1
|
Similar Safety Profile of the Enantiomeric N-Aminoalkyl Derivatives of Trans-2-Aminocyclohexan-1-ol Demonstrating Anticonvulsant Activity. Molecules 2019; 24:molecules24132505. [PMID: 31323993 PMCID: PMC6651381 DOI: 10.3390/molecules24132505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is one of the most common neurological disorder in the world. Many antiepileptic drugs cause multiple adverse effects. Moreover, multidrug resistance is a serious problem in epilepsy treatment. In the present study we evaluated the safety profile of three (1–3) new chiral N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol demonstrating anticonvulsant activity. Our aim was also to determine differences between the enantiomeric compounds with respect to their safety profile. The results of the study indicated that compounds 1–3 are non-cytotoxic for astrocytes, although they exhibit cytotoxic activity against human glioblastoma cells. Moreover, 1–3 did not affect the viability of HepG2 cells and did not produce adducts with glutathione. Compounds 1–3 demonstrated no mutagenic activity either in the Salmonella typhimurium or in Vibrio harveyi tests. Additionally, the compounds displayed a strong or moderate antimutagenic effect. Finally, the P-glycoprotein (P-gp) ATPase assay demonstrated that both enantiomers are potent P-gp inhibitors. To sum up, our results indicate that the newly synthesized derivatives may be considered promising candidates for further research on anticonvulsant drug discovery and development. Our study indicated the similar safety profile of the enantiomeric N-aminoalkyl derivatives of trans-2-aminocyclohexan-1-ol, although in the previous studies both enantiomers differ in their biotransformation pathways and pharmacological activity.
Collapse
|
2
|
Marć MA, Domínguez-Álvarez E, Słoczyńska K, Żmudzki P, Chłoń-Rzepa G, Pękala E. In Vitro Biotransformation, Safety, and Chemopreventive Action of Novel 8-Methoxy-Purine-2,6-Dione Derivatives. Appl Biochem Biotechnol 2017. [PMID: 28624999 PMCID: PMC5756575 DOI: 10.1007/s12010-017-2527-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metabolic stability, mutagenicity, antimutagenicity, and the ability to scavenge free radicals of four novel 8-methoxy-purine-2,6-dione derivatives (compounds 1–4) demonstrating analgesic and anti-inflammatory properties were determined. Metabolic stability was evaluated in Cunninghamella and microsomal models, mutagenic and antimutagenic properties were assessed using the Ames and the Vibrio harveyi tests, and free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. In the Cunninghamella model, compound 2 did not undergo any biotransformation; whereas 3 and 4 showed less metabolic stability: 1–9 and 53–88% of the parental compound, respectively, underwent biotransformation reactions in different Cunninghamella strains. The metabolites detected after the biotransformation of 3 and 4 were aromatic hydroxylation and N-dealkylation products. On the other hand, the N-dealkylation product was the only metabolite formed in microsome assay. Additionally, these derivatives do not possess mutagenic potential in microbiological models (Vibrio harveyi and Salmonella typhimurium) considered. Moreover, all compounds showed a strong chemopreventive activity in the modified Vibrio harveyi strains BB7X and BB7M. However, radical scavenging activity was not the mechanism which explained the observed chemopreventive activity.
Collapse
Affiliation(s)
- Małgorzata Anna Marć
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Enrique Domínguez-Álvarez
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland.,Institute of General Organic Chemistry, Spanish National Research Council (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Kraków, Poland.
| |
Collapse
|
3
|
Słoczyńska K, Pańczyk K, Waszkielewicz AM, Marona H, Pękala E. In vitro mutagenic, antimutagenic, and antioxidant activities evaluation and biotransformation of some bioactive 4-substituted 1-(2-methoxyphenyl)piperazine derivatives. J Biochem Mol Toxicol 2016; 30:593-601. [PMID: 27450225 DOI: 10.1002/jbt.21826] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 01/19/2023]
Abstract
In vitro mutagenic, antimutagenic, and antioxidant potency evaluation and biotransformation of six novel 4-substituted 1-(2-methoxyphenyl)piperazine derivatives demonstrating antidepressant-like activity were investigated. Mutagenic and antimutagenic properties were assessed using the Ames test; free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and biotransformation was performed with liver microsomes. It was found that all tested compounds are not mutagenic in bacterial strains TA100 and TA1535 and exhibit antimutagenic effects in the Ames test. Noteworthy, compounds possessing propyl linker between phenoxyl and N-(2-methoxyphenyl)piperazine displayed more pronounced antimutagenic properties than derivatives with ethoxyethyl linker. Additionally, compounds 2 and 6 in vitro biotransformation showed that primarily their hydroxylated or O-dealkylated metabolites are formed. Some of the compounds exhibited intrinsic clearance values lower than those reported previously for antidepressant imipramine. To sum up, the results of the present study might represent a valuable step in designing and planning future studies with piperazine derivatives.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medycznz Street, 30-688, Krakow, Poland
| | - Katarzyna Pańczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, 30-688, Poland
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, 30-688, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, 30-688, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medycznz Street, 30-688, Krakow, Poland
| |
Collapse
|
4
|
Powroźnik B, Słoczyńska K, Canale V, Grychowska K, Zajdel P, Pękala E. Preliminary mutagenicity and genotoxicity evaluation of selected arylsulfonamide derivatives of (aryloxy)alkylamines with potential psychotropic properties. J Appl Genet 2015; 57:263-70. [PMID: 26440375 DOI: 10.1007/s13353-015-0322-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 09/07/2015] [Accepted: 09/25/2015] [Indexed: 11/24/2022]
Abstract
Determination of the mutagenic and genotoxic liability of biologically active compounds is of great concern for preliminary toxicity testing and drug development. In this study, we focused on the evaluation of the mutagenic and genotoxic effects of selected arylsulfonamide derivatives of aryloxyethyl piperidines and pyrrolidines (1-8), classified as 5-HT7 receptor antagonist with antidepressant and procognitive properties, using in silico and in vitro methods: the Vibrio harveyi assay and the SOS/umu-test (umuC Easy CS test). Finally, the antimutagenic potential of tested compounds was evaluated with the V. harveyi assay. It was demonstrated that none of the examined compounds produced a positive response in in vitro assays and these results were in line with in silico prediction. Additionally, all the tested compounds demonstrated various antimutagenic potential, with compound 1 (5-chloro-N-((1-(2-phenoxyethyl)piperidin-4-yl)methyl)thiophene-2-sulfonamide) being the most active against NQNO-induced mutagenicity.
Collapse
Affiliation(s)
- Beata Powroźnik
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Vittorio Canale
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Katarzyna Grychowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688, Krakow, Poland.
| |
Collapse
|