1
|
Unni V, Abishad P, Mohan B, Arya PR, Juliet S, John L, Vinod VK, Karthikeyan A, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J. Antibacterial and photocatalytic potential of piperine-derived zinc oxide nanoparticles against multi-drug-resistant non-typhoidal Salmonella spp. BMC Microbiol 2025; 25:89. [PMID: 40000999 DOI: 10.1186/s12866-025-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Drug-resistant pathogens and industrial dye wastes have emerged as critical global public health concerns, posing significant risks to human and animal health, as well as to environmental sustainability. Green synthesized nano absorbents were found to be a viable strategy for treating drug-resistant pathogens and in wastewater. Hence, this study endeavored the synthesis of piperine-driven nano-zinc oxide (ZnONPs) and evaluated them for antibacterial, antibiofilm, and photocatalytic disinfection potential against multi-drug resistant (MDR) foodborne strains of non-typhoidal Salmonella (NTS). Besides, the dye degradation potential of ZnONPs when exposed to UV, sunlight, and LED lights and their antioxidant capacity were assessed. RESULTS Initially, in silico analysis of piperine revealed drug-likeliness with minimal toxicity and strong interaction between piperine and OmpC motifs of Salmonella spp. UV spectroscopy of ZnONPs revealed a prominent absorption peak at 340 nm, while PXRD analysis confirmed the hexagonal wurtzite structure of ZnONPs by exhibiting peaks at 30°, 35.6°, 41.3°, 43.6°, 44.3°, 48°, 53°, 58°, and 59.2°, which corresponded to the lattice planes (102), (110), (103), (200), (112), (004), (104), (210), and (211). Additionally, the TEM images demonstrated predominantly spherical ZnONPs with hexagonal wurtzite crystalline SAED pattern. The minimum inhibitory concentration and minimum bactericidal concentration values (µg/mL) of the ZnONPs were found to be 62.50 and 125, respectively. The ZnONPs were observed to be safe with minimal hemolysis (less than 2%) in chicken RBCs, and no cytopathic effects were observed in the MTT assay using HEK cell lines. The NPs were found to be variably stable (high-end temperatures, proteases, cationic salts, and diverse pH), and were tested safe towards commensal gut lactobacilli. Additionally, in vitro time-kill kinetic assay indicated that the MDR-NTS strains were eliminated after co-incubating with ZnONPs for 6 h. The photocatalytic studies exhibited complete bacterial elimination under visible light at 4 h. Interestingly, the ZnONPs significantly inhibited the biofilm formation in the crystal violet staining assay by MDR-NTS strains (P < 0.001) at 24 and 48 h. Besides, a dose-dependent reducing power assay and 2,2'- azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay were exhibited. Moreover, ZnONPs significantly degraded methylene blue, crystal violet, and rhodamine-B under different light sources (sunlight, UV light, and LED). CONCLUSIONS This study revealed a sustainable one-pot method of synthesizing ZnONPs from piperine, which might be used as a viable antibacterial candidate with antioxidant, antibiofilm, and photocatalytic properties with eco-friendly implications and wastewater treatment.
Collapse
Affiliation(s)
- Varsha Unni
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Bibin Mohan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Pokkittath Radhakrishnan Arya
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Lijo John
- Department of Veterinary Biochemistry, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Valil Kunjukunju Vinod
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | - Asha Karthikeyan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India
| | | | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Pookode, KVASU, Kerala Veterinary and Animal Sciences University, Wayanad, 673 576, India.
| |
Collapse
|
2
|
Singh A, Bora S, Kumar P, Kukreti R, Kaushik M. Targeted Nanotherapy by Vinblastine-Loaded Chitosan-Coated PLA Nanoparticles to Improve the Chemotherapy via Reactive Oxygen Species to Hamper Hepatocellular Carcinoma. ACS OMEGA 2025; 10:170-180. [PMID: 39829490 PMCID: PMC11739963 DOI: 10.1021/acsomega.4c02983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 01/22/2025]
Abstract
Liver cancer is a prevalent and significant cause of death in humans. The use of novel biodegradable materials for various biomedical applications is being recently recommended as complementary as well as alternative solution for traditional chemotherapy. This study focuses on the synthesis of biodegradable nanocarriers [chitosan-coated poly(lactic acid) NPs (Cht-PLA NPs)] for the delivery of an anticancer drug vinblastine (Vbx) and to evaluate its therapeutic potential in human hepatocellular carcinoma (HepG2) cells. The Cht-PLA NPs were synthesized using the nanoprecipitation method and characterized by transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, dynamic light scattering, and zeta potential techniques. The results showed that the nanoparticle sizes are in the range of 100-200 nm with positive surface charge. The release profile of the synthesized nanoformulation showed controlled release of the Vbx drug for 72 h. The anticancer efficacy of the synthesized nanoformulation was assessed on the HepG2 cell lines. The in vitro cytotoxicity study revealed that the Vbx-loaded Cht-PLA NPs showed higher toxicity with an increase in concentration as compared to the Vbx alone. Additionally, an in vitro cellular uptake study revealed higher internalization as compared to the drug alone due to the chitosan coating. Further, the ability to stimulate the reactive oxygen species (ROS) generation and variation in mitochondrial membrane potential at the IC50 concentration of Vbx-loaded Cht-PLA NPs was confirmed by using 2,7-dichlorodihydrofluorescein diacetate and rhodamine 123 dyes, respectively, and were analyzed under fluorescence microscopy. Hence, the results showed that Vbx-loaded Cht-PLA NPs possess high anticancer activity due to its higher cellular toxicity, cellular uptake, increased ROS production, and disruption in mitochondrial membrane potential. All these properties of the synthesized nanoformulation suggest it's potential applications in drug delivery systems, targeting liver cancer.
Collapse
Affiliation(s)
- Amit Singh
- Nano-bioconjugate
Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Shivangi Bora
- Genomics
and Molecular Medicine Unit, Institute of
Genomics and Integrative Biology (IGIB)-Council of Scientific and
Industrial Research (CSIR), Mall Road, Delhi 110007, India
| | - Pankaj Kumar
- Nano-bioconjugate
Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
- Department
of Chemistry, University of Delhi, Delhi 110007, India
| | - Ritushree Kukreti
- Genomics
and Molecular Medicine Unit, Institute of
Genomics and Integrative Biology (IGIB)-Council of Scientific and
Industrial Research (CSIR), Mall Road, Delhi 110007, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mahima Kaushik
- Nano-bioconjugate
Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi 110007, India
| |
Collapse
|
3
|
Sweed NM, Zaafan MA, El-Bishbishy MH, Dawoud MHS. The pulmonary protective potential of vanillic acid-loaded TPGS-liposomes: modulation of miR-217/MAPK/NF-κb signalling pathway. J Microencapsul 2024; 41:255-268. [PMID: 38647544 DOI: 10.1080/02652048.2024.2335166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
The aim is to investigate the possible pulmonary protective effect of vanillic acid (VA) in liposome-TPGS nanoparticles, to overcome VA's poor bioavailability. VA was successfully extracted. Liposomes were prepared using thin film hydration. Central composite design was adopted for optimisation of liposomes to get the maximum entrapment efficiency (EE%) and the minimum mean diameter, where the liposomes were further modified with TPGS, and tested for PDI, zeta-potential, and in-vitro drug release. In-vivo study on mice with LPS-acute pulmonary toxicity was tested. TPGS-modified VA-liposomes showed EE% of 69.35 ± 1.23%, PS of 201.7 ± 3.23 nm, PDI of 0.19 ± 0.02, and zeta-potential of -32.2 ± 0.32 mv. A sustained drug release of the TPGS-modified VA-liposomes was observed compared to standard VA, and a pulmonary-protective effect through decreasing miR-217 expression with subsequent anti-inflammatory effect through suppression of MAPK and PI3K/NF-κB pathways was also demonstrated in the current study. TPGS-modified VA-liposomes showed an enhanced bioavailability and a sustained drug release with promising pulmonary protective effects against acute pulmonary injury diseases.
Collapse
Affiliation(s)
- Nabila M Sweed
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Mai A Zaafan
- Pharmacology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Mahitab H El-Bishbishy
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| | - Marwa H S Dawoud
- Pharmaceutics Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6 October, Egypt
| |
Collapse
|
4
|
Xu L, Liaqat F, Khazi MI, Sun J, Zhu D. Natural deep eutectic solvents-based green extraction of vanillin: optimization, purification, and bioactivity assessment. Front Nutr 2024; 10:1279552. [PMID: 38375356 PMCID: PMC10875998 DOI: 10.3389/fnut.2023.1279552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/27/2023] [Indexed: 02/21/2024] Open
Abstract
The sustainable extraction of natural compounds has recently attracted significant attention. The extraction of high-quality natural vanillin in active form is crucial for its efficient use in various industries, but conventional solvents are not suitable for this purpose. The flammability, volatility, and toxicity of organic solvents can harm extraction personnel, and their waste liquid can cause environmental pollution. Natural deep eutectic solvents (NADES) are cost-effective, environmentally friendly, biodegradable, and non-toxic organic alternative to conventional solvents. In this study, 20 different NADES were tested for the sustainable extraction of natural vanillin. Among these, a DES system composed of choline chloride: 1,4-butanediol: lactic acid exhibited the highest extraction rate (15.9 mg/g). Employing response surface methodology (RSM), optimal extraction conditions were determined, yielding a vanillin content 18.5 mg/g with water content of 33.9%, extraction temperature of 64.6°C, extraction time of 32.3 min, and a solid-liquid ratio of 44.9 mg/mL. Subsequently, the optimized NADES system was then assessed for reusability in extracting vanillin from vanilla pods and kraft lignin over three cycles, retaining 43% of its extraction efficiency and demonstrating potential for waste reduction. Purification of vanillin was achieved through chromatography using a non-polar resin SP700, with ethanol as a desorption eluent and a feed solution pH of 4.0, resulting in the highest vanillin purity. HPLC and GC-MS analyses confirmed purity, while antioxidant activity assays (DPPH and ABTS) showcased significant antioxidant activity of the purified vanillin. Moreover, vanillin exhibited notable antimicrobial activity against a panel of food-borne bacteria. This study introduces an environmentally friendly approach to vanillin extraction highlights using NADES, emphasizing the potential for producing high-quality bioactive vanillin with reduced environmental impact. The applicability of NADES systems extends beyond vanillin, offering a versatile method for extracting diverse natural compounds.
Collapse
Affiliation(s)
- Lingxia Xu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| | - Fakhra Liaqat
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mahammed Ilyas Khazi
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Jianzhong Sun
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
5
|
Borah MS, Tiwari A, Sridhar K, Narsaiah K, Nayak PK, Stephen Inbaraj B. Recent Trends in Valorization of Food Industry Waste and By-Products: Encapsulation and In Vitro Release of Bioactive Compounds. Foods 2023; 12:3823. [PMID: 37893717 PMCID: PMC10606574 DOI: 10.3390/foods12203823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Food by-products and waste are a boundless source of bioactives, nutraceuticals, and naturally occurring substances that are good for human health. In fact, a lot of by-products and wastes are generated by several food businesses. Therefore, waste management and by-product utilization are the most important aspects of the food sector. According to various studies, many bioactive compounds such as phenolics, carotenoids, and proteins can be recovered as feed stock from various industries' by-products and wastes using potential technologies. As a result, current trends are shifting attention to the sustainable valorisation of food sector waste management and by-products utilization. Thus, the circular economy principles have been applied to the field of food science. The aim of the circular economy is to ensure environmental protection and promote economic development while minimizing the environmental impact of food production. All of these aspects of the circular economy, at present, have become a challenging area of research for by-product valorisation as well. Hence, this review aims to highlight the emerging trends in the efficient utilization of food industry waste and by-products by focusing on innovative encapsulation techniques and controlled release mechanisms of bioactive compounds extracted from food industry waste and by-products. This review also aims to suggest future research directions, and addresses regulatory and toxicity considerations, by fostering knowledge dissemination and encouraging eco-friendly approaches within the food industry. This review reveals the role of encapsulation strategies for the effective utilization of bioactive compounds extracted from food industry waste and by-products. However, further research is needed to address regulatory and toxicity considerations of encapsulated bioactive compounds and health-related concerns.
Collapse
Affiliation(s)
| | - Ajita Tiwari
- Department of Agricultural Engineering, Assam University, Silchar 788011, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Kairam Narsaiah
- Agriculture Engineering Division, Indian Council of Agricultural Research, New Delhi 110012, India
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology Kokrajhar, Kokrajhar 783370, India
| | | |
Collapse
|
6
|
Hyun SW, Han S, Son JW, Song MS, Kim DA, Ha SD. Development and efficacy assessment of hand sanitizers and polylactic acid films incorporating caffeic acid and vanillin for enhanced antiviral properties against HCoV-229E. Virol J 2023; 20:194. [PMID: 37641064 PMCID: PMC10463313 DOI: 10.1186/s12985-023-02159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Although three years after the outbreak of SARS-CoV-2, the virus is still having a significant impact on human health and the global economy. Infection through respiratory droplets is the main transmission route, but the transmission of the virus by surface contact cannot be ignored. Hand sanitizers and antiviral films can be applied to control SARS-CoV-2, but sanitizers and films show drawbacks such as resistance of the virus against ethanol and environmental problems including the overuse of plastics. Therefore, this study suggested applying natural substrates to hand sanitizers and antiviral films made of biodegradable plastic (PLA). This approach is expected to provide advantages for the easy control of SARS-CoV-2 through the application of natural substances. METHODS Antiviral disinfectants and films were manufactured by adding caffeic acid and vanillin to ethanol, isopropyl alcohol, benzalkonium chloride, and PLA. Antiviral efficacies were evaluated with slightly modified international standard testing methods EN 14,476 and ISO 21,702. RESULTS In suspension, all the hand sanitizers evaluated in this study showed a reduction of more than 4 log within 2 min against HCoV-229E. After natural substances were added to the hand sanitizers, the time needed to reach the detection limit of the viral titer was shortened both in suspension and porcine skin. However, no difference in the time needed to reach the detection limit of the viral titer was observed in benzalkonium chloride. In the case of antiviral films, those made using both PLA and natural substances showed a 1 log reduction of HCoV-229E compared to the neat PLA film for all treatment groups. Furthermore, the influence of the organic load was evaluated according to the number of contacts of the antiviral products with porcine skin. Ten rubs on the skin resulted in slightly higher antiviral activity than 50 rubs. CONCLUSION This study revealed that caffeic acid and vanillin can be effectively used to control HCoV-229E for hand sanitizers and antiviral films. In addition, it is recommended to remove organic matter from the skin for maintaining the antiviral activity of hand sanitizer and antiviral film as the antiviral activity decreased as the organic load increased in this study.
Collapse
Affiliation(s)
- Seok-Woo Hyun
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sangha Han
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Jeong Won Son
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Min Su Song
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Dan Ah Kim
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research Group, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
7
|
Sinsuebpol C, Burapapadh K, Chowjaroen V, Changsan N. The radical scavenging activity of vanillin and its impact on the healing properties of wounds. J Adv Pharm Technol Res 2023; 14:99-104. [PMID: 37255868 PMCID: PMC10226704 DOI: 10.4103/japtr.japtr_631_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 06/01/2023] Open
Abstract
Vanillin, an extract from the Vanilla planifolia plant, is reported to possess potent antioxidant properties. The ability of vanillin to protect skin cells from reactive oxygen species (ROS)-induced damage and its potential use in the treatment of wounds were studied. Cytocompatibility and cytoprotective properties against ROS-induced damage were examined using keratinocyte and fibroblast cell models. Vanillin's effect on cell migration was studied using the scratch wound healing assay. Vanillin exhibited cytocompatibility and cytoprotective properties against cell damage induced by ROS. Human keratinocytes and fibroblast cells showed >80% survival when exposed to vanillin (10-500 μM). Both cells showed no evidence of necrosis or apoptosis, which was confirmed by acridine orange/propidium iodide staining. Both examined cells were exposed to 750 μM hydrogen peroxide to cause oxidative stress, and vanillin demonstrated the ability to inhibit ROS-induced cell death. In addition, a considerable increase in cell migration suggested that vanillin had the ability to heal wounds in vitro. Vanillin is safe and potentially useful in wound healing treatments.
Collapse
Affiliation(s)
- Chutima Sinsuebpol
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Verisa Chowjaroen
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Narumon Changsan
- Department of Pharmaceutical Technology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|
8
|
Green Synthesized Silver Nanoparticles Using Lactobacillus Acidophilus as an Antioxidant, Antimicrobial, and Antibiofilm Agent Against Multi-drug Resistant Enteroaggregative Escherichia Coli. Probiotics Antimicrob Proteins 2022; 14:904-914. [PMID: 35715714 DOI: 10.1007/s12602-022-09961-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/17/2022]
Abstract
The present study was envisaged to employ the green synthesis and characterization of silver nanoparticles (AgNPs) using the potential probiotic strain Lactobacillus acidophilus, to assess its antibacterial as well as antibiofilm activity against multi-drug-resistant enteroaggregative Escherichia coli (MDR-EAEC) strains and to investigate their antioxidant activity. In this study, AgNPs were successfully synthesized through an eco-friendly protocol, which was then confirmed by its X-ray diffraction (XRD) pattern. A weight loss of 15% up to 182 °C with a narrow exothermic peak between 170 °C and 205 °C was observed in thermogravimetric analysis-differential thermal analysis (TGA-DTA), while aggregated nanoclusters were observed in scanning electron microscopy (SEM). Moreover, the transmission electron microscopy (TEM) imaging of AgNPs revealed a spherical morphology and crystalline nature with an optimum size ranging from 10 to 20 nm. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of green synthesized AgNPs against the MDR-EAEC strains were found to be 7.80 mg/L and 15.60 mg/L, respectively. In vitro time-kill kinetic assay revealed a complete elimination of the MDR-EAEC strains after 180 min on co-incubation with the AgNPs. Moreover, the green synthesized AgNPs were found safe by in vitro haemolytic assay. Besides, the green synthesized AgNPs exhibited significant biofilm inhibition (P < 0.001) formed by MDR-EAEC strains. Additionally, a concentration-dependent antioxidant activity was observed in 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays. Hence, this study demonstrated potential antibacterial as well as antibiofilm activity of green synthesized AgNPs against MDR-EAEC strains with antioxidant properties and warrants further in-depth studies to explore it as an effective antimicrobial agent against MDR infections.
Collapse
|
9
|
Tie S, Xiang S, Chen Y, Qiao F, Cui W, Su W, Tan M. Facile synthesis of food-grade and size-controlled nanocarriers based on self-assembly of procyanidins and phycocyanin. Food Funct 2022; 13:4023-4031. [PMID: 35315469 DOI: 10.1039/d1fo04222j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanocarriers provide the possibility to overcome the low solubility, poor stability, and low bioavailability of functional factors. However, most nanocarriers do not directly participate in the corresponding effects of functional factors, such as treating inflammatory bowel disease but lack the means to control their size accurately. Herein, nanocarriers were prepared by a one-pot method, using food-grade antioxidant procyanidins, vanillin, and phycocyanin as raw materials. The strategy involved the Mannich reaction among the phenolic hydroxyl groups of procyanidins, the aldehyde groups of vanillin, and the amino groups of phycocyanin. The obtained nanocarriers displayed controllable sizes ranging from 130 to 750 nm, showing good antioxidant capacity in scavenging free radicals and were biocompatible to Caco-2 cells and RAW 264.7 macrophages. Nanocarriers also exhibited an inhibitory effect on cell damage induced by acrylamide and H2O2. Moreover, the designed nanocarriers could be used for delivering active ingredients such as lutein, which showed a uniform spherical distribution, high encapsulation efficiency, and good biocompatibility. This work provides a facile synthesis method to prepare food-grade nanocarriers with functional properties, which can be potentially used in the delivery of functional factors.
Collapse
Affiliation(s)
- Shanshan Tie
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yannan Chen
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Fengzhi Qiao
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weina Cui
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian 116034, Liaoning, China. .,National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China.,Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
10
|
Nanoencapsulation of Essential Oils as Natural Food Antimicrobial Agents: An Overview. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11135778] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The global demand for safe and healthy food with minimal synthetic preservatives is continuously increasing. Natural food antimicrobials and especially essential oils (EOs) possess strong antimicrobial activities that could play a remarkable role as a novel source of food preservatives. Despite the excellent efficacy of EOs, they have not been widely used in the food industry due to some major intrinsic barriers, such as low water solubility, bioavailability, volatility, and stability in food systems. Recent advances in nanotechnology have the potential to address these existing barriers in order to use EOs as preservatives in food systems at low doses. Thus, in this review, we explored the latest advances of using natural actives as antimicrobial agents and the different strategies for nanoencapsulation used for this purpose. The state of the art concerning the antibacterial properties of EOs will be summarized, and the main latest applications of nanoencapsulated antimicrobial agents in food systems will be presented. This review should help researchers to better choose the most suitable encapsulation techniques and materials.
Collapse
|
11
|
Karakurt I, Ozaltin K, Vargun E, Kucerova L, Suly P, Harea E, Minařík A, Štěpánková K, Lehocky M, Humpolícek P, Vesel A, Mozetic M. Controlled release of enrofloxacin by vanillin-crosslinked chitosan-polyvinyl alcohol blends. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112125. [PMID: 34082942 DOI: 10.1016/j.msec.2021.112125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2021] [Accepted: 04/18/2021] [Indexed: 11/28/2022]
Abstract
In transdermal drug delivery applications uniform drug distribution and sustained release are of great importance to decrease the side effects. In this direction in the present research, vanillin crosslinked chitosan (CS) and polyvinyl alcohol (PVA) blend based matrix-type transdermal system was prepared by casting and drying of aqueous solutions for local delivery of enrofloxacin (ENR) drug. Subsequently, the properties including the morphology, chemical structure, thermal behavior, tensile strength, crosslinking degree, weight uniformity, thickness, swelling and drug release of the CS-PVA blend films before and after crosslinking were characterized. In vitro drug release profiles showed the sustained release of ENR by the incorporation of vanillin as a crosslinker into the CS-PVA polymer matrix. Furthermore, the release kinetic profiles revealed that the followed mechanism for all samples was Higuchi and the increase of vanillin concentration in the blend films resulted in the change of diffusion mechanism from anomalous transport to Fickian diffusion. Overall, the obtained results suggest that the investigated vanillin crosslinked CS-PVA matrix-type films are potential candidates for transdermal drug delivery system.
Collapse
Affiliation(s)
- Ilkay Karakurt
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Kadir Ozaltin
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Elif Vargun
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Department of Chemistry, Mugla Sitki Kocman University, Kotekli, 48000 Mugla, Turkey.
| | - Liliana Kucerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Evghenii Harea
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Antonín Minařík
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Kateřina Štěpánková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Marian Lehocky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Petr Humpolícek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Faculty of Technology, Tomas Bata University in Zlín, Vavreckova 275, 76001 Zlín, Czech Republic.
| | - Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Miran Mozetic
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| |
Collapse
|
12
|
A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Arya SS, Rookes JE, Cahill DM, Lenka SK. Vanillin: a review on the therapeutic prospects of a popular flavouring molecule. ADVANCES IN TRADITIONAL MEDICINE 2021. [PMCID: PMC7790484 DOI: 10.1007/s13596-020-00531-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract Graphic abstract
Collapse
Affiliation(s)
- Sagar S. Arya
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - James E. Rookes
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - David M. Cahill
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216 Australia
| | - Sangram K. Lenka
- TERI-Deakin NanoBiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana 122001 India
| |
Collapse
|
14
|
Sáez-Orviz S, Marcet I, Weng S, Rendueles M, Díaz M. PLA nanoparticles loaded with thymol to improve its incorporation into gelatine films. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2019.109751] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
15
|
Liu D, Zhang J, Zhao L, He W, Liu Z, Gan X, Song B. First Discovery of Novel Pyrido[1,2- a]pyrimidinone Mesoionic Compounds as Antibacterial Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11860-11866. [PMID: 31532652 DOI: 10.1021/acs.jafc.9b03606] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plant bacterial diseases cause tremendous decreases in crop yield and quality, and there is a lack of highly effective and low-risk antibacterial agents. A series of novel pyrido[1,2-a]pyrimidinone mesoionic compounds containing vanillin moieties were synthesized, and the application of these mesoionic compounds as plant antibacterial agents was reported here for the first time. The bioassay results revealed that the mesoionic compounds had good antibacterial activity. Of these compounds, compound 11 showed excellent in vitro activity against Xanthomonas oryzae pv. oryzae, with an EC50 value of 1.1 μg/mL, which was substantially better than that of bismerthiazol (92.7 μg/mL) and thiodiazole copper (105.4 μg/mL). Moreover, greenhouse condition trials indicated that the protective and curative activities of compound 11 against rice bacterial leaf blight were 75.12 and 72.04%, respectively, which were better than those of bismerthiazol (62.24 and 50.83%, respectively) and thiodiazole copper (53.35 and 65.04%, respectively). These results provide a basis for the application of mesoionic vanillin moieties as new antibacterial agents.
Collapse
Affiliation(s)
- Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Wengjing He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Zhengjun Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education , Guizhou University , Huaxi District, Guiyang , Guizhou 550025 , People's Republic of China
| |
Collapse
|
16
|
Pieper S, Onafuye H, Mulac D, Cinatl J, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2062-2072. [PMID: 31728254 PMCID: PMC6839550 DOI: 10.3762/bjnano.10.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 05/30/2023]
Abstract
Background: Nanoparticles are under investigation as carrier systems for anticancer drugs. The expression of efflux transporters such as the ATP-binding cassette (ABC) transporter ABCB1 is an important resistance mechanism in therapy-refractory cancer cells. Drug encapsulation into nanoparticles has been shown to bypass efflux-mediated drug resistance, but there are also conflicting results. To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by solvent displacement and emulsion diffusion approaches and assessed their anticancer efficiency in neuroblastoma cells, including ABCB1-expressing cell lines, in comparison to doxorubicin solution. Results: The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anticancer effects. However, nanoparticle-encapsulated doxorubicin did not display increased efficacy in ABCB1-expressing cells relative to doxorubicin solution. Conclusion: Doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anticancer therapy. Further research is required to understand under which circumstances nanoparticles can be used to overcome efflux-mediated resistance in cancer cells.
Collapse
Affiliation(s)
- Sebastian Pieper
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Hannah Onafuye
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe-University, Paul Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Mark N Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| |
Collapse
|
17
|
Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol 2019; 7:259. [PMID: 31681741 PMCID: PMC6797553 DOI: 10.3389/fbioe.2019.00259] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/26/2019] [Indexed: 11/18/2022] Open
Abstract
Polylactic acid (PLA)-based polymers are ubiquitous in the biomedical field thanks to their combination of attractive peculiarities: biocompatibility (degradation products do not elicit critical responses and are easily metabolized by the body), hydrolytic degradation in situ, tailorable properties, and well-established processing technologies. This led to the development of several applications, such as bone fixation screws, bioresorbable suture threads, and stent coating, just to name a few. Nanomedicine could not be unconcerned by PLA-based materials as well, where their use for the synthesis of nanocarriers for the targeted delivery of hydrophobic drugs emerged as a new promising application. The purpose of the here presented review is two-fold: on one side, it aims at providing a broad overview of PLA-based materials and their properties, which allow them gaining a leading role in the biomedical field; on the other side, it offers a specific focus on their recent use in nanomedicine, highlighting opportunities and perspectives.
Collapse
Affiliation(s)
- Tommaso Casalini
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland, Manno, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Milan, Italy
| | - Andrea Castrovinci
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland, Manno, Switzerland
| | - Giuseppe Perale
- Polymer Engineering Laboratory, Department of Innovative Technologies, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences of Southern Switzerland, Manno, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| |
Collapse
|
18
|
Preparation of magnesium-based two-dimensional phyllosilicate materials and simultaneous antioxidant drug intercalation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
19
|
Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.030] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
dos Santos A, André CB, Martim GC, Schuquel ITA, Pfeifer CS, Ferracane JL, Tominaga TT, Khalil NM, Radovanovic E, Girotto EM. Methacrylate saccharide-based monomers for dental adhesive systems. INTERNATIONAL JOURNAL OF ADHESION & ADHESIVES 2018; 87:1-11. [PMID: 31130758 PMCID: PMC6533006 DOI: 10.1016/j.ijadhadh.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The aim of this in vitro study was to synthesize three new methacrylate monomers based on the modification of saccharides structures (glucose-Gluc, sucrose-Sucr and chitosan-Chit) with glycidyl methacrylate, and to use them in the composition of dental adhesives. Three methacrylate saccharide monomers were synthesized and characterized by mid-IR, 1H and 13C NMR, antioxidant activity and cytotoxic effect. Monomers included: one monosaccharide - Gluc-MA; one disaccharide - Sucr-MA; and one polysaccharide - Chit-MA. Primers containing HEMA, methacrylate saccharide monomers at concentrations of 0 (control), 1, 2 or 4 wt%, 60 wt% ethanol aqueous solution (pH3.0) and initiator system were formulated. Primers were used in conjunction with a bond step and composite paste to restore caries-free third molars, and dentin bond strength (24 hours and 6 month of storage in water), and antimicrobial activity (Alamar Blue test) were tested. Degree of conversion (DC) and maximum rate of polymerization (Rpmax) of the primers themselves were also analyzed. The mid-IR, 1H and 13C spectrum confirmed the presence of vinyl group on the structure of saccharides. Chit-MA showed low antioxidant activity and did not present a cytotoxic effect. Gluc-MA and Sucr-MA possess antioxidant and cytotoxic activity, concentration dependent. In the presence of methacrylate saccharide monomers, the primers showed DC comparable to the control group, except Gluc-MA4%, Sucr-MA4% and Chit-MA1%, which showed a range of 64.6 from 58.5 %DC. Rpmax was not statistically different for all the groups (p = 0.01). The bond strength of Sucr-MA1% increased from 25.7 (±2.8) to 40.6 (±5.3) MPa after 6 months of storage. All the synthesized monomers showed some antimicrobial activity after polymerization. Gluc-MA and Chit-MA 4% and Sucr-MA 1, 2 and 4% led to decrease bacterial metabolism. Sucr-MA 1% showed better results regarding the decrease in bacterial metabolism and increasing the bond strength after 6 months of storage.
Collapse
Affiliation(s)
- Andressa dos Santos
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Carolina B. André
- Department of Restorative Dentistry, Piracicaba Dental School, State University of Campinas, Limeira Avenue, 901, Piracicaba, SP, Brazil
| | - Gedalias C. Martim
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Ivania T. A. Schuquel
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Carmem S. Pfeifer
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Jack L. Ferracane
- Division of Biomaterials and Biomechanics, School of Dentistry, Oregon Health and Science University, 2730 SW Moody Avenue, Portland, OR, United State of America
| | - Tania T. Tominaga
- Department of Physics, State University of the Midwest, Simeao Camargo Varela de Sá Street, 03, Guarapuava, PR, Brazil
| | - Najeh M. Khalil
- Department of Pharmacy, State University of the Midwest, Simeao Camargo Varela de Sá Street, 03, Guarapuava, PR, Brazil
| | - Eduardo Radovanovic
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| | - Emerson M. Girotto
- Materials Chemistry and Sensors Laboratories, Department of Chemistry, State University of Maringa, Colombo Avenue, 5790, Maringá, PR, Brazil
| |
Collapse
|
21
|
Ren J, Han L, Cai H, Wu K, Avérous L, Guo W. Functional Biocomposites Based on Plasticized Starch/halloysite Nanotubes for Drug-Release Applications. STARCH-STARKE 2018. [DOI: 10.1002/star.201700358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiawei Ren
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Lei Han
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Haifeng Cai
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Kai Wu
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| | - Luc Avérous
- Bioteam/ICPEES-ECPM, UMR CNRS 7515, Universite de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2; France
| | - Weihong Guo
- Polymer Alloy Lab, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
22
|
Qin X, Kräft T, Goycoolea FM. Chitosan encapsulation modulates the effect of trans-cinnamaldehyde on AHL-regulated quorum sensing activity. Colloids Surf B Biointerfaces 2018; 169:453-461. [PMID: 29852434 DOI: 10.1016/j.colsurfb.2018.05.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaofei Qin
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | - Tabea Kräft
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany
| | - Francisco M Goycoolea
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossgarten 3, D-48149, Münster, Germany.
| |
Collapse
|
23
|
Jiang S, Hua L, Guo Z, Sun L. One-pot green synthesis of doxorubicin loaded-silica nanoparticles for in vivo cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:257-263. [PMID: 29853089 DOI: 10.1016/j.msec.2018.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 01/02/2023]
Abstract
The present work reveals a new and simple one-pot green method to load doxorubicin (DOX) drugs in silica nanoparticles for efficient in vivo cancer therapy. The synthesis of DOX loaded silica nanoparticles (SiNPs/DOX) is based on the efficient encapsulation of DOX in surfactant Tween 80 micelles which act as a template for the formation of silica nanoparticles. The release profile, cellular uptake behavior, cytotoxicity and antitumor effect of SiNPs/DOX nanoparticles were investigated and compared to free DOX. The silica nanoparticles improved the cellular drug delivery efficiency and exhibited high cytotoxicity, successfully achieving the inhibition of tumor growth. Notably, the tumor size and weight of SiNPs/DOX group was 2-fold and 1.7-fold smaller than that of free DOX group, and 4-fold and 2-fold smaller than that of PBS group. The one-pot green synthesis system may have the potential to be developed as a promising drug delivery system.
Collapse
Affiliation(s)
- Shan Jiang
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Li Hua
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, PR China
| | - Zilong Guo
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Lin Sun
- College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
24
|
García-Astrain C, Avérous L. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr Polym 2018; 190:271-280. [PMID: 29628248 DOI: 10.1016/j.carbpol.2018.02.086] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/27/2018] [Indexed: 12/24/2022]
Abstract
Environment-sensitive alginate-based hydrogels for drug delivery applications are receiving increasing attention. However, most work in this field involves traditional cross-linking strategies which led to hydrogels with poor long-term stability. Herein, a series of chemically cross-linked alginate hydrogels was synthesized via click chemistry using Diels-Alder reaction by reacting furan-modified alginate and bifunctional cross-linkers. Alginate was successfully functionalized with furfurylamine. Then, 3D architectures were synthesized with water-soluble bismaleimides. Different substitution degrees were achieved in order to study the effect of alginate modification and the cross-linking extent over the behaviour of the hydrogels. The ensuing hydrogels were analysed in terms of microstructure, swelling, structure modification and rheological behaviour. The materials response to external stimuli such as pH was also investigated, revealing a pulsatile behaviour in a large pH range (1-13) and a clear pH-dependent swelling. Finally, vanillin release studies were conducted to demonstrate the potential of these biobased materials for drug delivery applications.
Collapse
Affiliation(s)
- Clara García-Astrain
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, Strasbourg Cedex 2, France.
| |
Collapse
|
25
|
Zhao P, Liu Z, Wang X, Pan YT, Kuehnert I, Gehde M, Wang DY, Leuteritz A. Renewable vanillin based flame retardant for poly(lactic acid): a way to enhance flame retardancy and toughness simultaneously. RSC Adv 2018; 8:42189-42199. [PMID: 35558792 PMCID: PMC9092228 DOI: 10.1039/c8ra08531e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/09/2018] [Indexed: 11/21/2022] Open
Abstract
A bio-based PLA composite with excellent fire performance, improved toughness and good processability.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Verarbeitungsprozesse
- Leibniz Institut für Polymerforschung Dresden e. V
- Dresden
- Germany
- Fakultät für Maschinenbau
| | - Zhiqi Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources
- Qinghai Institute of Salt Lakes
- Chinese Academy of Sciences
- Xining
- China
| | - Xueyi Wang
- Verarbeitungsprozesse
- Leibniz Institut für Polymerforschung Dresden e. V
- Dresden
- Germany
| | - Ye-Tang Pan
- IMDEA Materials Institute
- 28906 Getafe, Madrid
- Spain
| | - Ines Kuehnert
- Verarbeitungsprozesse
- Leibniz Institut für Polymerforschung Dresden e. V
- Dresden
- Germany
| | - Michael Gehde
- Fakultät für Maschinenbau
- Technische Universität Chemnitz
- Chemnitz
- Germany
| | - De-Yi Wang
- Verarbeitungsprozesse
- Leibniz Institut für Polymerforschung Dresden e. V
- Dresden
- Germany
- IMDEA Materials Institute
| | - Andreas Leuteritz
- Verarbeitungsprozesse
- Leibniz Institut für Polymerforschung Dresden e. V
- Dresden
- Germany
| |
Collapse
|
26
|
Montes A, Merino R, De los Santos D, Pereyra C, Martínez de la Ossa E. Micronization of vanillin by rapid expansion of supercritical solutions process. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.07.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
27
|
Chmielowski RA, Abdelhamid DS, Faig JJ, Petersen LK, Gardner CR, Uhrich KE, Joseph LB, Moghe PV. Athero-inflammatory nanotherapeutics: Ferulic acid-based poly(anhydride-ester) nanoparticles attenuate foam cell formation by regulating macrophage lipogenesis and reactive oxygen species generation. Acta Biomater 2017; 57:85-94. [PMID: 28522412 PMCID: PMC5546209 DOI: 10.1016/j.actbio.2017.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Enhanced bioactive anti-oxidant formulations are critical for treatment of inflammatory diseases, such as atherosclerosis. A hallmark of early atherosclerosis is the uptake of oxidized low density lipoprotein (oxLDL) by macrophages, which results in foam cell and plaque formation in the arterial wall. The hypolipidemic, anti-inflammatory, and antioxidative properties of polyphenol compounds make them attractive targets for treatment of atherosclerosis. However, high concentrations of antioxidants can reverse their anti-atheroprotective properties and cause oxidative stress within the artery. Here, we designed a new class of nanoparticles with anti-oxidant polymer cores and shells comprised of scavenger receptor targeting amphiphilic macromolecules (AMs). Specifically, we designed ferulic acid-based poly(anhydride-ester) nanoparticles to counteract the uptake of high levels of oxLDL and regulate reactive oxygen species generation (ROS) in human monocyte derived macrophages (HMDMs). Compared to all compositions examined, nanoparticles with core ferulic acid-based polymers linked by diglycolic acid (PFAG) showed the greatest inhibition of oxLDL uptake. At high oxLDL concentrations, the ferulic acid diacids and polymer nanoparticles displayed similar oxLDL uptake. Treatment with the PFAG nanoparticles downregulated the expression of macrophage scavenger receptors, CD-36, MSR-1, and LOX-1 by about 20-50%, one of the causal factors for the decrease in oxLDL uptake. The PFAG nanoparticle lowered ROS production by HMDMs, which is important for maintaining macrophage growth and prevention of apoptosis. Based on these results, we propose that ferulic acid-based poly(anhydride ester) nanoparticles may offer an integrative strategy for the localized passivation of the early stages of the atheroinflammatory cascade in cardiovascular disease. STATEMENT OF SIGNIFICANCE Future development of anti-oxidant formulations for atherosclerosis applications is essential to deliver an efficacious dose while limiting localized concentrations of pro-oxidants. In this study, we illustrate the potential of degradable ferulic acid-based polymer nanoparticles to control macrophage foam cell formation by significantly reducing oxLDL uptake through downregulation of scavenger receptors, CD-36, MSR-1, and LOX-1. Another critical finding is the ability of the degradable ferulate-based polymer nanoparticles to lower macrophage reactive oxygen species (ROS) levels, a precursor to apoptosis and plaque escalation. The degradable ferulic acid-based polymer nanoparticles hold significant promise as a means to alter the treatment and progression of atherosclerosis.
Collapse
Affiliation(s)
- Rebecca A Chmielowski
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, USA
| | - Dalia S Abdelhamid
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA; Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Jonathan J Faig
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA
| | - Latrisha K Petersen
- Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, USA
| | - Carol R Gardner
- Department of Pharmacology and Toxicology, 160 Frelinghuysen Road, Rutgers University, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, 610 Taylor Rd., Rutgers University, NJ, USA
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, 160 Frelinghuysen Road, Rutgers University, NJ, USA.
| | - Prabhas V Moghe
- Department of Chemical and Biochemical Engineering, 98 Brett Rd, Rutgers University, NJ, USA; Department of Biomedical Engineering, 599 Taylor Rd., Rutgers University, NJ, USA.
| |
Collapse
|
28
|
Zhang J, Zhao L, Zhu C, Wu Z, Zhang G, Gan X, Liu D, Pan J, Hu D, Song B. Facile Synthesis of Novel Vanillin Derivatives Incorporating a Bis(2-hydroxyethyl)dithhioacetal Moiety as Antiviral Agents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:4582-4588. [PMID: 28545296 DOI: 10.1021/acs.jafc.7b01035] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A series of vanillin derivatives incorporating a bis(2-hydroxyethyl)dithioacetal moiety was designed and synthesized via a facile method. A plausible reaction pathway was proposed and verified by computational studies. Bioassay results demonstrated that target compounds possessed good to excellent activities against potato virus Y (PVY) and cucumber mosaic virus (CMV), of which, compound 6f incorporating a bis(2-hydroxyethyl)dithioacetal moiety, exhibited the best curative and protection activities against PVY and CMV in vivo, with 50% effective concentration values of 217.6, 205.7 μg/mL and 206.3, 186.2 μg/mL, respectively, better than those of ribavirin (848.0, 808.1 μg/mL and 858.2, 766.5 μg/mL, respectively), dufulin (462.6, 454.8 μg/mL and 471.2, 465.4 μg/mL, respectively), and ningnanmycin (440.5, 425.3 μg/mL and 426.1, 405.3 μg/mL, respectively). Current studies provide support for the application of vanillin derivatives incorporating bis(2-hydroxyethyl)dithioacetal as new antiviral agents.
Collapse
Affiliation(s)
- Jian Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Lei Zhao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Guoping Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Xiuhai Gan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Dengyue Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Jianke Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University , Huaxi District, Guiyang 550025, China
| |
Collapse
|
29
|
Sharkawy A, Fernandes IP, Barreiro MF, Rodrigues AE, Shoeib T. Aroma-Loaded Microcapsules with Antibacterial Activity for Eco-Friendly Textile Application: Synthesis, Characterization, Release, and Green Grafting. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00741] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asma Sharkawy
- Department
of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
| | - I. P. Fernandes
- Laboratory
of Separation and Reaction Engineering (LSRE), Associate Laboratory
LSRE/LCM, Polytechnic Institute of Bragança, Campus of Santa Apolonia, 5300-253 Bragança, Portugal
| | - M. F. Barreiro
- Laboratory
of Separation and Reaction Engineering (LSRE), Associate Laboratory
LSRE/LCM, Polytechnic Institute of Bragança, Campus of Santa Apolonia, 5300-253 Bragança, Portugal
| | - Alirio E. Rodrigues
- Laboratory
of Separation and Reaction Engineering, Department of Chemical Engineering,
Faculty of Engineering, University of Porto, Porto 4200-465, Portugal
| | - Tamer Shoeib
- Department
of Chemistry, The American University in Cairo, New Cairo 11835, Egypt
- Centre
for Analytical Science, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, U.K
| |
Collapse
|
30
|
Jog R, Burgess DJ. Pharmaceutical Amorphous Nanoparticles. J Pharm Sci 2017; 106:39-65. [DOI: 10.1016/j.xphs.2016.09.014] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/06/2016] [Accepted: 09/15/2016] [Indexed: 01/18/2023]
|
31
|
Lee BK, Yun Y, Park K. PLA micro- and nano-particles. Adv Drug Deliv Rev 2016; 107:176-191. [PMID: 27262925 DOI: 10.1016/j.addr.2016.05.020] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/15/2016] [Accepted: 05/24/2016] [Indexed: 01/05/2023]
Abstract
Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations.
Collapse
|
32
|
Abstract
With the refinement of functional properties, the interest around biodegradable materials, in biorelated applications and, in particular, in their use as controlled drug-delivery systems, increased in the last decades. Biodegradable materials are an ideal platform to obtain nanoparticles for spatiotemporal controlled drug delivery for the in vivo administration, thanks to their biocompatibility, functionalizability, the control exerted on delivery rates and the complete degradation. Their application in systems for cancer treatment, brain and cardiovascular diseases is already a consolidated practice in research, while the bench-to-bedside translation is still late. This review aims at summarizing reported applications of biodegradable materials to obtain drug-delivery nanoparticles in the last few years, giving a complete overview of pros and cons related to degradable nanomedicaments.
Collapse
|