1
|
Babu H, Rachel G, Neogi U, Palaniappan AN, Narayanan A, Ponnuraja C, Sundaraj V, Viswanathan VK, Kumar CPG, Tripathy SP, Hanna LE. Accelerated cognitive aging in chronically infected HIV-1 positive individuals despite effective long-term antiretroviral therapy. Metab Brain Dis 2024; 40:32. [PMID: 39570517 DOI: 10.1007/s11011-024-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024]
Abstract
People living with HIV (PLHIV) are known to be at a higher risk of developing an array of aging-related diseases despite well-adhered combined antiretroviral therapy (cART). The present study aimed to investigate the impact of chronic HIV infection on neurocognitive function in virally suppressed PLHIV. We enrolled HIV-positive individuals randomly from an ART Center in Chennai, South India. A similar number of HIV-uninfected individuals matched for age and gender with the HIV-infected individuals served as controls. All individuals provided a detailed clinical history and underwent neuropsychological assessment using the International HIV Dementia Scale (IHDS). Plasma proteome analysis was performed using the Proximity extension assay (PEA) with the Olink® neuroexploratory panel, and untargeted metabolomics was performed using Ultra-High-Performance Liquid Chromatography/Mass Spectrometry/Mass Spectrometry. Despite a median duration of 9 years on first-line cART and suppressed viremia, a significant proportion of PLHIV registered significant levels of asymptomatic neurocognitive impairment, with 71% of these individuals scoring ≤ 10 in the IHDS test. We also observed significant alterations in a number of proteins and metabolites that are known to be associated with neuroinflammation, neurodegeneration, cognitive impairment, and gastrointestinal cancers, in the PLHIV group. Thus the study provides clinical as well as laboratory evidence to substantiate the presence of asymptomatic neurocognitive impairment in a large proportion of PLHIV, despite adequate cART and undetectable viremia, thereby supporting the view that HIV infection potentiates the risk for accelerated and accentuated neurological aging. This observation highlights the need to devise and implement appropriate intervention strategies for better long term management of HIV-infected persons.
Collapse
Affiliation(s)
- Hemalatha Babu
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Gladys Rachel
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
- Laboratory Sciences, ICMR-National Institute of Epidemiology, Chennai, 600077, India
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152, Huddinge, Sweden
| | | | - Aswathy Narayanan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, 14152, Huddinge, Sweden
| | - Chinnaiyan Ponnuraja
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Vijila Sundaraj
- Government Hospital of Thoracic Medicine, Tambaram Sanatorium, Chennai, 600047, India
| | | | - C P Girish Kumar
- Laboratory Sciences, ICMR-National Institute of Epidemiology, Chennai, 600077, India
| | - Srikanth P Tripathy
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India
| | - Luke Elizabeth Hanna
- Department of Virology and Biotechnology, ICMR-National Institute for Research in Tuberculosis, Chennai, 600031, India.
| |
Collapse
|
2
|
Hajdarevic R, Lande A, Mehlsen J, Rydland A, Sosa DD, Strand EB, Mella O, Pociot F, Fluge Ø, Lie BA, Viken MK. Genetic association study in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) identifies several potential risk loci. Brain Behav Immun 2022; 102:362-369. [PMID: 35318112 DOI: 10.1016/j.bbi.2022.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease of unknown etiology and pathogenesis, which manifests in a variety of symptoms like post-exertional malaise, brain fog, fatigue and pain. Hereditability is suggested by an increased disease risk in relatives, however, genome-wide association studies in ME/CFS have been limited by small sample sizes and broad diagnostic criteria, therefore no established risk loci exist to date. In this study, we have analyzed three ME/CFS cohorts: a Norwegian discovery cohort (N = 427), a Danish replication cohort (N = 460) and a replication dataset from the UK biobank (N = 2105). To the best of our knowledge, this is the first ME/CFS genome-wide association study of this magnitude incorporating 2532 patients for the genome-wide analyses and 460 patients for a targeted analysis. Even so, we did not find any ME/CFS risk loci displaying genome-wide significance. In the Norwegian discovery cohort, the TPPP gene region showed the most significant association (rs115523291, P = 8.5 × 10-7), but we could not replicate the top SNP. However, several other SNPs in the TPPP gene identified in the Norwegian discovery cohort showed modest association signals in the self-reported UK biobank CFS cohort, which was also present in the combined analysis of the Norwegian and UK biobank cohorts, TPPP (rs139264145; P = 0.00004). Interestingly, TPPP is expressed in brain tissues, hence it will be interesting to see whether this association, with time, will be verified in even larger cohorts. Taken together our study, despite being the largest to date, could not establish any ME/CFS risk loci, but comprises data for future studies to accumulate the power needed to reach genome-wide significance.
Collapse
Affiliation(s)
- Riad Hajdarevic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway.
| | - Asgeir Lande
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jesper Mehlsen
- Section for Surgical Pathophysiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Anne Rydland
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Daisy D Sosa
- National Advisory Unit on CFS/ME, Norway; CFS/ME Center, Oslo University Hospital, Norway
| | - Elin B Strand
- Department of Digital Health Research, Division of Medicine, Oslo University Hospital, Oslo, Norway; Faculty of Health, VID-Specialized University, Diakonhjemmet Hospital, Oslo, Norway
| | - Olav Mella
- Department of Oncology and Medical Physics, Haukeland University Hospital, Norway
| | - Flemming Pociot
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Denmark
| | - Øystein Fluge
- Department of Oncology and Medical Physics, Haukeland University Hospital, Norway
| | - Benedicte A Lie
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marte K Viken
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Hur JY. γ-Secretase in Alzheimer's disease. Exp Mol Med 2022; 54:433-446. [PMID: 35396575 PMCID: PMC9076685 DOI: 10.1038/s12276-022-00754-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/05/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is caused by synaptic and neuronal loss in the brain. One of the characteristic hallmarks of AD is senile plaques containing amyloid β-peptide (Aβ). Aβ is produced from amyloid precursor protein (APP) by sequential proteolytic cleavages by β-secretase and γ-secretase, and the polymerization of Aβ into amyloid plaques is thought to be a key pathogenic event in AD. Since γ-secretase mediates the final cleavage that liberates Aβ, γ-secretase has been widely studied as a potential drug target for the treatment of AD. γ-Secretase is a transmembrane protein complex containing presenilin, nicastrin, Aph-1, and Pen-2, which are sufficient for γ-secretase activity. γ-Secretase cleaves >140 substrates, including APP and Notch. Previously, γ-secretase inhibitors (GSIs) were shown to cause side effects in clinical trials due to the inhibition of Notch signaling. Therefore, more specific regulation or modulation of γ-secretase is needed. In recent years, γ-secretase modulators (GSMs) have been developed. To modulate γ-secretase and to understand its complex biology, finding the binding sites of GSIs and GSMs on γ-secretase as well as identifying transiently binding γ-secretase modulatory proteins have been of great interest. In this review, decades of findings on γ-secretase in AD are discussed.
Collapse
Affiliation(s)
- Ji-Yeun Hur
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Escamilla-Ayala A, Wouters R, Sannerud R, Annaert W. Contribution of the Presenilins in the cell biology, structure and function of γ-secretase. Semin Cell Dev Biol 2020; 105:12-26. [DOI: 10.1016/j.semcdb.2020.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 01/25/2023]
|
5
|
Valenzuela A, Meservey L, Nguyen H, Fu MM. Golgi Outposts Nucleate Microtubules in Cells with Specialized Shapes. Trends Cell Biol 2020; 30:792-804. [PMID: 32863092 DOI: 10.1016/j.tcb.2020.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
Classically, animal cells nucleate or form new microtubules off the perinuclear centrosome. In recent years, the Golgi outpost has emerged as a satellite organelle that can function as an acentrosomal microtubule-organizing center (MTOC), nucleating new microtubules at distances far from the nucleus or cell body. Golgi outposts can nucleate new microtubules in specialized cells with unique cytoarchitectures, including Drosophila neurons, mouse muscle cells, and rodent oligodendrocytes. This review compares and contrasts topics of functional relevance, including Golgi outpost heterogeneity, formation and transport, as well as regulation of microtubule polarity and branching. Golgi outposts have also been implicated in the pathology of diseases including muscular dystrophy, and neurodegenerative diseases, such as Parkinson's disease (PD). Since Golgi outposts are relatively understudied, many outstanding questions regarding their function and roles in disease remain.
Collapse
Affiliation(s)
- Alex Valenzuela
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lindsey Meservey
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Huy Nguyen
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
6
|
Weigel M, Wang L, Fu MM. Microtubule organization and dynamics in oligodendrocytes, astrocytes, and microglia. Dev Neurobiol 2020; 81:310-320. [PMID: 32324338 DOI: 10.1002/dneu.22753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Though much is known about microtubule organization and microtubule-based transport in neurons, the development and function of microtubules in glia are more enigmatic. In this review, we provide an overview of the literature on microtubules in ramified brain cells, including oligodendrocytes, astrocytes, and microglia. We focus on normal cell biology-how structure relates to function in these cells. In oligodendrocytes, microtubules are important for extension of processes that contact axons and for elongating the myelin sheath. Recent studies demonstrate that new microtubules can form outside of the oligodendrocyte cell body off of Golgi outpost organelles. In astrocytes and microglia, changes in cell shape and ramification can be influenced by neighboring cells and the extracellular milieu. Finally, we highlight key papers implicating glial microtubule defects in neurological injury and disease and discuss how microtubules may contribute to invasiveness in gliomas. Thus, future research on the mechanisms underlying microtubule organization in normal glial cell function may yield valuable insights on neurological disease pathology.
Collapse
Affiliation(s)
- Maya Weigel
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lin Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
7
|
Oláh J, Lehotzky A, Szunyogh S, Szénási T, Orosz F, Ovádi J. Microtubule-Associated Proteins with Regulatory Functions by Day and Pathological Potency at Night. Cells 2020; 9:E357. [PMID: 32033023 PMCID: PMC7072251 DOI: 10.3390/cells9020357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/23/2022] Open
Abstract
The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeleton, including the microtubule network. Microtubules play crucial roles achieved by their decoration with proteins/enzymes as well as by posttranslational modifications. This review focuses on the Tubulin Polymerization Promoting Protein (TPPP/p25), a new microtubule associated protein, on its "regulatory functions by day and pathological functions at night". Physiologically, the moonlighting TPPP/p25 modulates the dynamics and stability of the microtubule network by bundling microtubules and enhancing the tubulin acetylation due to the inhibition of tubulin deacetylases. The optimal endogenous TPPP/p25 level is crucial for its physiological functions, to the differentiation of oligodendrocytes, which are the major constituents of the myelin sheath. Pathologically, TPPP/p25 forms toxic oligomers/aggregates with α-synuclein in neurons and oligodendrocytes in Parkinson's disease and Multiple System Atrophy, respectively; and their complex is a potential therapeutic drug target. TPPP/p25-derived microtubule hyperacetylation counteracts uncontrolled cell division. All these issues reveal the anti-mitotic and α-synuclein aggregation-promoting potency of TPPP/p25, consistent with the finding that Parkinson's disease patients have reduced risk for certain cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary; (J.O.); (A.L.); (S.S.); (T.S.); (F.O.)
| |
Collapse
|
8
|
The Golgi Outpost Protein TPPP Nucleates Microtubules and Is Critical for Myelination. Cell 2019; 179:132-146.e14. [PMID: 31522887 DOI: 10.1016/j.cell.2019.08.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 05/19/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes extend elaborate microtubule arbors that contact up to 50 axon segments per cell, then spiral around myelin sheaths, penetrating from outer to inner layers. However, how they establish this complex cytoarchitecture is unclear. Here, we show that oligodendrocytes contain Golgi outposts, an organelle that can function as an acentrosomal microtubule-organizing center (MTOC). We identify a specific marker for Golgi outposts-TPPP (tubulin polymerization promoting protein)-that we use to purify this organelle and characterize its proteome. In in vitro cell-free assays, recombinant TPPP nucleates microtubules. Primary oligodendrocytes from Tppp knockout (KO) mice have aberrant microtubule branching, mixed microtubule polarity, and shorter myelin sheaths when cultured on 3-dimensional (3D) microfibers. Tppp KO mice exhibit hypomyelination with shorter, thinner myelin sheaths and motor coordination deficits. Together, our data demonstrate that microtubule nucleation outside the cell body at Golgi outposts by TPPP is critical for elongation of the myelin sheath.
Collapse
|
9
|
Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E. Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J Neurochem 2019; 149:582-604. [PMID: 30664243 DOI: 10.1111/jnc.14664] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/15/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023]
Abstract
Transcription, translation, and turnover of transcripts and proteins are essential for cellular function. The contribution of those factors to protein levels is under debate, as transcript levels and cognate protein levels do not necessarily correlate due to regulation of translation and protein turnover. Here we propose neuronal polarity as a third factor that is particularly evident in the CNS, leading to considerable distances between somata and axon terminals. Consequently, transcript levels may negatively correlate with cognate protein levels in CNS regions, i.e., transcript and protein levels behave reciprocally. To test this hypothesis, we performed an integrative inter-omics study and analyzed three interconnected rat auditory brainstem regions (cochlear nuclear complex, CN; superior olivary complex, SOC; inferior colliculus, IC) and the rest of the brain as a reference. We obtained transcript and protein sets in these regions of interest (ROIs) by DNA microarrays and label-free mass spectrometry, and performed principal component and correlation analyses. We found 508 transcript|protein pairs and detected poor to moderate transcript|protein correlation in all ROIs, as evidenced by coefficients of determination from 0.34 to 0.54. We identified 57-80 negatively correlating gene products in the ROIs and intensively analyzed four of them for which the correlation was poorest. Three cognate proteins (Slc6a11, Syngr1, Tppp) were synaptic and hence candidates for a negative correlation because of protein transport into axon terminals. Thus, we systematically analyzed the negatively correlating gene products. Gene ontology analyses revealed overrepresented transport/synapse-related proteins, supporting our hypothesis. We present 30 synapse/transport-related proteins with poor transcript|protein correlation. In conclusion, our analyses support that protein transport in polar cells is a third factor that influences the protein level and, thereby, the transcript|protein correlation. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* and *Open Data* because it provided all relevant information to reproduce the study in the manuscript and because it made the data publicly available. The data can be accessed at https://osf.io/ha28n/. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Christian P Moritz
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Synaptopathies and Autoantibodies, Institut NeuroMyoGène INSERM U1217/ CNRS, UMR 5310, Faculty of Medicine, University Jean Monnet, Saint-Étienne, France
| | - Timo Mühlhaus
- Computational Systems Biology, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas Schulenborg
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany.,Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
10
|
Allosteric Modulation of Intact γ-Secretase Structural Dynamics. Biophys J 2018; 113:2634-2649. [PMID: 29262358 DOI: 10.1016/j.bpj.2017.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/20/2022] Open
Abstract
As a protease complex involved in the cleavage of amyloid precursor proteins that lead to the formation of amyloid β fibrils implicated in Alzheimer's disease, γ-secretase is an important target for developing therapeutics against Alzheimer's disease. γ-secretase is composed of four subunits: nicastrin (NCT) in the extracellular (EC) domain, presenilin-1 (PS1), anterior pharynx defective 1, and presenilin enhancer 2 in the transmembrane (TM) domain. NCT and PS1 play important roles in binding amyloid β precursor proteins and modulating PS1 catalytic activity. Yet, the molecular mechanisms of coupling between substrate/modulator binding and catalytic activity remain to be elucidated. Recent determination of intact human γ-secretase cryo-electron microscopy structure has opened the way for a detailed investigation of the structural dynamics of this complex. Our analysis, based on a membrane-coupled anisotropic network model, reveals two types of NCT motions, bending and twisting, with respect to PS1. These underlie the fluctuations between the "open" and "closed" states of the lid-like NCT with respect to a hydrophilic loop 1 (HL1) on PS1, thus allowing or blocking access of the substrate peptide (EC portion) to HL1 and to the neighboring helix TM2. In addition to this alternating access mechanism, fluctuations in the volume of the PS1 central cavity facilitate the exposure of the catalytic site for substrate cleavage. Druggability simulations show that γ-secretase presents several hot spots for either orthosteric or allosteric inhibition of catalytic activity, consistent with experimental data. In particular, a hinge region at the interface between the EC and TM domains, near the interlobe groove of NCT, emerges as an allo-targeting site that would impact the coupling between HL1/TM2 and the catalytic pocket, opening, to our knowledge, new avenues for structure-based design of novel allosteric modulators of γ-secretase protease activity.
Collapse
|
11
|
Abstract
Alzheimer's disease (AD) is the primary cause of age-related dementia. Effective strategies to prevent and treat AD remain elusive despite major efforts to understand its basic biology and clinical pathophysiology. Significant investments in therapeutic drug discovery programs over the past two decades have yielded some important insights but no blockbuster drugs to alter the course of disease. Because significant memory loss and cognitive decline are associated with neuron death and loss of gray matter, especially in the frontal cortex and hippocampus, some focus in drug development has shifted to early prevention of cellular pathology. Although clinical trial design is challenging, due in part to a lack of robust biomarkers with predictive value, some optimism has come from the identification and study of inherited forms of early-onset AD and genetic risk factors that provide insights about molecular pathophysiology and potential drug targets. In addition, better understanding of the Aβ amyloid pathway and the tau pathway-leading to amyloid plaques and neurofibrillary tangles, respectively, which are histopathological hallmarks of AD-continues to drive significant drug research and development programs. The main focus of this review is to summarize the most recent basic biology, biochemistry, and pharmacology that serve as a foundation for more than 50 active advanced-phase clinical trials for AD prevention and therapy.
Collapse
Affiliation(s)
- W Vallen Graham
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065;
| | - Alessandra Bonito-Oliva
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065;
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, NY 10065; .,Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, 141 57 Huddinge, Sweden
| |
Collapse
|
12
|
Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, Bogdanovic N, Winblad B, Sandebring-Matton A, Frykman S, Tjernberg LO. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. ALZHEIMERS RESEARCH & THERAPY 2017; 9:57. [PMID: 28764767 PMCID: PMC5540560 DOI: 10.1186/s13195-017-0279-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/21/2017] [Indexed: 01/03/2023]
Abstract
Background Increased levels of the pathogenic amyloid β-peptide (Aβ), released from its precursor by the transmembrane protease γ-secretase, are found in Alzheimer disease (AD) brains. Interestingly, monoamine oxidase B (MAO-B) activity is also increased in AD brain, but its role in AD pathogenesis is not known. Recent neuroimaging studies have shown that the increased MAO-B expression in AD brain starts several years before the onset of the disease. Here, we show a potential connection between MAO-B, γ-secretase and Aβ in neurons. Methods MAO-B immunohistochemistry was performed on postmortem human brain. Affinity purification of γ-secretase followed by mass spectrometry was used for unbiased identification of γ-secretase-associated proteins. The association of MAO-B with γ-secretase was studied by coimmunoprecipitation from brain homogenate, and by in-situ proximity ligation assay (PLA) in neurons as well as mouse and human brain sections. The effect of MAO-B on Aβ production and Notch processing in cell cultures was analyzed by siRNA silencing or overexpression experiments followed by ELISA, western blot or FRET analysis. Methodology for measuring relative intraneuronal MAO-B and Aβ42 levels in single cells was developed by combining immunocytochemistry and confocal microscopy with quantitative image analysis. Results Immunohistochemistry revealed MAO-B staining in neurons in the frontal cortex, hippocampus CA1 and entorhinal cortex in postmortem human brain. Interestingly, the neuronal staining intensity was higher in AD brain than in control brain in these regions. Mass spectrometric data from affinity purified γ-secretase suggested that MAO-B is a γ-secretase-associated protein, which was confirmed by immunoprecipitation and PLA, and a neuronal location of the interaction was shown. Strikingly, intraneuronal Aβ42 levels correlated with MAO-B levels, and siRNA silencing of MAO-B resulted in significantly reduced levels of intraneuronal Aβ42. Furthermore, overexpression of MAO-B enhanced Aβ production. Conclusions This study shows that MAO-B levels are increased not only in astrocytes but also in pyramidal neurons in AD brain. The study also suggests that MAO-B regulates Aβ production in neurons via γ-secretase and thereby provides a key to understanding the relationship between MAO-B and AD pathogenesis. Potentially, the γ-secretase/MAO-B association may be a target for reducing Aβ levels using protein–protein interaction breakers. Electronic supplementary material The online version of this article (doi:10.1186/s13195-017-0279-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.
| | - Mitsuhiro Inoue
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Present address: Dainippon Sumitomo Pharma Co., Ltd, Drug Development Research Laboratories, Osaka, Japan
| | - Lenka Hromadkova
- National Institute of Mental Health, Klecany, Czech Republic.,Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Yasuhiro Teranishi
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Present address: Dainippon Sumitomo Pharma Co., Ltd, Drug Development Research Laboratories, Osaka, Japan
| | - Natsuko Goto Yamamoto
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden.,Present address: Dainippon Sumitomo Pharma Co., Ltd, Drug Development Research Laboratories, Osaka, Japan
| | - Birgitta Wiehager
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Nenad Bogdanovic
- Department of Geriatric Medicine, University in Oslo, Memory Clinic, Oslo University Hospital, Oslo, Norway
| | - Bengt Winblad
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Anna Sandebring-Matton
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Susanne Frykman
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| | - Lars O Tjernberg
- Karolinska Institutet, Department NVS, Center for Alzheimer Research, Division of Neurogeriatrics, Huddinge, Sweden
| |
Collapse
|
13
|
Maturation and processing of the amyloid precursor protein is regulated by the potassium/sodium hyperpolarization-activated cyclic nucleotide-gated ion channel 2 (HCN2). Biochem Biophys Res Commun 2017; 483:352-358. [DOI: 10.1016/j.bbrc.2016.12.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/21/2016] [Indexed: 01/15/2023]
|
14
|
Leal NS, Schreiner B, Pinho CM, Filadi R, Wiehager B, Karlström H, Pizzo P, Ankarcrona M. Mitofusin-2 knockdown increases ER-mitochondria contact and decreases amyloid β-peptide production. J Cell Mol Med 2016; 20:1686-95. [PMID: 27203684 PMCID: PMC4988279 DOI: 10.1111/jcmm.12863] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/04/2016] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.
Collapse
Affiliation(s)
- Nuno Santos Leal
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bernadette Schreiner
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Catarina Moreira Pinho
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Birgitta Wiehager
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Helena Karlström
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Maria Ankarcrona
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Teranishi Y, Inoue M, Yamamoto NG, Kihara T, Wiehager B, Ishikawa T, Winblad B, Schedin-Weiss S, Frykman S, Tjernberg LO. Proton myo-inositol cotransporter is a novel γ-secretase associated protein that regulates Aβ production without affecting Notch cleavage. FEBS J 2015; 282:3438-51. [DOI: 10.1111/febs.13353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Yasuhiro Teranishi
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
- Dainippon Sumitomo Pharma Co., Ltd; Drug Development Research Laboratories; Osaka Japan
| | - Mitsuhiro Inoue
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
- Dainippon Sumitomo Pharma Co., Ltd; Drug Development Research Laboratories; Osaka Japan
| | - Natsuko Goto Yamamoto
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
- Dainippon Sumitomo Pharma Co., Ltd; Drug Development Research Laboratories; Osaka Japan
| | - Takahiro Kihara
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
- Dainippon-Sumitomo Pharma Co., Ltd; Genomic Science Laboratories; Osaka Japan
| | - Birgitta Wiehager
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
| | - Taizo Ishikawa
- Dainippon Sumitomo Pharma Co., Ltd; Innovative Drug Discovery Research Laboratories; Osaka Japan
| | - Bengt Winblad
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
| | - Sophia Schedin-Weiss
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
| | - Susanne Frykman
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
| | - Lars O. Tjernberg
- Division for Neurogeriatrics; Department of NVS; Center for Alzheimer Research; Karolinska Institutet; Huddinge Sweden
| |
Collapse
|
16
|
Inoue M, Hur JY, Kihara T, Teranishi Y, Yamamoto NG, Ishikawa T, Wiehager B, Winblad B, Tjernberg LO, Schedin-Weiss S. Human brain proteins showing neuron-specific interactions with γ-secretase. FEBS J 2015; 282:2587-99. [DOI: 10.1111/febs.13303] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/16/2015] [Accepted: 04/17/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Mitsuhiro Inoue
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Ji-Yeun Hur
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Takahiro Kihara
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Yasuhiro Teranishi
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Natsuko G. Yamamoto
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Taizo Ishikawa
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Birgitta Wiehager
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Bengt Winblad
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Lars O. Tjernberg
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| | - Sophia Schedin-Weiss
- Karolinska Institutet; Department of Neurobiology; Care Sciences and Society; Center for Alzheimer Research; Division for Neurogeriatrics; Huddinge Sweden
| |
Collapse
|
17
|
Gertsik N, Chiu D, Li YM. Complex regulation of γ-secretase: from obligatory to modulatory subunits. Front Aging Neurosci 2015; 6:342. [PMID: 25610395 PMCID: PMC4285130 DOI: 10.3389/fnagi.2014.00342] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 11/29/2022] Open
Abstract
γ-Secretase is a four subunit, 19-pass transmembrane enzyme that cleaves amyloid precursor protein (APP), catalyzing the formation of amyloid beta (Aβ) peptides that form amyloid plaques, which contribute to Alzheimer’s disease (AD) pathogenesis. γ-Secretase also cleaves Notch, among many other type I transmembrane substrates. Despite its seemingly promiscuous enzymatic capacity, γ-secretase activity is tightly regulated. This regulation is a function of many cellular entities, including but not limited to the essential γ-secretase subunits, nonessential (modulatory) subunits, and γ-secretase substrates. Regulation is also accomplished by an array of cellular events, such as presenilin (active subunit of γ-secretase) endoproteolysis and hypoxia. In this review we discuss how γ-secretase is regulated with the hope that an advanced understanding of these mechanisms will aid in the development of effective therapeutics for γ-secretase-associated diseases like AD and Notch-addicted cancer.
Collapse
Affiliation(s)
- Natalya Gertsik
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Biochemistry and Molecular Biology Program, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Danica Chiu
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | - Yue-Ming Li
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center New York, NY, USA ; Program of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| |
Collapse
|
18
|
Floudas CS, Um N, Kamboh MI, Barmada MM, Visweswaran S. Identifying genetic interactions associated with late-onset Alzheimer's disease. BioData Min 2014; 7:35. [PMID: 25649863 PMCID: PMC4300162 DOI: 10.1186/s13040-014-0035-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 12/06/2014] [Indexed: 01/23/2023] Open
Abstract
Background Identifying genetic interactions in data obtained from genome-wide association studies (GWASs) can help in understanding the genetic basis of complex diseases. The large number of single nucleotide polymorphisms (SNPs) in GWASs however makes the identification of genetic interactions computationally challenging. We developed the Bayesian Combinatorial Method (BCM) that can identify pairs of SNPs that in combination have high statistical association with disease. Results We applied BCM to two late-onset Alzheimer’s disease (LOAD) GWAS datasets to identify SNPs that interact with known Alzheimer associated SNPs. We also compared BCM with logistic regression that is implemented in PLINK. Gene Ontology analysis of genes from the top 200 dataset SNPs for both GWAS datasets showed overrepresentation of LOAD-related terms. Four genes were common to both datasets: APOE and APOC1, which have well established associations with LOAD, and CAMK1D and FBXL13, not previously linked to LOAD but having evidence of involvement in LOAD. Supporting evidence was also found for additional genes from the top 30 dataset SNPs. Conclusion BCM performed well in identifying several SNPs having evidence of involvement in the pathogenesis of LOAD that would not have been identified by univariate analysis due to small main effect. These results provide support for applying BCM to identify potential genetic variants such as SNPs from high dimensional GWAS datasets. Electronic supplementary material The online version of this article (doi:10.1186/s13040-014-0035-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charalampos S Floudas
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA 15206 USA
| | - Nara Um
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA 15206 USA
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Michael M Barmada
- Department of Human Genetics, University of Pittsburgh, 130 De Soto Street, Pittsburgh, PA 15261 USA
| | - Shyam Visweswaran
- Department of Biomedical Informatics, University of Pittsburgh, 5607 Baum Boulevard, Pittsburgh, PA 15206 USA ; The Intelligent Systems Program, University of Pittsburgh, 5113 Sennott Square 210 South Bouquet Street, Pittsburgh, PA 15260 USA
| |
Collapse
|
19
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Schedin-Weiss S, Inoue M, Teranishi Y, Yamamoto NG, Karlström H, Winblad B, Tjernberg LO. Visualizing active enzyme complexes using a photoreactive inhibitor for proximity ligation--application on γ-secretase. PLoS One 2013; 8:e63962. [PMID: 23717518 PMCID: PMC3663845 DOI: 10.1371/journal.pone.0063962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/09/2013] [Indexed: 11/20/2022] Open
Abstract
Here, we present a highly sensitive method to study protein-protein interactions and subcellular location selectively for active multicomponent enzymes. We apply the method on γ-secretase, the enzyme complex that catalyzes the cleavage of the amyloid precursor protein (APP) to generate amyloid β-peptide (Aβ), the major causative agent in Alzheimer disease (AD). The novel assay is based on proximity ligation, which can be used to study protein interactions in situ with very high sensitivity. In traditional proximity ligation assay (PLA), primary antibody recognition is typically accompanied by oligonucleotide-conjugated secondary antibodies as detection probes. Here, we first performed PLA experiments using antibodies against the γ-secretase components presenilin 1 (PS1), containing the catalytic site residues, and nicastrin, suggested to be involved in substrate recognition. To selectively study the interactions of active γ-secretase, we replaced one of the primary antibodies with a photoreactive γ-secretase inhibitor containing a PEG linker and a biotin group (GTB), and used oligonucleotide-conjugated streptavidin as a probe. Interestingly, significantly fewer interactions were detected with the latter, novel, assay, which is a reasonable finding considering that a substantial portion of PS1 is inactive. In addition, the PLA signals were located more peripherally when GTB was used instead of a PS1 antibody, suggesting that γ-secretase matures distal from the perinuclear ER region. This novel technique thus enables highly sensitive protein interaction studies, determines the subcellular location of the interactions, and differentiates between active and inactive γ-secretase in intact cells. We suggest that similar PLA assays using enzyme inhibitors could be useful also for other enzyme interaction studies.
Collapse
Affiliation(s)
- Sophia Schedin-Weiss
- KI-Alzheimer Disease Research Center-KI-ADRC, Karolinska Institutet, Department of Neurobiology, Care Sciences and Society-NVS, Novum Level 5, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Crump CJ, Johnson DS, Li YM. Development and mechanism of γ-secretase modulators for Alzheimer's disease. Biochemistry 2013; 52:3197-216. [PMID: 23614767 DOI: 10.1021/bi400377p] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
γ-Secretase is an aspartyl intramembranal protease composed of presenilin, Nicastrin, Aph1, and Pen2 with 19 transmembrane domains. γ-Secretase cleaves the amyloid precursor proteins (APP) to release Aβ peptides that likely play a causative role in the pathogenesis of Alzheimer's disease (AD). In addition, γ-secretase cleaves Notch and other type I membrane proteins. γ-Secretase inhibitors (GSIs) have been developed and used for clinical studies. However, clinical trials have shown adverse effects of GSIs that are potentially linked with nondiscriminatory inhibition of Notch signaling, overall APP processing, and other substrate cleavages. Therefore, these findings call for the development of disease-modifying agents that target γ-secretase activity to lower levels of Aβ42 production without blocking the overall processing of γ-secretase substrates. γ-Secretase modulators (GSMs) originally derived from nonsteroidal anti-inflammatory drugs (NSAIDs) display such characteristics and are the focus of this review. However, first-generation GSMs have limited potential because of the low potency and undesired neuropharmacokinetic properties. This generation of GSMs has been suggested to interact with the APP substrate, γ-secretase, or both. To improve the potency and brain availability, second-generation GSMs, including NSAID-derived carboxylic acid and non-NSAID-derived heterocyclic chemotypes, as well as natural product-derived GSMs have been developed. Animal studies of this generation of GSMs have shown encouraging preclinical profiles. Moreover, using potent GSM photoaffinity probes, multiple studies unambiguously have showed that both carboxylic acid and heterocyclic GSMs specifically target presenilin, the catalytic subunit of γ-secretase. In addition, two types of GSMs have distinct binding sites within the γ-secretase complex and exhibit different Aβ profiles. GSMs induce a conformational change of γ-secretase to achieve modulation. Various models are proposed and discussed. Despite the progress of GSM research, many outstanding issues remain to be investigated to achieve the ultimate goal of developing GSMs as effective AD therapies.
Collapse
Affiliation(s)
- Christina J Crump
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center , 1275 York Avenue, New York, New York 10065, United States
| | | | | |
Collapse
|
22
|
Teranishi Y, Hur JY, Gu GJ, Kihara T, Ishikawa T, Nishimura T, Winblad B, Behbahani H, Kamali-Moghaddam M, Frykman S, Tjernberg LO. Erlin-2 is associated with active γ-secretase in brain and affects amyloid β-peptide production. Biochem Biophys Res Commun 2012; 424:476-81. [PMID: 22771797 DOI: 10.1016/j.bbrc.2012.06.137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 06/26/2012] [Indexed: 01/23/2023]
Abstract
The transmembrane protease complex γ-secretase is responsible for the generation of the neurotoxic amyloid β-peptide (Aβ) from its precursor (APP). Aβ has a causative role in Alzheimer disease, and thus, γ-secretase is a therapeutic target. However, since there are more than 70 γ-secretase substrates besides APP, selective inhibition of APP processing is required. Recent data indicates the existence of several γ-secretase associated proteins (GSAPs) that affect the selection and processing of substrates. Here, we use a γ-secretase inhibitor for affinity purification of γ-secretase and associated proteins from microsomes and detergent resistant membranes (DRMs) prepared from rat or human brain. By tandem mass spectrometry we identified a novel brain GSAP; erlin-2. This protein was recently reported to reside in DRMs in the ER. A proximity ligation assay, as well as co-immunoprecipitation, confirmed the association of erlin-2 with γ-secretase. We found that a higher proportion of erlin-2 was associated with γ-secretase in DRMs than in soluble membranes. siRNA experiments indicated that reduced levels of erlin-2 resulted in a decreased Aβ production, whereas the effect on Notch processing was limited. In summary, we have found a novel brain GSAP, erlin-2, that resides in DRMs and affects Aβ production.
Collapse
Affiliation(s)
- Yasuhiro Teranishi
- Karolinska Institutet Dainippon Sumitomo Pharma Alzheimer Center, KI-Alzheimer Disease Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Novum, Stockholm SE-141 86, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|