measured using carboxylate-modified polystyrene latex beads. Results CATH-2 and its all-D enantiomer D-CATH-2 increased MRC1 and MHC-II expression, markers for antigen presentation, on primary chicken monocytes, whereas LL-37 did not. D-CATH-2 also increased the MRC1 and MHC-II expression if a chicken macrophage cell line (HD11 cells) was used. In addition, LPS-induced NO production by HD11 cells was inhibited by CATH-2 and D-CATH-2. Conclusion These results are a clear indication that CATH-2 (and D-CATH-2) affect the activation state of monocytes and macrophages, which leads to optimization of the innate immune response and enhancement of the adaptive immune response.
Collapse
Affiliation(s)
- Marina D Kraaij
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Albert van Dijk
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Maaike R Scheenstra
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Roel M van Harten
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Henk P Haagsman
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP. Cathelicidins: Immunomodulatory Antimicrobials. Vaccines (Basel) 2018; 6:vaccines6030063. [PMID: 30223448 PMCID: PMC6161271 DOI: 10.3390/vaccines6030063] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/30/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cathelicidins are host defense peptides with antimicrobial and immunomodulatory functions. These effector molecules of the innate immune system of many vertebrates are diverse in their amino acid sequence but share physicochemical characteristics like positive charge and amphipathicity. Besides being antimicrobial, cathelicidins have a wide variety in immunomodulatory functions, both boosting and inhibiting inflammation, directing chemotaxis, and effecting cell differentiation, primarily towards type 1 immune responses. In this review, we will examine the biology and various functions of cathelicidins, focusing on putting in vitro results in the context of in vivo situations. The pro-inflammatory and anti-inflammatory functions are highlighted, as well both direct and indirect effects on chemotaxis and cell differentiation. Additionally, we will discuss the potential and limitations of using cathelicidins as immunomodulatory or antimicrobial drugs.
Collapse
Affiliation(s)
- Roel M van Harten
- Division Molecular Host Defence, Dept. Infectious diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Esther van Woudenbergh
- Division Molecular Host Defence, Dept. Infectious diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Albert van Dijk
- Division Molecular Host Defence, Dept. Infectious diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | - Henk P Haagsman
- Division Molecular Host Defence, Dept. Infectious diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
17
|
van Dijk A, Hedegaard CJ, Haagsman HP, Heegaard PMH. The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production. Vet Res 2018; 49:68. [PMID: 30060758 PMCID: PMC6066942 DOI: 10.1186/s13567-018-0558-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/28/2018] [Indexed: 02/08/2023] Open
Abstract
Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described.
Collapse
Affiliation(s)
- Albert van Dijk
- Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Chris J. Hedegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Henk P. Haagsman
- Division Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Peter M. H. Heegaard
- Innate Immunology Group, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|