1
|
Brandt M, Kosmeijer C, Achterberg E, de Theije C, Nijboer C. Timed fetal inflammation and postnatal hypoxia cause cortical white matter injury, interneuron imbalances, and behavioral deficits in a double-hit rat model of encephalopathy of prematurity. Brain Behav Immun Health 2024; 40:100817. [PMID: 39188404 PMCID: PMC11345510 DOI: 10.1016/j.bbih.2024.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024] Open
Abstract
Extreme preterm birth-associated adversities are a major risk factor for aberrant brain development, known as encephalopathy of prematurity (EoP), which can lead to long-term neurodevelopmental impairments. Although progress in clinical care for preterm infants has markedly improved perinatal outcomes, there are currently no curative treatment options available to combat EoP. EoP has a multifactorial etiology, including but not limited to pre- or postnatal immune activation and oxygen fluctuations. Elucidating the underlying mechanisms of EoP and determining the efficacy of potential therapies relies on valid, clinically translatable experimental models that reflect the neurodevelopmental and pathophysiological hallmarks of EoP. Here, we expand on our double-hit rat model that can be used to study EoP disease mechanisms and therapeutic options in a preclinical setting. Pregnant Wistar dams were intraperitoneally injected with 10 μg/kg LPS on embryonic day (E)20 and offspring was subjected to hypoxia (140 min, 8% O2) at postnatal day 4. Rats exposed to fetal inflammation and postnatal hypoxia (FIPH) showed neurodevelopmental impairments, such as reduced nest-seeking ability, ultrasonic vocalizations, social engagement, and working memory, and increased anxiety and sensitivity. Impairments in myelination, oligodendrocyte maturation and interneuron development were examined as hallmarks for EoP, in different layers and coordinates of the cortex using histological and molecular techniques. Myelin density and complexity was decreased in the cortex, which partially coincided with a decrease in mature oligodendrocytes. Furthermore, interneuron populations (GAD67+ and PVALB+) were affected. To determine if the timing of inducing fetal inflammation affected the severity of EoP hallmarks in the cortex, multiple timepoints of fetal inflammation were compared. Inflammation at E20 combined with postnatal hypoxia gave the most severe EoP phenotype in the cortex. In conclusion, we present a double-hit rat model which displays various behavioral, anatomical and molecular hallmarks of EoP, including diffuse white matter injury. This double-hit model can be used to investigate pathophysiological mechanisms and potential therapies for EoP.
Collapse
Affiliation(s)
- M.J.V. Brandt
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.M. Kosmeijer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - E.J.M. Achterberg
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, the Netherlands
| | - C.G.M. de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - C.H. Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht University, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| |
Collapse
|
2
|
Luhmann HJ, Kanold PO, Molnár Z, Vanhatalo S. Early brain activity: Translations between bedside and laboratory. Prog Neurobiol 2022; 213:102268. [PMID: 35364141 PMCID: PMC9923767 DOI: 10.1016/j.pneurobio.2022.102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/01/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
Abstract
Neural activity is both a driver of brain development and a readout of developmental processes. Changes in neuronal activity are therefore both the cause and consequence of neurodevelopmental compromises. Here, we review the assessment of neuronal activities in both preclinical models and clinical situations. We focus on issues that require urgent translational research, the challenges and bottlenecks preventing translation of biomedical research into new clinical diagnostics or treatments, and possibilities to overcome these barriers. The key questions are (i) what can be measured in clinical settings versus animal experiments, (ii) how do measurements relate to particular stages of development, and (iii) how can we balance practical and ethical realities with methodological compromises in measurements and treatments.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz, Germany.,Correspondence:, , ,
| | - Patrick O. Kanold
- Department of Biomedical Engineering and Kavli Neuroscience Discovery Institute, Johns Hopkins University, School of Medicine, 720 Rutland Avenue / Miller 379, Baltimore, MD 21205, USA.,Correspondence:, , ,
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Sampsa Vanhatalo
- BABA Center, Departments of Physiology and Clinical Neurophysiology, Children's Hospital, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
3
|
Luhmann HJ, Fukuda A. Can we understand human brain development from experimental studies in rodents? Pediatr Int 2020; 62:1139-1144. [PMID: 32531857 DOI: 10.1111/ped.14339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022]
Abstract
Animal models are needed to gain an understanding of the genetic, molecular, cellular, and network mechanisms of human brain development. In rodents, a large spectrum of in vitro and in vivo approaches allows detailed analyses and specific experimental manipulations for studying the sequence of developmental steps in corticogenesis. Neurogenesis, neuronal migration, cellular differentiation, programmed cell death, synaptogenesis, and myelination are surprisingly similar in the rodent cortex and the human cortex. Spontaneous EEG activity in the pre- and early postnatal human cortex resembles the activity patterns recorded with intracortical multi-electrode arrays in newborn rodents. This early activity is generated by thalamic activation of a subplate-driven local network coupled via gap junctions, which controls the development of cortical columns and the spatio-temporal pattern of apoptosis. Disturbances of this activity may induce disturbances in cortical structure and function leading to neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Atsuo Fukuda
- Department of Physiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
4
|
Fleiss B, Gressens P, Stolp HB. Cortical Gray Matter Injury in Encephalopathy of Prematurity: Link to Neurodevelopmental Disorders. Front Neurol 2020; 11:575. [PMID: 32765390 PMCID: PMC7381224 DOI: 10.3389/fneur.2020.00575] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Preterm-born infants frequently suffer from an array of neurological damage, collectively termed encephalopathy of prematurity (EoP). They also have an increased risk of presenting with a neurodevelopmental disorder (e.g., autism spectrum disorder; attention deficit hyperactivity disorder) later in life. It is hypothesized that it is the gray matter injury to the cortex, in addition to white matter injury, in EoP that is responsible for the altered behavior and cognition in these individuals. However, although it is established that gray matter injury occurs in infants following preterm birth, the exact nature of these changes is not fully elucidated. Here we will review the current state of knowledge in this field, amalgamating data from both clinical and preclinical studies. This will be placed in the context of normal processes of developmental biology and the known pathophysiology of neurodevelopmental disorders. Novel diagnostic and therapeutic tactics required integration of this information so that in the future we can combine mechanism-based approaches with patient stratification to ensure the most efficacious and cost-effective clinical practice.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France
- PremUP, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Helen B. Stolp
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
5
|
Fragopoulou AF, Qian Y, Heijtz RD, Forssberg H. Can Neonatal Systemic Inflammation and Hypoxia Yield a Cerebral Palsy-Like Phenotype in Periadolescent Mice? Mol Neurobiol 2019; 56:6883-6900. [PMID: 30941732 PMCID: PMC6728419 DOI: 10.1007/s12035-019-1548-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022]
Abstract
Cerebral palsy (CP) is one of the most common childhood-onset motor disabilities, attributed to injuries of the immature brain in the foetal or early postnatal period. The underlying mechanisms are poorly understood, rendering prevention and treatment strategies challenging. The aim of the present study was to establish a mouse model of CP for preclinical assessment of new interventions. For this purpose, we explored the impact of a double neonatal insult (i.e. systemic inflammation combined with hypoxia) on behavioural and cellular outcomes relevant to CP during the prepubertal to adolescent period of mice. Pups were subjected to intraperitoneal lipopolysaccharide (LPS) injections from postnatal day (P) 3 to P6 followed by hypoxia at P7. Gene expression analysis at P6 revealed a strong inflammatory response in a brain region-dependent manner. A comprehensive battery of behavioural assessments performed between P24 and P47 showed impaired limb placement and coordination when walking on a horizontal ladder in both males and females. Exposed males also displayed impaired performance on a forelimb skilled reaching task, altered gait pattern and increased exploratory activity. Exposed females showed a reduction in grip strength and traits of anxiety-like behaviour. These behavioural alterations were not associated with gross morphological changes, white matter lesions or chronic inflammation in the brain. Our results indicate that the neonatal double-hit with LPS and hypoxia can induce subtle long-lasting deficits in motor learning and fine motor skills, which partly reflect the symptoms of children with CP who have mild gross and fine motor impairments.
Collapse
Affiliation(s)
- Adamantia F Fragopoulou
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Yu Qian
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Rochellys Diaz Heijtz
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 171 77, Stockholm, Sweden.,INSERM U1239, University of Rouen Normandy, 76130, Mont-Saint-Aignan, France
| | - Hans Forssberg
- Department of Women's and Children's Health, Karolinska Institutet, 171 76, Stockholm, Sweden.
| |
Collapse
|
6
|
Shevelev OB, Moshkin MP. Impact of glycolysis inhibitor (2-DG) and oxidation and phosphorylation uncoupler (2,4-DNP) on brain metabolites. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Deviations in brain metabolism are the result of longterm pathological processes, which finally are manifested as symptoms of Parkinson’s or Alzheimer’s diseases or multiple sclerosis and other neuropathologies, as for example diabetic neuropathy. A deficiency of available energy for brain cells under neurodegenerative diseases is either developed due to age-dependent underexpression of genes that encode glycolytic enzymes or induced due to the uncoupling of oxidation and phosphorylation that could be mediated by inflammatory cytokines. Since the activity of many enzymes is under the control of adenosine triphosphate (ATP) or cofactors, such as nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), energy deficiency can cause metabolic changes in brain tissue. Some clinical studies using proton nuclear magnetic resonance spectroscopy (1H NMR spectroscopy) revealed metabolic changes in brain tissue in patients with neurodegenerative diseases. However, data from different authors are quite contradictory, probably because of the complex genesis of metabolic disorders. In the present study, we tested the hypothesis of multidirectional changes in metabolism under the impact of the oxidation and phosphorylation uncoupler 2,4-dinitrophenol (2,4-DNP) and under the impact of 2-deoxy-Dglucose (2-DG), blocking the access of glucose to the brain cells. 1H NMR spectroscopy showed that 2-DG leads to the predominance of excitatory (glutamine + glutamate) neurotransmitters over inhibitory ones (gamma-aminobutyric acid), and 2,4 DNP causes opposite effects. The biochemical mechanisms of the observed changes require a special study, but it can be noted that the ATP deficiency caused by inhibition of glycolysis and the ATP deficiency caused by the uncouplers are accompanied by differently directed changes in the intensity of the tricarboxylic acid cycle. These changes in the intensity of the Krebs cycle are correlated with differently directed changes in the balance of the exciting and inhibitory neurotransmitters. The obtained results show that 1H NMR spectroscopy can be an effective method of differentiated lifetime assessment of the available energy deficit caused by a general suppression of energy exchange in nerve cells or oxidation and phosphorylation uncoupling.
Collapse
|
7
|
Queissner R, Pilz R, Dalkner N, Birner A, Bengesser SA, Platzer M, Fellendorf FT, Kainzbauer N, Herzog-Eberhard S, Hamm C, Reininghaus B, Zelzer S, Mangge H, Mansur RB, McIntyre RS, Kapfhammer HP, Reininghaus EZ. The relationship between inflammatory state and quantity of affective episodes in bipolar disorder. Psychoneuroendocrinology 2018; 90:61-67. [PMID: 29433074 DOI: 10.1016/j.psyneuen.2018.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/07/2018] [Accepted: 01/30/2018] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Immunological/inflammatory processes have been proposed to play an important role in the pathophysiology of mood disorders, including bipolar disorder (BD). The present study aimed to examine the influence of immune activation, measured on the basis of inflammatory markers, on the course of illness, proxied by the number of affective episodes, in patients with BD. METHODS We investigated the relationship between high-sensitive CRP (hsCRP) and Interleukin 6 (IL-6), two inflammatory markers and characteristics of course of illness (e.g. number of affective episodes, depressive and manic symptoms) amongst a group of 190 individuals with BD. RESULTS Among females with BD, there was a positive correlation between levels of hsCRP and the number of manic and depressive episodes. Moreover, levels of hsCRP and IL-6 were positively correlated with current manic symptoms, as measured by Young-Mania-Rating-Scale. There were no significant correlations between levels of the foregoing inflammatory markers, and manic and depressive symptoms in male individuals with BD. Furthermore, compared to their untreated counterparts, female patients treated with lithium demonstrated higher levels of hsCRP and male patients treated with atypical antipsychotics lower levels of hsCRP, respectively. CONCLUSIONS Our results are suggesting that the association between inflammatory state and affective response in patients with BD may be gender-dependent. A future research would be to evaluate whether or not these gender differences can be observed in other inflammatory pathways associated with BD.
Collapse
Affiliation(s)
- Robert Queissner
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - René Pilz
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria.
| | - Nina Dalkner
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Armin Birner
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Susanne A Bengesser
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Martina Platzer
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Frederike T Fellendorf
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Nora Kainzbauer
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Simone Herzog-Eberhard
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Carlo Hamm
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Bernd Reininghaus
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Sieglinde Zelzer
- Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Harald Mangge
- Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
| | - Rodrigo B Mansur
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network, University of Toronto, Toronto, Canada
| | - Hans-Peter Kapfhammer
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| | - Eva Z Reininghaus
- Medical University of Graz, Department of Psychiatry and Psychotherapeutic Medicine, Graz, Austria
| |
Collapse
|
8
|
Engelhardt M, Hamad MIK, Jack A, Ahmed K, König J, Rennau LM, Jamann N, Räk A, Schönfelder S, Riedel C, Wirth MJ, Patz S, Wahle P. Interneuron synaptopathy in developing rat cortex induced by the pro-inflammatory cytokine LIF. Exp Neurol 2018; 302:169-180. [PMID: 29305051 DOI: 10.1016/j.expneurol.2017.12.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 12/26/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Maren Engelhardt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Mohammad I K Hamad
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Küpra Ahmed
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Jennifer König
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Lisa Marie Rennau
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Nora Jamann
- Institute of Neuroanatomy, Medical Faculty Mannheim, CBTM, Heidelberg University, Germany
| | - Andrea Räk
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Sabine Schönfelder
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
| | - Markus Joseph Wirth
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Institute of Biology-II, RWTH Aachen University, Aachen, Germany
| | - Silke Patz
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany; Research Unit for Experimental Neurotraumatology, Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany.
| |
Collapse
|
9
|
Kirischuk S, Sinning A, Blanquie O, Yang JW, Luhmann HJ, Kilb W. Modulation of Neocortical Development by Early Neuronal Activity: Physiology and Pathophysiology. Front Cell Neurosci 2017; 11:379. [PMID: 29238291 PMCID: PMC5712676 DOI: 10.3389/fncel.2017.00379] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 12/23/2022] Open
Abstract
Animal and human studies revealed that patterned neuronal activity is an inherent feature of developing nervous systems. This review summarizes our current knowledge about the mechanisms generating early electrical activity patterns and their impact on structural and functional development of the cerebral cortex. All neocortical areas display distinct spontaneous and sensory-driven neuronal activity patterns already at early phases of development. At embryonic stages, intermittent spontaneous activity is synchronized within small neuronal networks, becoming more complex with further development. This transition is accompanied by a gradual shift from electrical to chemical synaptic transmission, with a particular role of non-synaptic tonic currents before the onset of phasic synaptic activity. In this review article we first describe functional impacts of classical neurotransmitters (GABA, glutamate) and modulatory systems (e.g., acetylcholine, ACh) on early neuronal activities in the neocortex with special emphasis on electrical synapses, nonsynaptic and synaptic currents. Early neuronal activity influences probably all developmental processes and is crucial for the proper formation of neuronal circuits. In the second part of our review, we illustrate how specific activity patterns might interfere with distinct neurodevelopmental processes like proliferation, migration, axonal and dendritic sprouting, synapse formation and neurotransmitter specification. Finally, we present evidence that transient alterations in neuronal activity during restricted perinatal periods can lead to persistent changes in functional connectivity and therefore might underlie the manifestation of neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anne Sinning
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Oriane Blanquie
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|