1
|
Hu J, Yu Q, Wang L, Shi H, Luan S. Recent Progress in Antibacterial Surfaces for Implant Catheters. BME FRONTIERS 2025; 6:0063. [PMID: 39949607 PMCID: PMC11822169 DOI: 10.34133/bmef.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 02/16/2025] Open
Abstract
Catheter-related infections (CRIs) caused by hospital-acquired microbial infections lead to the failure of treatment and the increase of mortality and morbidity. Surface modifications of the implant catheters have been demonstrated to be effective approaches to improve and largely reduce the bacterial colonization and related complications. In this work, we focus on the last 5-year progress in the surface modifications of biomedical catheters to prevent CRIs. Their antibacterial strategies used for surface modifications are further divided into 5 classifications through the antimicrobial mechanisms, including active surfaces, passive surfaces, active and passive combination surfaces, stimulus-type response surfaces, and other types. Each feature and the latest advances in these abovementioned antibacterial surfaces of implant catheters are highlighted. Finally, these confronting challenges and future prospects are discussed for the antibacterial modifications of implant catheters.
Collapse
Affiliation(s)
- Jia Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry,
Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering,
University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Nešić MD, Popović IA, Žakula J, Korićanac L, Filipović Tričković J, Valenta Šobot A, Jiménez MV, Algarra M, Dučić T, Stepić M. Synergistic Enhancement of Targeted Wound Healing by Near-Infrared Photodynamic Therapy and Silver Metal-Organic Frameworks Combined with S- or N-Doped Carbon Dots. Pharmaceutics 2024; 16:671. [PMID: 38794333 PMCID: PMC11124918 DOI: 10.3390/pharmaceutics16050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
The literature data emphasize that nanoparticles might improve the beneficial effects of near-infrared light (NIR) on wound healing. This study investigates the mechanisms of the synergistic wound healing potential of NIR light and silver metal-organic frameworks combined with nitrogen- and sulfur-doped carbon dots (AgMOFsN-CDs and AgMOFsS-CDs, respectively), which was conducted by testing the fibroblasts viability, scratch assays, biochemical analysis, and synchrotron-based Fourier transform infrared (SR-FTIR) cell spectroscopy and imaging. Our findings reveal that the combined treatment of AgMOFsN-CDs and NIR light significantly increases cell viability to nearly 150% and promotes cell proliferation, with reduced interleukin-1 levels, suggesting an anti-inflammatory response. SR-FTIR spectroscopy shows this combined treatment results in unique protein alterations, including increased α-helix structures and reduced cross-β. Additionally, protein synthesis was enhanced upon the combined treatment. The likely mechanism behind the observed changes is the charge-specific interaction of N-CDs from the AgMOFsN-CDs with proteins, enhanced by NIR light due to the nanocomposite's optical characteristics. Remarkably, the complete wound closure in the in vitro scratch assay was achieved exclusively with the combined NIR and AgMOFsN-CDs treatment, demonstrating the promising application of combined AgMOFsN-CDs with NIR light photodynamic therapy in regenerative nanomedicine and tissue engineering.
Collapse
Affiliation(s)
- Maja D. Nešić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Iva A. Popović
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Žakula
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.Ž.); (L.K.)
| | - Lela Korićanac
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.Ž.); (L.K.)
| | - Jelena Filipović Tričković
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.F.T.); (A.V.Š.)
| | - Ana Valenta Šobot
- Department of Physical Chemistry, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (J.F.T.); (A.V.Š.)
| | | | - Manuel Algarra
- Department of Science, INAMAT—Institute for Advanced Materials and Mathematics, Public University of Navarra, 31006 Pamplona, Spain;
| | - Tanja Dučić
- MIRAS Beamline, ALBA-CELLS Synchrotron, 08290 Cerdanyola del Vallès, Spain;
| | - Milutin Stepić
- Center for Light-Based Research and Technologies COHERENCE, Department of Atomic Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Perelshtein I, Shoshani S, Jacobi G, Natan M, Dudchenko N, Perkas N, Tkachev M, Bengalli R, Fiandra L, Mantecca P, Ivanova K, Tzanov T, Banin E, Gedanken A. Protecting the Antibacterial Coating of Urinal Catheters for Improving Safety. ACS APPLIED BIO MATERIALS 2024; 7:990-998. [PMID: 38226433 DOI: 10.1021/acsabm.3c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties. Silicone catheters coated sonochemically with ZnO nanoparticles (NPs) demonstrated excellent antibiofilm effects. Toward approval by the European Medicines Agency, it was realized that the ZnO coating would not withstand the regulatory requirements of avoiding dissolution for 14 days in artificial urine examination. Namely, after exposure to urine for 14 days, the coating amount was reduced by 90%. Additional coatings with either carbon or silica maintained antibiofilm activity against Staphylococcus aureus while resisting dissolution in artificial urine for 14 days (C- or SiO2-protected catheters exhibited only 29% reduction). HR-SEM images of the protected catheters indicate the presence of the ZnO coating as well as the protective layer. Antibiofilm activity of all catheters was evaluated both before and after exposure to artificial urine. It was shown that before artificial urine exposure, all coated catheters showed high antibiofilm properties compared to the uncoated control. Exposure of ZnO-coated catheters, without the protective layer, to artificial urine had a significant effect exhibited by the decrease in antibiofilm activity by almost 2 orders of magnitude, compared to unexposed catheters. Toxicity studies performed using a reconstructed human epidermis demonstrated the safety of the improved coating. Exposure of the epidermis to ZnO catheter extracts in artificial urine affects tissue viability compared with control samples, which was not observed in the case of ZnO NPs coating with SiO2 or C. We suggest that silica and carbon coatings confer some protection against zinc ions release, improving ZnO coating safety.
Collapse
Affiliation(s)
- Ilana Perelshtein
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sivan Shoshani
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Gila Jacobi
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Michal Natan
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nataliia Dudchenko
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nina Perkas
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Maria Tkachev
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Rossella Bengalli
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Luisa Fiandra
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Center POLARIS, University of Milano Bicocca, Milan 20126, Italy
| | - Kristina Ivanova
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Department of Chemical Engineering, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, 08222 Terrasa, Spain
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
4
|
Mauro N, Calabrese G, Sciortino A, Rizzo MG, Messina F, Giammona G, Cavallaro G. Microporous Fluorescent Poly(D,L-lactide) Acid-Carbon Nanodot Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:449. [PMID: 38255617 PMCID: PMC10820564 DOI: 10.3390/ma17020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
In this study, we introduce novel microporous poly(D,L-lactide) acid-carbon nanodot (PLA-CD) nanocomposite scaffolds tailored for potential applications in image-guided bone regeneration. Our primary objective was to investigate concentration-dependent structural variations and their relevance to cell growth, crucial aspects in bone regeneration. The methods employed included comprehensive characterization techniques such as DSC/TGA, FTIR, rheological, and degradation assessments, providing insights into the scaffolds' thermoplastic behavior, microstructure, and stability over time. Notably, the PLA-CD scaffolds exhibited distinct self-fluorescence, which persisted after 21 days of incubation, allowing detailed visualization in various multicolor modalities. Biocompatibility assessments were conducted by analyzing human adipose-derived stem cell (hADSC) growth on PLA-CD scaffolds, with results substantiated through cell viability and morphological analyses. hADSCs reached a cell viability of 125% and penetrated throughout the scaffold after 21 days of incubation. These findings underscore the scaffolds' potential in bone regeneration and fluorescence imaging. The multifunctional nature of the PLA-CD nanocomposite, integrating diagnostic capabilities with tunable properties, positions it as a promising candidate for advancing bone tissue engineering. Our study not only highlights key aspects of the investigation but also underscores the scaffolds' specific application in bone regeneration, providing a foundation for further research and optimization in this critical biomedical field.
Collapse
Affiliation(s)
- Nicolò Mauro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Alice Sciortino
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Maria G. Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Fabrizio Messina
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Gaetano Giammona
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Gennara Cavallaro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| |
Collapse
|
5
|
Zhang Y, Zhang D, He Y, Wang Z, Song P, Wang R. Construction of hexagonal spindle-shaped Fe-MOFs induced by cationic copolymer and its application for effective wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80279-80292. [PMID: 37296248 DOI: 10.1007/s11356-023-28121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The environment and human health are in danger due to the long-term enrichment and buildup of organic pesticides, dyes, and harmful microbes in wastewater. The development of functional materials that are efficient for treating wastewater remains a significant problem. Eco-friendly hexagonal spindle-shaped Fe-MOFs (Hs-FeMOFs) were created in this study under the influence of cationic copolymer (PMSt). The mechanism of crystal growth and development of its unique morphology were described after looking into impact factors for the ideal circumstances and being characterized by XRD, TEM, XPS, and other techniques. It revealed that Hs-FeMOFs possess an enormous supply of adsorption active sites, a strong electropositivity, and the nanometer tip. Then, typical organic pollutants, such as herbicides and mixed dyes, as well as biological pollutants bacteria, were chosen to assess its efficacy in wastewater treatment. It was discovered that the pendimethalin could be quickly removed in wastewater and the removal rate reached 100% within 10 min. In separation of mixed dyes, the retention rate of malachite green (MG) reached 92.3% in 5 min and with a minimum inhibitory concentration of 0.8 mg/mL and demonstrated strong activity due to the presence of cationic copolymers. In actual water matrix, Hs-FeMOF could also play excellent adsorption and antibacterial activity. In summary, a novel, environmentally friendly MOF material with good activity was successfully created by cationic copolymer induction. It offers a fresh approach to develop functional materials in wastewater treatment.
Collapse
Affiliation(s)
- Yaping Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Duoxin Zhang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yufeng He
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zeyuan Wang
- School of Pharmacy, Temple University, Philadelphia, PA, 19140, USA
| | - Pengfei Song
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Rongmin Wang
- Key Lab. Eco-Functional Polymer Materials of MOE, Institute of Polymer, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
6
|
Near-infrared light-responsive and antibacterial injectable hydrogels with antioxidant activity based on a Dopamine-functionalized Gellan Gum for wound healing. Int J Pharm 2022; 627:122257. [DOI: 10.1016/j.ijpharm.2022.122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022]
|
7
|
Electrospun Silk Fibroin/Polylactic-co-glycolic Acid/Black Phosphorus Nanosheets Nanofibrous Membrane with Photothermal Therapy Potential for Cancer. Molecules 2022; 27:molecules27144563. [PMID: 35889436 PMCID: PMC9317578 DOI: 10.3390/molecules27144563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 01/27/2023] Open
Abstract
Photothermal therapy is a promising treating method for cancers since it is safe and easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of SF/PLGA/BP@SF composite membrane was increased by 15.26 °C under NIR (808 nm, 2.5 W/cm2) irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment of cancer.
Collapse
|
8
|
Photothermal nanofibrillar membrane based on hyaluronic acid and graphene oxide to treat Staphylococcus aureus and Pseudomonas aeruginosa infected wounds. Int J Biol Macromol 2022; 214:470-479. [PMID: 35760161 DOI: 10.1016/j.ijbiomac.2022.06.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/25/2022]
Abstract
Here we reported the fabrication of an electrospun membrane based on a hyaluronic acid derivative (HA-EDA) to be used as a bandage for the potential treatment of chronic wounds. The membrane, loaded with graphene oxide (GO) and ciprofloxacin, showed photothermal properties and light-triggered drug release when irradiated with a near-infrared (NIR) laser beam. Free amino groups of HA-EDA derivative allowed autocrosslinking of the electrospun membrane; thus, a substantial enhancement in the hydrolytic resistance of the patch was obtained. In vitro antibacterial activity studies performed on Staphylococcus aureus and Pseudomonas aeruginosa revealed that such electrospun membranes, due to the synergistic effect of the antibiotic and NIR-mediated hyperthermia, reduced the viability of both pathogens. Specific in vitro experiment demonstrated also that is possible to disrupt, through laser irradiation, the biofilms formed onto the membrane.
Collapse
|
9
|
Fiorica C, Palumbo FS, Pitarresi G, Biscari G, Martorana A, Calà C, Maida CM, Giammona G. Ciprofloxacin releasing gellan gum/polydopamine based hydrogels with near infrared activated photothermal properties. Int J Pharm 2021; 610:121231. [PMID: 34715261 DOI: 10.1016/j.ijpharm.2021.121231] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023]
Abstract
In this work, with the aim to obtain a wound dressing hydrogel, an amine derivative of gellan gum was crosslinked in the presence of 4arm-polyethylenglycole-vinylsulfone. Through this easy and reproducible chemical procedure, a hydrogel with advanced elastic properties and hydrolytic resistance under physiological conditions was obtained. The incorporation of different quantities of polydopamine in the gelling solutions allows to obtain different hydrogels with marked photothermal properties when irradiated with a laser in the near infrared at 810 nm. The organic nanoparticles, reacting with the amino groups of the polysaccharide derivative, contribute to increase the storage moduli of the hydrogels. Ciprofloxacin was loaded into the hydrogel with higher amount of polydopamine and drug delivery experiments were performed to investigate the effect of irradiation on the antibiotic release profile. Antimicrobial studies, evaluated against S. aureus and P. aeruginosa, revealed that generated hyperthermia exerts a direct inhibition on the pathogens growth and, in the case of S. aureus, adjuvates the ciprofloxacin antimicrobial effect.
Collapse
Affiliation(s)
- Calogero Fiorica
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Fabio Salvatore Palumbo
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Giovanna Pitarresi
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy.
| | - Giuseppina Biscari
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Annalisa Martorana
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| | - Cinzia Calà
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Carmelo Massimo Maida
- Department of Scienze per la Promozione della Salute e Materno Infantile - G. d'Alessandro, University of Palermo, Via del Vespro 133, Palermo 90127, Italy
| | - Gaetano Giammona
- Università degli Studi di Palermo, Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Via Archirafi 32, 90123 Palermo, Italy
| |
Collapse
|