1
|
Lv Y, Han S, Sun F, Zhang Y, Qu X, Li H, Gu W, Xu Q, Yao S, Chen X, Jin Y. Decreased miR-128-3p in serum exosomes from polycystic ovary syndrome induces ferroptosis in granulosa cells via the p38/JNK/SLC7A11 axis through targeting CSF1. Cell Death Discov 2025; 11:64. [PMID: 39966422 PMCID: PMC11836375 DOI: 10.1038/s41420-025-02331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2024] [Revised: 01/10/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Increasing evidence suggests that non-coding small RNAs (miRNAs) carried by exosomes (EXOs) play important roles in the development and treatment of polycystic ovary syndrome (PCOS). In this study, we demonstrate that PCOS mouse serum-derived EXOs promote granulosa cells (GCs) ferroptosis, and induce the occurrence of a PCOS-like phenotype in vivo. Notably, EXO miRNA sequencing combined with in vitro gain- and loss-of-function assays revealed that miR-128-3p, which is absent in the serum-derived EXOs of mice with PCOS, regulates lipid peroxidation and GC sensitivity to ferroptosis inducers. Mechanistically, overexpression of CSF1, a direct target of miR-128-3p, reversed the anti-ferroptotic effect of miR-128-3p. Conversely, ferroptosis induction was mitigated in CSF1-downregulated GCs. Furthermore, we demonstrated that miR-128-3p inhibition activates the p38/JNK pathway via CSF1, leading to NRF2-mediated down-regulation of SLC7A11 transcription, which triggers GC iron overload. Moreover, intrathecal miR-128-3p AgomiR injection into mouse ovaries ameliorated PCOS-like characteristics and restored fertility in letrozole-induced mice. The study reveals the pathological mechanisms of PCOS based on circulating EXOs and provides the first evidence of the roles of miR-128-3p and CSF1 in ovarian GCs. This discovery is expected to provide promising therapeutic targets for the treatment of PCOS.
Collapse
Affiliation(s)
- Yanqiu Lv
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Shengzhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China
| | - Fuliang Sun
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Yuyang Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Xinglin Qu
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Hao Li
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Weiyu Gu
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Qinglong Xu
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Shunfa Yao
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China
| | - Xuan Chen
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China.
| | - Yi Jin
- Department of Animal Science, College of Agriculture, Yanbian University, Jilin, China.
- Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, China.
| |
Collapse
|
2
|
Akyuz E, Aslan FS, Gokce E, Ilmaz O, Topcu F, Kakac S. Extracellular vesicle and CRISPR gene therapy: Current applications in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Eur J Neurosci 2024; 60:6057-6090. [PMID: 39297377 DOI: 10.1111/ejn.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2023] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/17/2024]
Abstract
Neurodegenerative diseases are characterized by progressive deterioration of the nervous system. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) are prominently life-threatening examples of neurodegenerative diseases. The complexity of the pathophysiology in neurodegenerative diseases causes difficulties in diagnosing. Although the drugs temporarily help to correct specific symptoms including memory loss and degeneration, a complete treatment has not been found yet. New therapeutic approaches have been developed to understand and treat the underlying pathogenesis of neurodegenerative diseases. With this purpose, clustered-regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) technology has recently suggested a new treatment option. Editing of the genome is carried out by insertion and deletion processes on DNA. Safe delivery of the CRISPR/Cas system to the targeted cells without affecting surrounding cells is frequently investigated. Extracellular vesicles (EVs), that is exosomes, have recently been used in CRISPR/Cas studies. In this review, CRISPR/Cas and EV approaches used for diagnosis and/or treatment in AD, PD, ALS, and HD are reviewed. CRISPR/Cas and EV technologies, which stand out as new therapeutic approaches, may offer a definitive treatment option in neurodegenerative diseases.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Türkiye
| | | | - Enise Gokce
- School of Medicine, Pamukkale University, Denizli, Türkiye
| | - Oguzkan Ilmaz
- School of Medicine, Giresun University, Giresun, Türkiye
| | | | - Seda Kakac
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Kocaeli, Türkiye
| |
Collapse
|
3
|
Liu Z, Cheng L, Cao W, Shen C, Qiu Y, Li C, Xiong Y, Yang SB, Chen Z, Yin X, Zhang X. Present and future use of exosomes containing proteins and RNAs in neurodegenerative diseases for synaptic function regulation: A comprehensive review. Int J Biol Macromol 2024; 280:135826. [PMID: 39322147 DOI: 10.1016/j.ijbiomac.2024.135826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases (NDDs) are increasingly prevalent with global aging, demanding effective treatments. Exosomes, which contain biological macromolecules such as RNA (including miRNAs) and proteins like α-synuclein, tau, and amyloid-beta, are gaining attention as innovative therapeutics. This comprehensive review systematically explores the potential roles of exosomes in NDDs, with a particular focus on their role in synaptic dysfunction. We present the synaptic pathophysiology of NDDs and discuss the mechanisms of exosome formation, secretion, and action. Subsequently, we review the roles of exosomes in different types of NDDs, such as Alzheimer's disease and Parkinson's disease, with a special focus on their regulation of synaptic function. In addition, we explore the potential use of exosomes as biomarkers, as well as the challenges and opportunities in their clinical application. We provide perspectives on future research directions and development trends to provide a more comprehensive understanding of and guidance for the application of exosomes in the treatment of NDDs. In conclusion, exosomes rich in biological macromolecules, as a novel therapeutic strategy, have opened up new possibilities for the treatment of NDDs and brought new hope to patients.
Collapse
Affiliation(s)
- Ziying Liu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Lin Cheng
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Wa Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Respiratory Medicine, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Chunxiao Shen
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yuemin Qiu
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Chuan Li
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China
| | - Yinyi Xiong
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Rehabilitation, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Seung Bum Yang
- Department of Medical Non-commissioned Officer, Wonkwang Health Science University Iksan-si, Jeollabuk-do 54538, South Korea
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China; Department of Neurology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China.
| | - Xiaorong Zhang
- Department of Pathology, Clinical Medical School of Jiujiang University, Jiujiang, Jiangxi 332000, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi 332000, China.
| |
Collapse
|
4
|
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci 2024; 31:85. [PMID: 39183263 PMCID: PMC11346291 DOI: 10.1186/s12929-024-01075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Extracellular vesicles (EVs) are vital for cell-to-cell communication, transferring proteins, lipids, and nucleic acids in various physiological and pathological processes. They play crucial roles in immune modulation and tissue regeneration but are also involved in pathogenic conditions like inflammation and degenerative disorders. EVs have heterogeneous populations and cargo, with numerous subpopulations currently under investigations. EV therapy shows promise in stimulating tissue repair and serving as a drug delivery vehicle, offering advantages over cell therapy, such as ease of engineering and minimal risk of tumorigenesis. However, challenges remain, including inconsistent nomenclature, complex characterization, and underdeveloped large-scale production protocols. This review highlights the recent advances and significance of EVs heterogeneity, emphasizing the need for a better understanding of their roles in disease pathologies to develop tailored EV therapies for clinical applications in neurological disorders.
Collapse
Affiliation(s)
- Napasiri Putthanbut
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Jea Young Lee
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA
| | - Cesario V Borlongan
- Department of Neurosurgery, Center of Aging and Brain Repair, University of South Florida, Tampa, USA.
| |
Collapse
|
5
|
Lagunas-Rangel FA. Aging insights from heterochronic parabiosis models. NPJ AGING 2024; 10:38. [PMID: 39154047 PMCID: PMC11330497 DOI: 10.1038/s41514-024-00166-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/07/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Heterochronic parabiosis consists of surgically connecting the circulatory systems of a young and an old animal. This technique serves as a model to study circulating factors that accelerate aging in young organisms exposed to old blood or induce rejuvenation in old organisms exposed to young blood. Despite the promising results, the exact cellular and molecular mechanisms remain unclear, so this study aims to explore and elucidate them in more detail.
Collapse
|
6
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|
7
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 PMCID: PMC11091041 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
8
|
Burtscher J, Strasser B, Pepe G, Burtscher M, Kopp M, Di Pardo A, Maglione V, Khamoui AV. Brain-Periphery Interactions in Huntington's Disease: Mediators and Lifestyle Interventions. Int J Mol Sci 2024; 25:4696. [PMID: 38731912 PMCID: PMC11083237 DOI: 10.3390/ijms25094696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Prominent pathological features of Huntington's disease (HD) are aggregations of mutated Huntingtin protein (mHtt) in the brain and neurodegeneration, which causes characteristic motor (such as chorea and dystonia) and non-motor symptoms. However, the numerous systemic and peripheral deficits in HD have gained increasing attention recently, since those factors likely modulate disease progression, including brain pathology. While whole-body metabolic abnormalities and organ-specific pathologies in HD have been relatively well described, the potential mediators of compromised inter-organ communication in HD have been insufficiently characterized. Therefore, we applied an exploratory literature search to identify such mediators. Unsurprisingly, dysregulation of inflammatory factors, circulating mHtt, and many other messenger molecules (hormones, lipids, RNAs) were found that suggest impaired inter-organ communication, including of the gut-brain and muscle-brain axis. Based on these findings, we aimed to assess the risks and potentials of lifestyle interventions that are thought to improve communication across these axes: dietary strategies and exercise. We conclude that appropriate lifestyle interventions have great potential to reduce symptoms and potentially modify disease progression (possibly via improving inter-organ signaling) in HD. However, impaired systemic metabolism and peripheral symptoms warrant particular care in the design of dietary and exercise programs for people with HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Barbara Strasser
- Ludwig Boltzmann Institute for Rehabilitation Research, 1100 Vienna, Austria;
- Faculty of Medicine, Sigmund Freud Private University, 1020 Vienna, Austria
| | - Giuseppe Pepe
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.B.); (M.K.)
| | - Alba Di Pardo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (G.P.); (A.D.P.); (V.M.)
| | | | - Andy V. Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL 33458, USA;
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
9
|
Ray R, Chowdhury SG, Karmakar P. A vivid outline demonstrating the benefits of exosome-mediated drug delivery in CNS-associated disease environments. Arch Biochem Biophys 2024; 753:109906. [PMID: 38272158 DOI: 10.1016/j.abb.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
The efficacy of drug delivery mechanisms has been improvised with time for different therapeutic purposes. In most cases, nano-sized delivery systems have been modeled over decades for the on-target applicability of the drugs. The use of synthetic drug delivery materials has been a common practice, although research has now focussed more on using natural vehicles, to avoid the side effects of synthetic delivery systems and easy acceptance by the body. Exosome is such a natural nano-sized vehicle that exceeds the efficiency of many natural vehicles, for being immune-friendly, due to its origin. Unlike, other natural drug delivery systems, exosomes are originated within the body's cells, and from there, they happen to travel through the extracellular matrices into neighboring cells. This capacity of exosomes has made them an efficient drug delivery system over recent years and now a large number of researches have been carried out to develop exosomes as natural drug delivery vehicles. Several experimental strategies have been practiced in this regard which have shown that exosomes are exclusively capable of carrying drugs and they can also be used in targeted delivery, for which they efficiently can reach and release the drug at their target cells for consecutive effects. One of the most interesting features of exosomes is they can cross the blood-brain barrier (BBB) in the body and hence, for the disease where other delivery vehicles are incapable of reaching the destination of the drug, exosomes can overcome the hurdle. This review particularly, focuses on the different aspects of using exosomes as a potential nano-sized drug delivery system for some of the severe diseases associated with the central nervous system of the human body.
Collapse
Affiliation(s)
- Rachayeeta Ray
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India
| | | | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
10
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
11
|
Zhang XM, Huang J, Ni XY, Zhu HR, Huang ZX, Ding S, Yang XY, Tan YD, Chen JF, Cai JH. Current progression in application of extracellular vesicles in central nervous system diseases. Eur J Med Res 2024; 29:15. [PMID: 38173021 PMCID: PMC10763486 DOI: 10.1186/s40001-023-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long-standing challenge for clinical research due to the presence of the blood-brain barrier. Specific proteins and RNAs in brain-derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased knowledge of EVs will facilitate their clinical translation in CNS diseases.
Collapse
Affiliation(s)
- Xiang-Min Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xiao-Ying Ni
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Hui-Ru Zhu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Zhong-Xin Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Shuang Ding
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xin-Yi Yang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Yan-Di Tan
- Department of Ultrasound the Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Huixing Street, Chongqing, 401120, China
| | - Jian-Fu Chen
- Department of Ultrasound, The Second People's Hospital of Yunnan Province, No. 176, Qingnian Road, Kunming, 650021, China
| | - Jin-Hua Cai
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China.
| |
Collapse
|
12
|
Sheykhhasan M, Heidari F, Farsani ME, Azimzadeh M, Kalhor N, Ababzadeh S, Seyedebrahimi R. Dual Role of Exosome in Neurodegenerative Diseases: A Review Study. Curr Stem Cell Res Ther 2024; 19:852-864. [PMID: 37496136 DOI: 10.2174/1574888x18666230726161035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Extracellular vesicles (EVs) are one of the crucial means of intercellular communication, which takes many different forms. They are heterogeneous, secreted by a range of cell types, and can be generally classified into microvesicles and exosomes depending on their location and function. Exosomes are small EVs with diameters of about 30-150 nm and diverse cell sources. METHODS The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of recent years, using the search string "Exosome" and "Neurodegenerative diseases." RESULTS The exosomes have attracted interest as a significant biomarker for a better understanding of disease development, gene silencing delivery, and alternatives to stem cell-based therapy because of their low-invasive therapeutic approach, repeatable distribution in the central nervous system (CNS), and high efficiency. Also, they are nanovesicles that carry various substances, which can have an impact on neural plasticity and cognitive functioning in both healthy and pathological circumstances. Therefore, exosomes are conceived as nanovesicles containing proteins, lipids, and nucleic acids. However, their composition varies considerably depending on the cells from which they are produced. CONCLUSION In the present review, we discuss several techniques for the isolation of exosomes from different cell sources. Furthermore, reviewing research on exosomes' possible functions as carriers of bioactive substances implicated in the etiology of neurodegenerative illnesses, we further examine them. We also analyze the preclinical and clinical research that shows exosomes to have therapeutic potential.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Fatemeh Heidari
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom, Iran
| | - Shima Ababzadeh
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
13
|
Hosseini L, Shahabi P, Fakhari A, Zangbar HS, Seyedaghamiri F, Sadeghzadeh J, Abolhasanpour N. Aging and age-related diseases with a focus on therapeutic potentials of young blood/plasma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1-13. [PMID: 37552316 DOI: 10.1007/s00210-023-02657-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Aging is accompanied by alterations in the body with time-related to decline of physiological integrity and functionality process, responsible for increasing diseases and vulnerability to death. Several ages associated with biomarkers were observed in red blood cells, and consequently plasma proteins have a critical rejuvenating role in the aging process and age-related disorders. Advanced age is a risk factor for a broad spectrum of diseases and disorders such as cardiovascular diseases, musculoskeletal disorders and liver, chronic kidney disease, neurodegenerative diseases, and cancer because of loss of regenerative capacity, correlated to reduced systemic factors and raise of pro-inflammatory cytokines. Most studies have shown that systemic factors in young blood/plasma can strongly protect against age-related diseases in various tissues by restoring autophagy, increasing neurogenesis, and reducing oxidative stress, inflammation, and apoptosis. Here, we focus on the current advances in using young plasma or blood to combat aging and age-related diseases and summarize the experimental and clinical evidence supporting this approach. Based on reports, young plasma or blood is new a therapeutic approach to aging and age-associated diseases.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Ali Fakhari
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani Zangbar
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemehsadat Seyedaghamiri
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Sadeghzadeh
- Department of Neurosciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Abolhasanpour
- Research Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
15
|
Rieux M, Alpaugh M, Salem S, Siddu A, Saint-Pierre M, Denis HL, Rohweder H, Herrmann F, Bazenet C, Lacroix S, Cicchetti F. Understanding the role of the hematopoietic niche in Huntington's disease's phenotypic expression: in vivo evidence using a parabiosis model. Neurobiol Dis 2023; 180:106091. [PMID: 36967065 DOI: 10.1016/j.nbd.2023.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2023] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
In a previous study, we have shown that parabiotic coupling of a knock-in mouse model (zQ175) of Huntington's disease (HD) to wild-type (WT) littermates resulted in a worsening of the normal phenotype as seen by detection of mutant huntingtin protein (mHTT) aggregates within peripheral organs and the cerebral cortex as well as vascular abnormalities in WT mice. In contrast, parabiosis improved disease features in the zQ175 mice such as reduction of mHTT aggregate number in the liver and cortex, decrease in blood-brain barrier (BBB) permeability and attenuation of mitochondrial impairments. While the shared circulation mediated these effects, no specific factor was identified. To better understand which blood elements were involved in the aforementioned changes, WT and zQ175 mice underwent parabiotic surgery prior to exposing one of the paired animals to irradiation. The irradiation procedure successfully eliminated the hematopoietic niche followed by repopulation with cells originating from the non-irradiated parabiont, as measured by the quantification of mHTT levels in peripheral blood mononuclear cells. Although irradiation of the WT parabiont, causing the loss of healthy hematopoietic cells, did lead to a few alterations in mitochondrial function in the muscle (TOM40 levels), and increased neuroinflammation in the striatum (GFAP levels), most of the changes observed were likely attributable to the irradiation procedure itself (e.g. mHTT aggregates in cortex and liver; cellular stress in peripheral organs). However, factors such as mHTT aggregation in the brain and periphery, and BBB leakage, which were improved in zQ175 mice when paired to WT littermates in the previous parabiosis experiment, were unaffected by perturbation of the hematopoietic niche. It would therefore appear that cells of the hematopoietic stem cell niche are largely uninvolved in the beneficial effects of parabiosis.
Collapse
Affiliation(s)
- Marie Rieux
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Melanie Alpaugh
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Shireen Salem
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Alberto Siddu
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Martine Saint-Pierre
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada
| | - Hélèna L Denis
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | | | | | | | - Steve Lacroix
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Francesca Cicchetti
- Centre de recherche du CHU de Québec - Université Laval, Axe neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de médecine moléculaire, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada; Département de psychiatrie & neurosciences, Université Laval, 1050 avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
16
|
Lim WQ, Michelle Luk KH, Lee KY, Nurul N, Loh SJ, Yeow ZX, Wong QX, Daniel Looi QH, Chong PP, How CW, Hamzah S, Foo JB. Small Extracellular Vesicles' miRNAs: Biomarkers and Therapeutics for Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15041216. [PMID: 37111701 PMCID: PMC10143523 DOI: 10.3390/pharmaceutics15041216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative diseases are critical in the healthcare system as patients suffer from progressive diseases despite currently available drug management. Indeed, the growing ageing population will burden the country's healthcare system and the caretakers. Thus, there is a need for new management that could stop or reverse the progression of neurodegenerative diseases. Stem cells possess a remarkable regenerative potential that has long been investigated to resolve these issues. Some breakthroughs have been achieved thus far to replace the damaged brain cells; however, the procedure's invasiveness has prompted scientists to investigate using stem-cell small extracellular vesicles (sEVs) as a non-invasive cell-free therapy to address the limitations of cell therapy. With the advancement of technology to understand the molecular changes of neurodegenerative diseases, efforts have been made to enrich stem cells' sEVs with miRNAs to increase the therapeutic efficacy of the sEVs. In this article, the pathophysiology of various neurodegenerative diseases is highlighted. The role of miRNAs from sEVs as biomarkers and treatments is also discussed. Lastly, the applications and delivery of stem cells and their miRNA-enriched sEVs for treating neurodegenerative diseases are emphasised and reviewed.
Collapse
Affiliation(s)
- Wei Qing Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kie Hoon Michelle Luk
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Nasuha Nurul
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Sin Jade Loh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Zhen Xiong Yeow
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Xuan Wong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Qi Hao Daniel Looi
- My CytoHealth Sdn. Bhd., Lab 6, DMC Level 2, Hive 5, Taman Teknologi MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Pan Pan Chong
- National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Dementia is a syndrome with several possible pathologies. To date, definitive methods for diagnosis and treatment of sub-types of dementia have not been established. Emerging evidence suggests that exosomes can provide important information for the diagnosis and treatment of several subtypes of dementia. This article reviews recent studies on the application of exosomes in dementia. RECENT FINDINGS Exosomes are involved in the pathogenesis of Alzheimer's disease (AD) and Parkinson's disease (PD) through transporting toxic proteins such as amyloid beta (Aβ), tau, and α-synuclein. Exosomal microRNAs (miR) and proteins reflect the disease state, and therefore, exosomes can be used as diagnostic markers for diseases such as AD, PD, Huntington's disease (HD), vascular dementia (VaD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD). Mesenchymal stem cell (MSC)-derived exosomes have been shown to ameliorate disease pathology, and improve cognitive function in AD, PD, and VAD. SUMMARY Recent studies have shown that exosomes could be novel diagnostic agents for dementia because they contain molecules that could be potential biomarker candidates indicative of the type and stage of dementia. Therapeutic application of exosomes in dementia has revealed that exosomes only, or exosomes loaded with an active pharmaceutical ingredient (API), ameliorate disease phenotype of dementia. Further work is needed to exploit this potential.
Collapse
Affiliation(s)
- Hyeon Su Joo
- School of Life Science, Handong Global University, Pohang
| | - Ha Yeong Jeon
- School of Life Science, Handong Global University, Pohang
| | - Eun Be Hong
- INEXOPLAT, Inc. M2704, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, Republic of Korea
| | - Ha Young Kim
- School of Life Science, Handong Global University, Pohang
| | - Jung Min Lee
- School of Life Science, Handong Global University, Pohang
- INEXOPLAT, Inc. M2704, 32, Songdogwahak-ro, Yeonsu-gu, Incheon, Republic of Korea
| |
Collapse
|
18
|
Nabariya DK, Heinz A, Derksen S, Krauß S. Intracellular and intercellular transport of RNA organelles in CXG repeat disorders: The strength of weak ties. Front Mol Biosci 2022; 9:1000932. [PMID: 36589236 PMCID: PMC9800848 DOI: 10.3389/fmolb.2022.1000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
RNA is a vital biomolecule, the function of which is tightly spatiotemporally regulated. RNA organelles are biological structures that either membrane-less or surrounded by membrane. They are produced by the all the cells and indulge in vital cellular mechanisms. They include the intracellular RNA granules and the extracellular exosomes. RNA granules play an essential role in intracellular regulation of RNA localization, stability and translation. Aberrant regulation of RNA is connected to disease development. For example, in microsatellite diseases such as CXG repeat expansion disorders, the mutant CXG repeat RNA's localization and function are affected. RNA is not only transported intracellularly but can also be transported between cells via exosomes. The loading of the exosomes is regulated by RNA-protein complexes, and recent studies show that cytosolic RNA granules and exosomes share common content. Intracellular RNA granules and exosome loading may therefore be related. Exosomes can also transfer pathogenic molecules of CXG diseases from cell to cell, thereby driving disease progression. Both intracellular RNA granules and extracellular RNA vesicles may serve as a source for diagnostic and treatment strategies. In therapeutic approaches, pharmaceutical agents may be loaded into exosomes which then transport them to the desired cells/tissues. This is a promising target specific treatment strategy with few side effects. With respect to diagnostics, disease-specific content of exosomes, e.g., RNA-signatures, can serve as attractive biomarker of central nervous system diseases detecting early physiological disturbances, even before symptoms of neurodegeneration appear and irreparable damage to the nervous system occurs. In this review, we summarize the known function of cytoplasmic RNA granules and extracellular vesicles, as well as their role and dysfunction in CXG repeat expansion disorders. We also provide a summary of established protocols for the isolation and characterization of both cytoplasmic and extracellular RNA organelles.
Collapse
Affiliation(s)
| | | | | | - Sybille Krauß
- Human Biology/Neurobiology, Institute of Biology, Faculty IV, School of Science and Technology, University of Siegen, Siegen, Germany
| |
Collapse
|
19
|
Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci 2022; 15:1043947. [PMID: 36311034 PMCID: PMC9606576 DOI: 10.3389/fnmol.2022.1043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
20
|
Höving AL, Schmidt KE, Kaltschmidt B, Kaltschmidt C, Knabbe C. The Role of Blood-Derived Factors in Protection and Regeneration of Aged Tissues. Int J Mol Sci 2022; 23:ijms23179626. [PMID: 36077021 PMCID: PMC9455681 DOI: 10.3390/ijms23179626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Tissue regeneration substantially relies on the functionality of tissue-resident endogenous adult stem cell populations. However, during aging, a progressive decline in organ function and regenerative capacities impedes endogenous repair processes. Especially the adult human heart is considered as an organ with generally low regenerative capacities. Interestingly, beneficial effects of systemic factors carried by young blood have been described in diverse organs including the heart, brain and skeletal muscle of the murine system. Thus, the interest in young blood or blood components as potential therapeutic agents to target age-associated malignancies led to a wide range of preclinical and clinical research. However, the translation of promising results from the murine to the human system remains difficult. Likewise, the establishment of adequate cellular models could help to study the effects of human blood plasma on the regeneration of human tissues and particularly the heart. Facing this challenge, this review describes the current knowledge of blood plasma-mediated protection and regeneration of aging tissues. The current status of preclinical and clinical research examining blood borne factors that act in stem cell-based tissue maintenance and regeneration is summarized. Further, examples of cellular model systems for a more detailed examination of selected regulatory pathways are presented.
Collapse
Affiliation(s)
- Anna L. Höving
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| | - Kazuko E. Schmidt
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Barbara Kaltschmidt
- AG Molecular Neurobiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Cornelius Knabbe
- Heart and Diabetes Centre NRW, Institute for Laboratory and Transfusion Medicine, Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| |
Collapse
|
21
|
Kshirsagar S, Sawant N, Morton H, Reddy AP, Reddy PH. Protective effects of mitophagy enhancers against amyloid beta-induced mitochondrial and synaptic toxicities in Alzheimer disease. Hum Mol Genet 2022; 31:423-439. [PMID: 34505123 PMCID: PMC8825310 DOI: 10.1093/hmg/ddab262] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 11/14/2022] Open
Abstract
The purpose of our study is to determine the protective effects of mitophagy enhancers against mutant APP and amyloid beta (Aβ)-induced mitochondrial and synaptic toxicities in Alzheimer's disease (ad). Over two decades of research from our lab and others revealed that mitochondrial abnormalities are largely involved in the pathogenesis of both early-onset and late-onset ad. Emerging studies from our lab and others revealed that impaired clearance of dead or dying mitochondria is an early event in the disease process. Based on these changes, it has been proposed that mitophagy enhancers are potential therapeutic candidates to treat patients with ad. In the current study, we optimized doses of mitophagy enhancers urolithin A, actinonin, tomatidine, nicotinamide riboside in immortalized mouse primary hippocampal (HT22) neurons. We transfected HT22 cells with mutant APP cDNA and treated with mitophagy enhancers and assessed mRNA and protein levels of mitochondrial dynamics, biogenesis, mitophagy and synaptic genes, cell survival; assessed mitochondrial respiration in mAPP-HT22 cells treated and untreated with mitophagy enhancers. We also assessed mitochondrial morphology in mAPP-HT22 cells treated and untreated with mitophagy enhancers. Mutant APP-HT22 cells showed increased fission, decreased fusion, synaptic & mitophagy genes, reduced cell survival and defective mitochondrial respiration, and excessively fragmented and reduced length of mitochondria. However, these events were reversed in mitophagy-enhancers-treated mutant mAPP-HT22 cells. Cell survival was significantly increased, mRNA and protein levels of mitochondrial fusion, synaptic and mitophagy genes were increased, mitochondrial number is reduced, and mitochondrial length is increased, and mitochondrial fragmentation is reduced in mitophagy-enhancers-treated mutant APP-HT22 cells. Further, urolithin A showed strongest protective effects against mutant APP and Aβ-induced mitochondrial and synaptic toxicities in ad. Based on these findings, we cautiously propose that mitophagy enhancers are promising therapeutic drugs to treat mitophagy in patients with ad.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
22
|
Gao P, Li X, Du X, Liu S, Xu Y. Diagnostic and Therapeutic Potential of Exosomes in Neurodegenerative Diseases. Front Aging Neurosci 2022; 13:790863. [PMID: 34975460 PMCID: PMC8717921 DOI: 10.3389/fnagi.2021.790863] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are closely related to brain function and the progression of the diseases are irreversible. Due to brain tissue being not easy to acquire, the study of the pathophysiology of neurodegenerative disorders has many limitations—lack of reliable early biomarkers and personalized treatment. At the same time, the blood-brain barrier (BBB) limits most of the drug molecules into the damaged areas of the brain, which makes a big drop in the effect of drug treatment. Exosomes, a kind of endogenous nanoscale vesicles, play a key role in cell signaling through the transmission of genetic information and proteins between cells. Because of the ability to cross the BBB, exosomes are expected to link peripheral changes to central nervous system (CNS) events as potential biomarkers, and can even be used as a therapeutic carrier to deliver molecules specifically to CNS. Here we summarize the role of exosomes in pathophysiology, diagnosis, prognosis, and treatment of some neurodegenerative diseases (Alzheimer’s Disease, Parkinson’s Disease, Huntington’s Disease, Amyotrophic Lateral Sclerosis).
Collapse
Affiliation(s)
- Panyue Gao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Xinzhe Du
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Mental Health, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Zhang N, He F, Li T, Chen J, Jiang L, Ouyang XP, Zuo L. Role of Exosomes in Brain Diseases. Front Cell Neurosci 2021; 15:743353. [PMID: 34588957 PMCID: PMC8473913 DOI: 10.3389/fncel.2021.743353] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Exosomes are a subset of extracellular vesicles that act as messengers to facilitate communication between cells. Non-coding RNAs, proteins, lipids, and microRNAs are delivered by the exosomes to target molecules (such as proteins, mRNAs, or DNA) of host cells, thereby playing a key role in the maintenance of normal brain function. However, exosomes are also involved in the occurrence, prognosis, and clinical treatment of brain diseases, such as Alzheimer's disease, Parkinson's disease, stroke, and traumatic brain injury. In this review, we have summarized novel findings that elucidate the role of exosomes in the occurrence, prognosis, and treatment of brain diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Fengling He
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Ting Li
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Jinzhi Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| | - Liping Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China.,Hunan Taihe Hospital, Changsha, China
| | - Xin-Ping Ouyang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Lielian Zuo
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Hengyang Medical School, Institute of Neuroscience Research, University of South China, Hengyang, China
| |
Collapse
|