1
|
Dhanasekaran K, Tamizhselvi R, Mohandoss S, Beena M, Palaniappan A, Napoleon AA. A thiazole-based colorimetric and photoluminescent chemosensors for As 3+ ions detection: Density functional theory, test strips, real samples, and bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124325. [PMID: 38701574 DOI: 10.1016/j.saa.2024.124325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/05/2024]
Abstract
A Schiff-base Ethyl (E)-2-(3-((2-carbamothioylhydrazono)methyl)-4-hydroxyphenyl)-4-methylthiazole-5-carboxylate (TZTS) dual functional colorimetric and photoluminescent chemosensor which includes thiazole and thiosemicarbazide has been synthesized to detect arsenic (As3+) ions selectively in DMSO: H2O (7:3, v/v) solvent system. The molecular structure of the probe was characterized via FT-IR, 1H, and 13C NMR & HRMS analysis. Interestingly, the probe exhibits a remarkable and specific colorimetric and photoluminescence response to As3+ ions when exposed to various metal cations. The absorption spectral changes of TZTS were observed upon the addition of As3+ ions, with a naked eye detectable color change from colorless to yellow color. Additionally, the chemosensor (TZTS) exhibited a new absorption band at 412 nm and emission enhancements in photoluminescence at 528 nm after adding As3+ ions. The limit of detection (LOD) for As3+ ions was calculated to be 16.5 and 7.19 × 10-9 M by the UV-visible and photoluminescent titration methods, respectively. The underlying mechanism and experimental observations have been comprehensively elucidated through techniques such as Job's plot, Benesi-Hildebrand studies, and density functional theory (DFT) calculations. For practical application, the efficient determination of As3+ ions were accomplished using a spike and recovery approach applied to real water samples. In addition, the developed probe was successfully employed in test strip applications, allowing for the naked-eye detection of arsenic ions. Moreover, fluorescence imaging experiments of As3+ ions in the breast cancer cell line (MCF-7) demonstrated their practical applications in biological systems. Consequently, these findings highlight the significant potential of the TZTS sensor for detecting As3+ ions in environmental analysis systems.
Collapse
Affiliation(s)
- Kumudhavalli Dhanasekaran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - R Tamizhselvi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk-do 38541, Republic of Korea
| | - Maya Beena
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India; School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Arunkumar Palaniappan
- Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Ayyakannu Arumugam Napoleon
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
2
|
Silswal A, P. K, Koner AL. Review on Lysosomal Metal Ion Detection Using Fluorescent Probes. ACS OMEGA 2024; 9:13494-13508. [PMID: 38559936 PMCID: PMC10975597 DOI: 10.1021/acsomega.3c08606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Metal ions are indispensable and play an important role in living systems. Metal ions coordinated to metalloenzymes pocket activate the bound substrate and labile metal ions maintaining the ionic balance. The amount of metal ions present in various subcellular compartments of the cells is highly regulated for maintaining cellular homeostasis. An imbalance in the metal ion concentration is related to several diseases and results in serious pathological conditions. Mostly the internalized metal ions are processed in the lysosomal compartment of the cell. A delicate regulation of metal ions in the lysosomal compartment can modulate the lysosomal pH and inhibit hydrolytic enzymes, which ultimately causes lysosomal storage disorders. In the past decade, the understanding and regulation of lysosomal metal ions based on fluorometric methods have gained significant attention. In this review, we have comprehensively summarized the development of various fluorescent reporters over the past five years for a selective and sensitive estimation of lysosomal metal ion concentration. We believe this consolidated and timely review will help researchers working in the areas associated with lysosomal metal ions.
Collapse
Affiliation(s)
| | | | - Apurba Lal Koner
- Bionanotechnology Lab, Department
of Chemistry, Indian Institute of Science
Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya
Pradesh India
| |
Collapse
|
3
|
Du Y, Zhao H, Peng X, Zhou X, Yang X, Li Y, Yan M, Cui Y, Sun G. A novel phenanthroline[9,10-d] imidazole-based fluorescent sensor for Hg2+ with “turn-on” fluorescence response. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Said AI, Staneva D, Angelova S, Grabchev I. Self-Associated 1,8-Naphthalimide as a Selective Fluorescent Chemosensor for Detection of High pH in Aqueous Solutions and Their Hg 2+ Contamination. SENSORS (BASEL, SWITZERLAND) 2022; 23:399. [PMID: 36616999 PMCID: PMC9824833 DOI: 10.3390/s23010399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A novel diamino triazine based 1,8-naphthalimide (NI-DAT) has been designed and synthesized. Its photophysical properties have been investigated in different solvents and its sensory capability evaluated. The fluorescence emission of NI-DAT is significantly impacted by the solvent polarity due to its inherent intramolecular charge transfer character. Moreover, the fluorescence emission quenched at higher pH as a result of photo-induced electron transfer (PET) from triazine moiety to 1,8-naphthalimide after cleaving hydrogen bonds in the self-associated dimers. Furthermore, the new chemosensor exhibited a good selectivity and sensitivity towards Hg2+ among all the used various cations and anions in the aqueous solution of ethanol (5:1, v/v, pH = 7.2, Tampon buffer). NI-DAT emission at 540 nm was quenched remarkably only by Hg2+, even in the presence of other cations or anions as interfering analytes. Job's plot revealed a 2:1 stoichiometric ratio for NI-DAT/Hg2+ complex, respectively.
Collapse
Affiliation(s)
- Awad I. Said
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
- Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Desislava Staneva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Silvia Angelova
- Institute of Optical Materials and Technologies “Acad. J. Malinowski”, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1407 Sofia, Bulgaria
| |
Collapse
|