1
|
Adermark L, Lagström O, Loftén A, Licheri V, Havenäng A, Loi EA, Stomberg R, Söderpalm B, Domi A, Ericson M. Astrocytes modulate extracellular neurotransmitter levels and excitatory neurotransmission in dorsolateral striatum via dopamine D2 receptor signaling. Neuropsychopharmacology 2022; 47:1493-1502. [PMID: 34811469 PMCID: PMC9206030 DOI: 10.1038/s41386-021-01232-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/14/2022]
Abstract
Astrocytes provide structural and metabolic support of neuronal tissue, but may also be involved in shaping synaptic output. To further define the role of striatal astrocytes in modulating neurotransmission we performed in vivo microdialysis and ex vivo slice electrophysiology combined with metabolic, chemogenetic, and pharmacological approaches. Microdialysis recordings revealed that intrastriatal perfusion of the metabolic uncoupler fluorocitrate (FC) produced a robust increase in extracellular glutamate levels, with a parallel and progressive decline in glutamine. In addition, FC significantly increased the microdialysate concentrations of dopamine and taurine, but did not modulate the extracellular levels of glycine or serine. Despite the increase in glutamate levels, ex vivo electrophysiology demonstrated a reduced excitability of striatal neurons in response to FC. The decrease in evoked potentials was accompanied by an increased paired pulse ratio, and a reduced frequency of spontaneous excitatory postsynaptic currents, suggesting that FC depresses striatal output by reducing the probability of transmitter release. The effect by FC was mimicked by chemogenetic inhibition of astrocytes using Gi-coupled designer receptors exclusively activated by designer drugs (DREADDs) targeting GFAP, and by the glial glutamate transporter inhibitor TFB-TBOA. Both FC- and TFB-TBOA-mediated synaptic depression were inhibited in brain slices pre-treated with the dopamine D2 receptor antagonist sulpiride, but insensitive to agents acting on presynaptic glutamatergic autoreceptors, NMDA receptors, gap junction coupling, cannabinoid 1 receptors, µ-opioid receptors, P2 receptors or GABAA receptors. In conclusion, our data collectively support a role for astrocytes in modulating striatal neurotransmission and suggest that reduced transmission after astrocytic inhibition involves dopamine.
Collapse
Affiliation(s)
- Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Oona Lagström
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Loftén
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Valentina Licheri
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amy Havenäng
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eleonora Anna Loi
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rosita Stomberg
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden ,grid.1649.a000000009445082XBeroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ana Domi
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- grid.8761.80000 0000 9919 9582Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Umino A, Iwama H, Umino M, Shimazu D, Kiuchi Y, Nishikawa T. Effects of Quinolinate-Induced Lesion of the Medial Prefrontal Cortex on Prefrontal and Striatal Concentrations of D-Serine in the Rat. Neurochem Res 2022; 47:2728-2740. [PMID: 35604516 DOI: 10.1007/s11064-022-03627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022]
Abstract
D-Serine has been shown to play an important role in the expression and control of a variety of brain functions by acting as the endogenous coagonist for the N-methyl-D-aspartate type glutamate receptor (NMDAR), at least, in the forebrain. To obtain further insight into the still debatable cellular localization of the D-amino acid, we have examined the effects of the selective destruction of the neuronal cell bodies by quinolinate on the tissue or extracellular D-serine concentrations in the medial prefrontal cortex of the rat. A local quinolinate infusion into the bilateral medial prefrontal cortex produced a cortical lesion with a marked (- 65%) and non-significant alteration (- 5%) in the cortical and striatal tissue D-serine concentrations, respectively, 7 days post-infusion. In vivo microdialysis experiments in the right prefrontal lesion site 9 days after the quinolinate application revealed that the basal extracellular D-serine levels were also dramatically reduced (- 64%). A prominent reduction in the tissue levels of GABA in the interneurons of the prefrontal cortex (- 78%) without significant changes in those in the striatum (+ 12%) verified that a major lesion part was confined to the cortical portion. The lack of a significant influence of the prefrontal quinolinate lesion on its dopamine concentrations in the mesocortical dopamine projections suggests that the nerve terminals and axons in the lesion site may be spared. These findings are consistent with the perikarya-selective nature of the present quinolinate-induced lesion and further support the view that neuronal cell bodies of intrinsic neurons in the prefrontal cortical region contain substantial amounts of D-serine, which may sustain the basal extracellular concentrations of D-serine.
Collapse
Affiliation(s)
- Asami Umino
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan.,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan
| | - Hisayuki Iwama
- Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.,Kanagawa Psychiatric Center, Yokohama-shi, Kanagawa, 233-0006, Japan
| | - Masakazu Umino
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan.,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Dai Shimazu
- Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan.,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.,Musashishinjo-Kokorono Clinic, Kawasaki-shi, Kanagawa, 211-0044, Japan
| | - Yuji Kiuchi
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Toru Nishikawa
- Department of Pharmacology, School of Medicine, and Pharmacological Research Center, Showa University, Shinagawa-ku, Tokyo, 142-8555, Japan. .,Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, 113-8519, Japan. .,Departments of Mental Disorder Research, National Institute of Neuroscience, NCNP, Kodaira-shi, Tokyo, 187-8502, Japan.
| |
Collapse
|
3
|
Comparative Pro-cognitive and Neurochemical Profiles of Glycine Modulatory Site Agonists and Glycine Reuptake Inhibitors in the Rat: Potential Relevance to Cognitive Dysfunction and Its Management. Mol Neurobiol 2020; 57:2144-2166. [PMID: 31960362 PMCID: PMC7170834 DOI: 10.1007/s12035-020-01875-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 01/09/2020] [Indexed: 12/30/2022]
Abstract
Frontocortical NMDA receptors are pivotal in regulating cognition and mood, are hypofunctional in schizophrenia, and may contribute to autistic spectrum disorders. Despite extensive interest in agents potentiating activity at the co-agonist glycine modulatory site, few comparative functional studies exist. This study systematically compared the actions of the glycine reuptake inhibitors, sarcosine (40–200 mg/kg) and ORG24598 (0.63–5 mg/kg), the agonists, glycine (40–800 mg/kg), and D-serine (10–160 mg/kg) and the partial agonists, S18841 (2.5 mg/kg s.c.) and D-cycloserine (2.5–40 mg/kg) that all dose-dependently prevented scopolamine disruption of social recognition in adult rats. Over similar dose ranges, they also prevented a delay-induced impairment of novel object recognition (NOR). Glycine reuptake inhibitors specifically elevated glycine but not D-serine levels in rat prefrontal cortical (PFC) microdialysates, while glycine and D-serine markedly increased levels of glycine and D-serine, respectively. D-Cycloserine slightly elevated D-serine levels. Conversely, S18841 exerted no influence on glycine, D-serine, other amino acids, monamines, or acetylcholine. Reversal of NOR deficits by systemic S18841 was prevented by the NMDA receptor antagonist, CPP (20 mg/kg), and the glycine modulatory site antagonist, L701,324 (10 mg/kg). S18841 blocked deficits in NOR following microinjection into the PFC (2.5–10 μg/side) but not the striatum. Finally, in rats socially isolated from weaning (a neurodevelopmental model of schizophrenia), S18841 (2.5 and 10 mg/kg s.c.) reversed impairment of NOR and contextual fear-motivated learning without altering isolation-induced hyperactivity. In conclusion, despite contrasting neurochemical profiles, partial glycine site agonists and glycine reuptake inhibitors exhibit comparable pro-cognitive effects in rats of potential relevance to treatment of schizophrenia and other brain disorders where cognitive performance is impaired.
Collapse
|