1
|
Conover CA, Oxvig C. The IGF System and Aging. Endocr Rev 2025; 46:214-223. [PMID: 39418083 PMCID: PMC11894535 DOI: 10.1210/endrev/bnae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/20/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
There is strong evidence that IGF signaling is involved in fundamental aspects of the aging process. However, the extracellular part of the IGF system is complex with various receptors, ligand effectors, high-affinity IGF-binding proteins, proteinases, and endogenous inhibitors that all, along with their biological context, must be considered. The IGF system components are evolutionarily conserved, underscoring the importance of understanding this system in physiology and pathophysiology. This review will briefly describe the different components of the IGF system and then discuss past and current literature regarding IGF and aging, with a focus on cellular senescence, model organisms of aging, centenarian genetics, and 3 age-related diseases-pulmonary fibrosis, Alzheimer disease, and macular degeneration-in appropriate murine models and in humans. Commonalities in mechanism suggest conditions where IGF system components may be disease drivers and potential targets in promoting healthy aging in humans.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Mayo Clinic, Rochester, MN 55905, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
2
|
Hayes CA, Wilson D, De Leon MA, Mustapha MJ, Morales S, Odden MC, Ashpole NM. Insulin-like growth factor-1 and cognitive health: Exploring cellular, preclinical, and clinical dimensions. Front Neuroendocrinol 2025; 76:101161. [PMID: 39536910 DOI: 10.1016/j.yfrne.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Age and insulin-like growth factor-1 (IGF-1) have an inverse association with cognitive decline and dementia. IGF-1 is known to have important pleiotropic functions beginning in neurodevelopment and extending into adulthood such as neurogenesis. At the cellular level, IGF-1 has pleiotropic signaling mechanisms through the IGF-1 receptor on neurons and neuroglia to attenuate inflammation, promote myelination, maintain astrocytic functions for homeostatic balances, and neuronal synaptogenesis. In preclinical rodent models of aging and transgenic models of IGF-1, increased IGF-1 improves cognition in a variety of behavioral paradigms along with reducing IGF-1 via knockout models being able to induce cognitive impairment. At the clinical levels, most studies highlight that increased levels of IGF-1 are associated with better cognition. This review provides a comprehensive and up-to-date evaluation of the association between IGF-1 and cognition at the cellular signaling levels, preclinical, and clinical levels.
Collapse
Affiliation(s)
- Cellas A Hayes
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA.
| | - Destiny Wilson
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Miguel A De Leon
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | - Sharon Morales
- Department of Biomedical Science, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Michelle C Odden
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Ashpole
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
3
|
Engel MG, Narayan S, Cui MH, Branch CA, Zhang X, Gandy SE, Ehrlich M, Huffman DM. Intranasal long R3 insulin-like growth factor-1 treatment promotes amyloid plaque remodeling in cerebral cortex but fails to preserve cognitive function in male 5XFAD mice. J Alzheimers Dis 2025; 103:113-126. [PMID: 39610283 DOI: 10.1177/13872877241299056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Insulin-like growth factor-1 (IGF-1) promotes neurogenesis, cell survival, and glial function, making it a promising candidate therapy in Alzheimer's disease (AD). OBJECTIVE Long arginine 3-IGF-1 (LR3-IGF-1) is a potent IGF-1 analogue. We sought to determine whether intranasal (IN) LR3 treatment would delay cognitive decline and pathology in 5XFAD mice. METHODS Wildtype and 5XFAD male mice were treated for 7 months (3-10 months of age), with IN LR3-IGF-1 or IN Vehicle (Veh) (n = 19-27 mice/group). Behavior, memory, and brain imaging were assessed at 8-9 months of age and tissues collected at 10 months. A comprehensive amyloid-β (Aβ) profile and other pathologic features were conducted and supportive in vitro stimulation studies in BV-2 microglial cells were also performed. RESULTS In male 5XFAD mice, IN LR3-IGF-1 treatment improved body composition, but did not significantly alter cognitive symptoms, as assessed by multiple assays. In cortex, LR3 treatment improved some facets of pathology, including a reduction in filamentous plaques, and increase in inert plaques, corresponding with a reduction in low molecular weight Aβ oligomers. In vitro, uptake of Aβ1-42 peptide by BV2 cells was enhanced by LR3-IGF-1, which was also found to promote gene pathways implicated in actin remodeling and endocytosis. CONCLUSIONS LR3 promotes favorable effects on Aβ plaque remodeling in cortex of male 5XFAD mice but fails to preserve aspects of behavior or memory. While these data do not support LR3 as a monotherapy per se, they do warrant further investigation into its potential for combinatorial formulations aimed at targeting the complexity of AD.
Collapse
Affiliation(s)
- Matthew G Engel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sushma Narayan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samuel E Gandy
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Ehrlich
- Department of Neurology and the Mount Sinai Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Velloso LA, Donato J. Growth Hormone, Hypothalamic Inflammation, and Aging. J Obes Metab Syndr 2024; 33:302-313. [PMID: 39639711 PMCID: PMC11704225 DOI: 10.7570/jomes24032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
While inflammation is a crucial response in injury repair and tissue regeneration, chronic inflammation is a prevalent feature in various chronic, non-communicable diseases such as obesity, diabetes, and cancer and in cardiovascular and neurodegenerative diseases. Long-term inflammation considerably affects disease prevalence, quality of life, and longevity. Our research indicates that the growth hormone/insulin-like growth factor 1 (GH/IGF-1) axis is a pivotal regulator of inflammation in some tissues, including the hypothalamus, which is a key player in systemic metabolism regulation. Moreover, the GH/IGF-1 axis is strongly linked to longevity, as GH- or GH receptor-deficient mice live approximately twice as long as wild-type animals and exhibit protection against aging-induced inflammation. Conversely, GH excess leads to increased neuroinflammation and reduced longevity. Our review studies the associations between the GH/IGF-1 axis, inflammation, and aging, with a particular focus on evidence suggesting that GH receptor signaling directly induces hypothalamic inflammation. This finding underscores the significant impact of changes in the GH axis on metabolism and on the predisposition to chronic, non-communicable diseases.
Collapse
Affiliation(s)
- Licio A. Velloso
- Laboratory of Cell Signalling-Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Campinas, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
6
|
Peng Y, Yao SY, Chen Q, Jin H, Du MQ, Xue YH, Liu S. True or false? Alzheimer's disease is type 3 diabetes: Evidences from bench to bedside. Ageing Res Rev 2024; 99:102383. [PMID: 38955264 DOI: 10.1016/j.arr.2024.102383] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Globally, Alzheimer's disease (AD) is the most widespread chronic neurodegenerative disorder, leading to cognitive impairment, such as aphasia and agnosia, as well as mental symptoms, like behavioral abnormalities, that place a heavy psychological and financial burden on the families of the afflicted. Unfortunately, no particular medications exist to treat AD, as the current treatments only impede its progression.The link between AD and type 2 diabetes (T2D) has been increasingly revealed by research; the danger of developing both AD and T2D rises exponentially with age, with T2D being especially prone to AD. This has propelled researchers to investigate the mechanism(s) underlying this connection. A critical review of the relationship between insulin resistance, Aβ, oxidative stress, mitochondrial hypothesis, abnormal phosphorylation of Tau protein, inflammatory response, high blood glucose levels, neurotransmitters and signaling pathways, vascular issues in AD and diabetes, and the similarities between the two diseases, is presented in this review. Grasping the essential mechanisms behind this detrimental interaction may offer chances to devise successful therapeutic strategies.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China.
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China; Department of Neurology, Affiliated Provincial Traditional Chinese Medical Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, China
| |
Collapse
|
7
|
Silaidos CV, Reutzel M, Wachter L, Dieter F, Ludin N, Blum WF, Wudy SA, Matura S, Pilatus U, Hattingen E, Pantel J, Eckert GP. Age-related changes in energy metabolism in peripheral mononuclear blood cells (PBMCs) and the brains of cognitively healthy seniors. GeroScience 2024; 46:981-998. [PMID: 37308768 PMCID: PMC10828287 DOI: 10.1007/s11357-023-00810-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/25/2023] [Indexed: 06/14/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of cellular senescence and many age-related neurodegenerative diseases. We therefore investigated the relationship between mitochondrial function in peripheral blood cells and cerebral energy metabolites in young and older sex-matched, physically and mentally healthy volunteers. Cross-sectional observational study involving 65 young (26.0 ± 0.49 years) and 65 older (71.7 ± 0.71 years) women and men recruited. Cognitive health was evaluated using established psychometric methods (MMSE, CERAD). Blood samples were collected and analyzed, and fresh peripheral blood mononuclear cells (PBMCs) were isolated. Mitochondrial respiratory complex activity was measured using a Clarke electrode. Adenosine triphosphate (ATP) and citrate synthase activity (CS) were determined by bioluminescence and photometrically. N-aspartyl-aspartate (tNAA), ATP, creatine (Cr), and phosphocreatine (PCr) were quantified in brains using 1H- and 31P-magnetic resonance spectroscopic imaging (MRSI). Levels of insulin-like growth factor 1 (IGF-1) were determined using a radio-immune assay (RIA). Complex IV activity (CIV) (- 15%) and ATP levels (- 11%) were reduced in PBMCs isolated from older participants. Serum levels of IGF-1 were significantly reduced (- 34%) in older participants. Genes involved in mitochondrial activity, antioxidant mechanisms, and autophagy were unaffected by age. tNAA levels were reduced (- 5%), Cr (+ 11%), and PCr (+ 14%) levels were increased, and ATP levels were unchanged in the brains of older participants. Markers of energy metabolism in blood cells did not significantly correlate with energy metabolites in the brain. Age-related bioenergetic changes were detected in peripheral blood cells and the brains of healthy older people. However, mitochondrial function in peripheral blood cells does not reflect energy related metabolites in the brain. While ATP levels in PBMCs may be be a valid marker for age-related mitochondrial dysfunction in humans, cerebral ATP remained constant.
Collapse
Affiliation(s)
- Carmina V Silaidos
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Martina Reutzel
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Lena Wachter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Fabian Dieter
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany
| | - Nasir Ludin
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Werner F Blum
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Laboratory for Translational Hormone Analytics in Pediatric Endocrinology, Peptide Hormone Research Unit Division of Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Ulrich Pilatus
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
- Brain Imaging Center (BIC), University Hospital Frankfurt, Frankfurt a. M, Germany
| | - Elke Hattingen
- Institute for Neuroradiology, University Hospital, Goethe University, Schleusenweg 2-16, Frankfurt, Germany
| | - Johannes Pantel
- Geriatric Medicine, Institute of General Practice, Goethe University, Frankfurt a. M, Germany
| | - Gunter P Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Sciences, Justus-Liebig-University of Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
8
|
Tu X, Jain A, Parra Bueno P, Decker H, Liu X, Yasuda R. Local autocrine plasticity signaling in single dendritic spines by insulin-like growth factors. SCIENCE ADVANCES 2023; 9:eadg0666. [PMID: 37531435 PMCID: PMC10396292 DOI: 10.1126/sciadv.adg0666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/29/2023] [Indexed: 08/04/2023]
Abstract
The insulin superfamily of peptides is essential for homeostasis as well as neuronal plasticity, learning, and memory. Here, we show that insulin-like growth factors 1 and 2 (IGF1 and IGF2) are differentially expressed in hippocampal neurons and released in an activity-dependent manner. Using a new fluorescence resonance energy transfer sensor for IGF1 receptor (IGF1R) with two-photon fluorescence lifetime imaging, we find that the release of IGF1 triggers rapid local autocrine IGF1R activation on the same spine and more than several micrometers along the stimulated dendrite, regulating the plasticity of the activated spine in CA1 pyramidal neurons. In CA3 neurons, IGF2, instead of IGF1, is responsible for IGF1R autocrine activation and synaptic plasticity. Thus, our study demonstrates the cell type-specific roles of IGF1 and IGF2 in hippocampal plasticity and a plasticity mechanism mediated by the synthesis and autocrine signaling of IGF peptides in pyramidal neurons.
Collapse
Affiliation(s)
- Xun Tu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
- International Max Planck Research School for Brain and Behavior, Jupiter, FL, USA
- FAU/Max Planck Florida Institute Joint Graduate Program in Integrative Biology and Neuroscience, Florida Atlantic University, Boca Raton, FL, USA
| | - Anant Jain
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Paula Parra Bueno
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Helena Decker
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Xiaodan Liu
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Ryohei Yasuda
- Neuronal Signal Transduction Group, Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| |
Collapse
|
9
|
Arjunan A, Sah DK, Woo M, Song J. Identification of the molecular mechanism of insulin-like growth factor-1 (IGF-1): a promising therapeutic target for neurodegenerative diseases associated with metabolic syndrome. Cell Biosci 2023; 13:16. [PMID: 36691085 PMCID: PMC9872444 DOI: 10.1186/s13578-023-00966-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Neurodegenerative disorders are accompanied by neuronal degeneration and glial dysfunction, resulting in cognitive, psychomotor, and behavioral impairment. Multiple factors including genetic, environmental, metabolic, and oxidant overload contribute to disease progression. Recent evidences suggest that metabolic syndrome is linked to various neurodegenerative diseases. Metabolic syndrome (MetS) is known to be accompanied by symptoms such as hyperglycemia, abdominal obesity, hypertriglyceridemia, and hypertension. Despite advances in knowledge about the pathogenesis of neurodegenerative disorders, effective treatments to combat neurodegenerative disorders caused by MetS have not been developed to date. Insulin growth factor-1 (IGF-1) deficiency has been associated with MetS-related pathologies both in-vivo and in-vitro. IGF-1 is essential for embryonic and adult neurogenesis, neuronal plasticity, neurotropism, angiogenesis, metabolic function, and protein clearance in the brain. Here, we review the evidence for the potential therapeutic effects of IGF-1 in the neurodegeneration related to metabolic syndrome. We elucidate how IGF-1 may be involved in molecular signaling defects that occurs in MetS-related neurodegenerative disorders and highlight the importance of IGF-1 as a potential therapeutic target in MetS-related neurological diseases.
Collapse
Affiliation(s)
- Archana Arjunan
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea
| | - Dhiraj Kumar Sah
- grid.14005.300000 0001 0356 9399Department of Biochemistry, Chonnam National University Medical School, Hwasun, 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| | - Minna Woo
- grid.17063.330000 0001 2157 2938Division of Endocrinology and Metabolism, University Health Network and and Banting and Best Diabetes Centre, University of Toronto, Toronto, ON Canada
| | - Juhyun Song
- grid.14005.300000 0001 0356 9399Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-Do 58128 Republic of Korea ,grid.14005.300000 0001 0356 9399BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun, 58128 Republic of Korea
| |
Collapse
|
10
|
Blackmore DG, Waters MJ. The multiple roles of GH in neural ageing and injury. Front Neurosci 2023; 17:1082449. [PMID: 36960169 PMCID: PMC10027725 DOI: 10.3389/fnins.2023.1082449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Advanced age is typically associated with a decrease in cognitive function including impairment in the formation and retention of new memories. The hippocampus is critical for learning and memory, especially spatial learning, and is particularly affected by ageing. With advanced age, multiple neural components can be detrimentally affected including a reduction in the number of neural stem and precursor cells, a decrease in the formation of adult born neurons (neurogenesis), and deficits in neural circuitry, all of which ultimately contribute to impaired cognitive function. Importantly, physical exercise has been shown to ameliorate many of these impairments and is able to improve learning and memory. Relevantly, growth hormone (GH) is an important protein hormone that decreases with ageing and increases following physical exercise. Originally described due to its role in longitudinal growth, GH has now been identified to play several additional key roles, especially in relation to the brain. Indeed, the regular decrease in GH levels following puberty is one of the most well documented components of neuroendocrine ageing. Growth hormone deficiency (GHD) has been described to have adverse effects on brain function, which can be ameliorated via GH replacement therapy. Physical exercise has been shown to increase circulating GH levels. Furthermore, we recently demonstrated the increase in exercise-mediated GH is critical for improved cognitive function in the aged mouse. Here we examine the multiple roles that GH plays, particularly in the aged brain and following trauma, irradiation and stroke, and how increasing GH levels can ameliorate deficits in cognition.
Collapse
Affiliation(s)
- Daniel G. Blackmore
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Michael J. Waters
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Michael J. Waters,
| |
Collapse
|
11
|
Li X, Shi X, McPherson M, Hager M, Garcia GG, Miller RA. Cap-independent translation of GPLD1 enhances markers of brain health in long-lived mutant and drug-treated mice. Aging Cell 2022; 21:e13685. [PMID: 35930768 PMCID: PMC9470888 DOI: 10.1111/acel.13685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 01/25/2023] Open
Abstract
Glycosylphosphatidylinositol-specific phospholipase D1 (GPLD1) hydrolyzes inositol phosphate linkages in proteins anchored to the cell membrane. Mice overexpressing GPLD1 show enhanced neurogenesis and cognition. Snell dwarf (DW) and growth hormone receptor knockout (GKO) mice show delays in age-dependent cognitive decline. We hypothesized that augmented GPLD1 might contribute to retained cognitive function in these mice. We report that DW and GKO show higher GPLD1 levels in the liver and plasma. These mice also have elevated levels of hippocampal brain-derived neurotrophic factor (BDNF) and of doublecortin (DCX), suggesting a mechanism for maintenance of cognitive function at older ages. GPLD1 was not increased in the hippocampus of DW or GKO mice, suggesting that plasma GPLD1 increases elevated these brain proteins. Alteration of the liver and plasma GPLD1 was unaltered in mice with liver-specific GHR deletion, suggesting that the GH effect was not intrinsic to the liver. GPLD1 was also induced by caloric restriction and by each of four drugs that extend lifespan. The proteome of DW and GKO mice is molded by selective translation of mRNAs, involving cap-independent translation (CIT) of mRNAs marked by N6 methyladenosine. Because GPLD1 protein increases were independent of the mRNA level, we tested the idea that GPLD1 might be regulated by CIT. 4EGI-1, which enhances CIT, increased GPLD1 protein without changes in GPLD1 mRNA in cultured fibroblasts and mice. Furthermore, transgenic overexpression of YTHDF1, which promotes CIT by reading m6A signals, also led to increased GPLD1 protein, showing that elevation of GPLD1 reflects selective mRNA translation.
Collapse
Affiliation(s)
- Xinna Li
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Xiaofang Shi
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Madaline McPherson
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Mary Hager
- College of Literature, Sciences, & the ArtsUniversity of MichiganAnn ArborMichiganUSA
| | - Gonzalo G. Garcia
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Richard A. Miller
- Department of Pathology, School of MedicineUniversity of MichiganAnn ArborMichiganUSA,University of Michigan Geriatrics CenterAnn ArborMichiganUSA
| |
Collapse
|
12
|
Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or Foe? Defining the Role of Glutamate in Aging and Alzheimer’s Disease. FRONTIERS IN AGING 2022; 3:929474. [PMID: 35821835 PMCID: PMC9261322 DOI: 10.3389/fragi.2022.929474] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022]
Abstract
Aging is a naturally occurring decline of physiological processes and biological pathways that affects both the structural and functional integrity of the body and brain. These physiological changes reduce motor skills, executive function, memory recall, and processing speeds. Aging is also a major risk factor for multiple neurodegenerative disorders including Alzheimer’s disease (AD). Identifying a biomarker, or biomarkers, that signals the transition from physiological to pathological aging would aid in earlier therapeutic options or interventional strategies. Considering the importance of glutamate signaling in synaptic plasticity, motor movement, and cognition, this neurotransmitter serves as a juncture between cognitive health and disease. This article discusses glutamatergic signaling during physiological aging and the pathological changes observed in AD patients. Findings from studies in mouse models of successful aging and AD are reviewed and provide a biological context for this transition. Finally, current techniques to monitor brain glutamate are highlighted. These techniques may aid in elucidating time-point specific therapeutic windows to modify disease outcome.
Collapse
Affiliation(s)
- MaKayla F. Cox
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Erin R. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Andrzej Bartke
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Kevin N. Hascup
- Dale and Deborah Smith Center for Alzheimer’s Research and Treatment, Department of Neurology, Neurosciences Institute, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Kevin N. Hascup,
| |
Collapse
|
13
|
Dominguez LJ, Barbagallo M. Antiageing strategies. PATHY'S PRINCIPLES AND PRACTICE OF GERIATRIC MEDICINE 2022:1442-1458. [DOI: 10.1002/9781119484288.ch115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
van der Velden LM, Maas P, van Amersfoort M, Timmermans-Sprang EPM, Mensinga A, van der Vaart E, Malergue F, Viëtor H, Derksen PWB, Klumperman J, van Agthoven A, Egan DA, Mol JA, Strous GJ. Small molecules to regulate the GH/IGF1 axis by inhibiting the growth hormone receptor synthesis. Front Endocrinol (Lausanne) 2022; 13:926210. [PMID: 35966052 PMCID: PMC9365994 DOI: 10.3389/fendo.2022.926210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Growth hormone (GH) and insulin-like growth factor-1 (IGF1) play an important role in mammalian development, cell proliferation and lifespan. Especially in cases of tumor growth there is an urgent need to control the GH/IGF1 axis. In this study we screened a 38,480-compound library, and in two consecutive rounds of analogues selection, we identified active lead compounds based on the following criteria: inhibition the GH receptor (GHR) activity and its downstream effectors Jak2 and STAT5, and inhibition of growth of breast and colon cancer cells. The most active small molecule (BM001) inhibited both the GH/IGF1 axis and cell proliferation with an IC50 of 10-30 nM of human cancer cells. BM001 depleted GHR in human lymphoblasts. In preclinical xenografted experiments, BM001 showed a strong decrease in tumor volume in mice transplanted with MDA-MB-231 breast cancer cells. Mechanistically, the drug acts on the synthesis of the GHR. Our findings open the possibility to inhibit the GH/IGF1 axis with a small molecule.
Collapse
Affiliation(s)
- Lieke M. van der Velden
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Peter Maas
- Specs Compound Handling, Zoetermeer, Netherlands
- *Correspondence: Ger J. Strous, ; Jan A. Mol, ; Peter Maas,
| | | | | | - Anneloes Mensinga
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Elisabeth van der Vaart
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Fabrice Malergue
- Department of Research and Development, Beckman Coulter Life Science, Immunotech Marseille, Marseille, France
| | - Henk Viëtor
- Drug Discovery Factory (DDF) Ventures, Breukelen, Netherlands
| | - Patrick W B. Derksen
- Department of Pathology, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Judith Klumperman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
| | - Andreas van Agthoven
- Department of Research and Development, Beckman Coulter Life Science, Immunotech Marseille, Marseille, France
| | - David A. Egan
- Cell Screening Core, Department of Cell Biology, Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Ger J. Strous, ; Jan A. Mol, ; Peter Maas,
| | - Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Center (UMC) Utrecht, Utrecht, Netherlands
- *Correspondence: Ger J. Strous, ; Jan A. Mol, ; Peter Maas,
| |
Collapse
|
15
|
Sinpru P, Bunnom R, Poompramun C, Kaewsatuan P, Sornsan S, Kubota S, Molee W, Molee A. Association of growth hormone and insulin-like growth factor I genotype with body weight, dominance of body weight, and mRNA expression in Korat slow-growing chickens. Anim Biosci 2021; 34:1886-1894. [PMID: 33705631 PMCID: PMC8563241 DOI: 10.5713/ab.20.0729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/27/2021] [Indexed: 12/02/2022] Open
Abstract
Objective Growth hormone (GH) and insulin-like growth factor I (IGF-I) play a critical role in animal growth rates. We aimed to investigate the effect of GH and IGF-I genotypes on body weight (BW), dominance, and gene expression in slow-growing chickens at different ages. Methods A total of 613 Korat chickens (KRs) were bred and divided into three groups by genotype – A1A1, A1A3, and A3A3 for GH and AA, AC, and CC for IGF-I. Chickens were weighed every two weeks, and liver and breast muscle tissues were collected at 10 weeks of age. Genetic parameters of KRs were estimated using ASReml software. The GH and IGF-I mRNA levels were measured by quantitative polymerase chain reaction. Significant differences between traits were analyzed using the generalized linear model. Results A significant effect of GH genotypes on BW was found at most ages, and the A1A1 genotype had the highest value of BW. Compared with the A3A3 genotype, the A1A1 and A1A3 genotypes showed a higher dominance effect at 0 and 2 weeks, and genotype A1A1 had the highest value of dominance at 8 weeks of age. A difference in GH mRNA levels between genotypes was detected in breast muscle at 6 weeks and in the liver tissue at 2 weeks. In the case of IGF-I gene, the AA genotype had the highest BW at the beginning of life. Significant differences in BW dominance were found at 2 weeks. However, IGF-I mRNA levels were not different among genotypes in both breast muscles and liver tissues. Conclusion Our results revealed that GH and IGF-I influence growth, but may not be involved in heterosis. GH can be used as a marker gene in selection programs for growth because the homozygous genotype (A1A1) had the highest BW at all ages. The IGF-I is not a useful marker gene for selection programs.
Collapse
Affiliation(s)
- Panpradub Sinpru
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Rujjira Bunnom
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Chotima Poompramun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sirangkun Sornsan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
16
|
Luo Y, Zheng Z, Yang Y, Bai X, Yang H, Zhu H, Pan H, Chen S. Effects of growth hormone on cognitive, motor, and behavioral development in Prader-Willi syndrome children: a meta-analysis of randomized controlled trials. Endocrine 2021; 71:321-330. [PMID: 33222122 DOI: 10.1007/s12020-020-02547-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/03/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE The benefits of growth hormone (GH) therapy in Prader-Willi syndrome (PWS) children are well established, but there is still considerable controversy regarding whether GH treatment can improve cognitive, motor, and behavioral development in PWS children. The objectives of this meta-analysis were to quantitatively evaluate the effects of GH on cognitive, motor function, and behavioral development in PWS children. METHODS Randomized controlled trials (RCTs) examining the effects of GH on cognitive, motor, and behavioral development in PWS children were identified by searching the MEDLINE, EMBASE, and Cochrane Library databases. Intervention effects were represented by Hedges'g and pooled to calculate effect sizes using a random-effects model. RESULTS Ten relevant studies comprising data from 302 participants were finally included. We observed no significant difference in cognitive performance between the GH treatment group and the control group (p = 0.197). GH treatment was shown to remarkably improve motor development in PWS children compared with the control treatment (p < 0.001), with moderate positive treatment effects (Hedges'g [95% CI] = 0.71 [0.38, 1.03]). There were no significant differences between the GH group and the control group based on objective assessments of behavioral development (p = 0.53). CONCLUSIONS The meta-analysis suggested that GH treatment had a significantly positive effect on motor development, with moderate treatment effects in PWS children; however, there was no evidence of effects on cognitive or behavioral development.
Collapse
Affiliation(s)
- Yunyun Luo
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Zhoude Zheng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Xi Bai
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China.
| | - Shi Chen
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Research Center for Behavior Medicine in Growth and Development, Beijing, China.
| |
Collapse
|
17
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
18
|
Guevara-Aguirre J, Teran E, Lescano D, Guevara A, Guevara C, Longo V, Gavilanes AWD. Growth hormone receptor deficiency in humans associates to obesity, increased body fat percentage, a healthy brain and a coordinated insulin sensitivity. Growth Horm IGF Res 2020; 51:58-64. [PMID: 32145513 DOI: 10.1016/j.ghir.2020.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/15/2020] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have shown that subjects with Laron syndrome (LS) due to growth hormone receptor deficiency (GHRD) and their relatives have comparable brain structure and function; moreover, the brain of individuals affected with GHRD appears like those of younger people. While the functionally absent growth hormone receptor and the diminished concentrations of the insulin-like growth factor-I have been associated to these findings, the role of the insulin-glucose axis is emerging as an unavoidable consideration when determining the aetiology of these observations. In consequence, we decided to search for the potential and discrete associations between the neurological findings and several parameters of carbohydrate metabolism that might exist in the subjects affected with GHRD. SUBJECTS AND METHODS Individuals affected with GHRD were compared to relative controls. Besides standard measures of anthropometry, body composition and brain characteristics, the elements of the carbohydrate metabolism (CHO), including glucose, insulin, triacylglycerol and the free insulin growth factor binding protein 1 (IGFBP1) concentrations were determined. In addition, the correlations existing between the parameters of CHO and brain characteristics were established. RESULTS Besides the phenotypical characteristics of GHRD subjects, including those of brain structure and function, enhanced insulin sensitivity, and other minor, we observed that the insulin-regulated IGFBP1 had a consistent negative correlation with the main elements of the carbohydrate metabolism only in the individuals affected with the disease, and not in their relatives. CONCLUSIONS When compared to their relatives, subjects with GHRD who lack the counter-regulatory effects of GH on the insulin axis, despite their increased risk factor profile due to obesity and increased body fat percentage, have a healthy and younger looking brain associated to an enhanced and coordinated insulin sensitivity. Furthermore, it was observed that in the GHRD subjects IGFBP1 negatively correlates, in a constant and systematic manner, with the main elements of the CHO metabolism. These observations suggest a direct relationship between an efficient insulin sensitivity and a healthy brain.
Collapse
Affiliation(s)
- Jaime Guevara-Aguirre
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbaya, Quito, Ecuador; Instituto de Endocrinología IEMYR, Quito, Ecuador; Maastricht University, Maastricht, The Netherlands..
| | - Enrique Teran
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbaya, Quito, Ecuador
| | - Daniela Lescano
- Colegio de Ciencias de la Salud, Universidad San Francisco de Quito, Diego de Robles s/n y Pampite, Cumbaya, Quito, Ecuador
| | | | | | - Valter Longo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
19
|
Castilla-Cortázar I, Aguirre GA, Femat-Roldán G, Martín-Estal I, Espinosa L. Is insulin-like growth factor-1 involved in Parkinson's disease development? J Transl Med 2020; 18:70. [PMID: 32046737 PMCID: PMC7014772 DOI: 10.1186/s12967-020-02223-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/10/2020] [Indexed: 02/09/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results in the death of dopaminergic neurons within the substantia nigra pars compacta and the reduction in dopaminergic control over striatal output neurons, leading to a movement disorder most commonly characterized by akinesia or bradykinesia, rigidity and tremor. Also, PD is less frequently depicted by sensory symptoms (pain and tingling), hyposmia, sleep alterations, depression and anxiety, and abnormal executive and working memory related functions. On the other hand, insulin-like growth factor 1 (IGF-1) is an endocrine, paracrine and autocrine hormone with several functions including tissue growth and development, insulin-like activity, proliferation, pro-survival, anti-aging, antioxidant and neuroprotection, among others. Herein this review tries to summarize all experimental and clinical data to understand the pathophysiology and development of PD, as well as its clear association with IGF-1, supported by several lines of evidence: (1) IGF-1 decreases with age, while aging is the major risk for PD establishment and development; (2) numerous basic and translational data have appointed direct protective and homeostasis IGF-1 roles in all brain cells; (3) estrogens seem to confer women strong protection to PD via IGF-1; and (4) clinical correlations in PD cohorts have confirmed elevated IGF-1 levels at the onset of the disease, suggesting an ongoing compensatory or "fight-to-injury" mechanism.
Collapse
Affiliation(s)
- Inma Castilla-Cortázar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico.
- Fundación de Investigación HM Hospitales, Madrid, Spain.
| | - Gabriel A Aguirre
- Centre for Tumour Biology, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giovana Femat-Roldán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
- Neurocenter, Monterrey, Nuevo Leon, Mexico
| | - Irene Martín-Estal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| | - Luis Espinosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, 64710, Monterrey, N.L., Mexico
| |
Collapse
|
20
|
Haugland KG, Olberg A, Lande A, Kjelstrup KB, Brun VH. Hippocampal growth hormone modulates relational memory and the dendritic spine density in CA1. ACTA ACUST UNITED AC 2020; 27:33-44. [PMID: 31949035 PMCID: PMC6970428 DOI: 10.1101/lm.050229.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/29/2019] [Indexed: 11/24/2022]
Abstract
Growth hormone (GH) deficiency is associated with cognitive decline which occur both in normal aging and in endocrine disorders. Several brain areas express receptors for GH although their functional role is unclear. To determine how GH affects the capacity for learning and memory by specific actions in one of the key areas, the hippocampus, we injected recombinant adeno-associated viruses (rAAVs) in male rats to express green fluorescent protein (GFP) combined with either GH, antagonizing GH (aGH), or no hormone, in the dorsal CA1. We found that aGH disrupted memory in the Morris water maze task, and that aGH treated animals needed more training to relearn a novel goal location. In a one-trial spontaneous location recognition test, the GH treated rats had better memory performance for object locations than the two other groups. Histological examinations revealed that GH increased the dendritic spine density on apical dendrites of CA1, while aGH reduced the spine density. GH increased the relative amount of immature spines, while aGH decreased the same amount. Our results imply that GH is a neuromodulator with strong influence over hippocampal plasticity and relational memory by mechanisms involving modulation of dendritic spines. The findings are significant to the increasing aging population and GH deficiency patients.
Collapse
Affiliation(s)
- Kamilla G Haugland
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Anniken Olberg
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Andreas Lande
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway
| | - Kirsten B Kjelstrup
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| | - Vegard H Brun
- Department of Clinical Medicine, University in Tromsø-The Arctic University of Norway, 9019 Tromsø, Norway.,University Hospital of North Norway, 9019 Tromsø, Norway
| |
Collapse
|
21
|
Walser M, Svensson J, Karlsson L, Motalleb R, Åberg M, Kuhn HG, Isgaard J, Åberg ND. Growth Hormone and Neuronal Hemoglobin in the Brain-Roles in Neuroprotection and Neurodegenerative Diseases. Front Endocrinol (Lausanne) 2020; 11:606089. [PMID: 33488521 PMCID: PMC7821093 DOI: 10.3389/fendo.2020.606089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, evidence for hemoglobin (Hb) synthesis in both animal and human brains has been accumulating. While circulating Hb originating from cerebral hemorrhage or other conditions is toxic, there is also substantial production of neuronal Hb, which is influenced by conditions such as ischemia and regulated by growth hormone (GH), insulin-like growth factor-I (IGF-I), and other growth factors. In this review, we discuss the possible functions of circulating and brain Hb, mainly the neuronal form, with respect to the neuroprotective activities of GH and IGF-I against ischemia and neurodegenerative diseases. The molecular pathways that link Hb to the GH/IGF-I system are also reviewed, although the limited number of reports on this topic suggests a need for further studies. In summary, GH and/or IGF-I appear to be significant determinants of systemic and local brain Hb concentrations through mediating responses to oxygen and metabolic demand, as part of the neuroprotective effects exerted by GH and IGF-I. The nature and quantity of the latter deserve further exploration in specific experiments.
Collapse
Affiliation(s)
- Marion Walser
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- *Correspondence: Marion Walser,
| | - Johan Svensson
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Karlsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Reza Motalleb
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Maria Åberg
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- School of Public Health and Community Medicine at University of Gothenburg, Gothenburg, Sweden
| | - H Georg Kuhn
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Institute for Public Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jörgen Isgaard
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - N David Åberg
- Department of Internal Medicine, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
22
|
Colon G, Saccon T, Schneider A, Cavalcante MB, Huffman DM, Berryman D, List E, Ikeno Y, Musi N, Bartke A, Kopchick J, Kirkland JL, Tchkonia T, Masternak MM. The enigmatic role of growth hormone in age-related diseases, cognition, and longevity. GeroScience 2019; 41:759-774. [PMID: 31485887 PMCID: PMC6925094 DOI: 10.1007/s11357-019-00096-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Growth hormone (GH) is secreted by the anterior pituitary gland and regulates various metabolic processes throughout the body. GH and IGF-1 levels are markedly reduced in older humans, leading some to hypothesize GH supplementation could be a viable "anti-aging" therapy. However, there is still much debate over the benefits and risks of GH administration. While an early study of GH administration reported reduced adiposity and lipid levels and increased bone mineral density, subsequent studies failed to show significant benefits. Conversely, other studies found positive effects of GH deficiency including extended life span, improved cognitive function, resistance to diseases such as cancer and diabetes, and improved insulin sensitivity despite a higher fat percentage. Thus, the roles of GH in aging and cognition remain unclear, and there is currently not enough evidence to support use of GH as an anti-aging or cognitive impairment therapy. Additional robust and longer-duration studies of efficacy and safety of GH administration are needed to determine if modulating GH levels could be a successful strategy for treating aging and age-related diseases.
Collapse
Affiliation(s)
- Gabriela Colon
- College of Medicine, Florida State University, Tallahassee, FL, 32304, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Tatiana Saccon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Marcelo B Cavalcante
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
- Faculdade de Medicina, Universidade de Fortaleza, Fortaleza, CE, Brazil
| | - Derek M Huffman
- Departments of Molecular Pharmacology, Medicine, and the Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Darlene Berryman
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Ed List
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Department of Pathology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Geriatric Research Education and Clinical Center (GRECC), Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, San Antonio Geriatric, Research, Education and Clinical Center, San Antonio, TX, 78229, USA
| | - Andrzej Bartke
- Departments of Internal Medicine and Physiology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - John Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, 55905, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
| |
Collapse
|
23
|
Farias Quipildor GE, Mao K, Hu Z, Novaj A, Cui MH, Gulinello M, Branch CA, Gubbi S, Patel K, Moellering DR, Tarantini S, Kiss T, Yabluchanskiy A, Ungvari Z, Sonntag WE, Huffman DM. Central IGF-1 protects against features of cognitive and sensorimotor decline with aging in male mice. GeroScience 2019; 41:185-208. [PMID: 31076997 DOI: 10.1007/s11357-019-00065-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
Disruptions in growth hormone/insulin-like growth factor-1 (GH/IGF-1) signaling have been linked to improved longevity in mice and humans. Nevertheless, while IGF-1 levels are associated with increased cancer risk, they have been paradoxically implicated with protection from other age-related conditions, particularly in the brain, suggesting that strategies aimed at selectively increasing central IGF-1 action may have favorable effects on aging. To test this hypothesis, we generated inducible, brain-specific (TRE-IGF-1 × Camk2a-tTA) IGF-1 (bIGF-1) overexpression mice and studied effects on healthspan. Doxycycline was removed from the diet at 12 weeks old to permit post-development brain IGF-1 overexpression, and animals were monitored up to 24 months. Brain IGF-1 levels were increased approximately twofold in bIGF-1 mice, along with greater brain weights, volume, and myelin density (P < 0.05). Age-related changes in rotarod performance, exercise capacity, depressive-like behavior, and hippocampal gliosis were all attenuated specifically in bIGF-1 male mice (P < 0.05). However, chronic brain IGF-1 failed to prevent declines in cognitive function or neurovascular coupling. Therefore, we performed a short-term intranasal (IN) treatment of either IGF-1 or saline in 24-month-old male C57BL/6 mice and found that IN IGF-1 treatment tended to reduce depressive (P = 0.09) and anxiety-like behavior (P = 0.08) and improve motor coordination (P = 0.07) and unlike transgenic mice improved motor learning (P < 0.05) and visuospatial and working memory (P < 0.05). These data highlight important sex differences in how brain IGF-1 action impacts healthspan and suggest that translational approaches that target IGF-1 centrally can restore cognitive function, a possibility that should be explored as a strategy to combat age-related cognitive decline.
Collapse
Affiliation(s)
- Gabriela E Farias Quipildor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Mao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zunju Hu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ardijana Novaj
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Min-Hui Cui
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Maria Gulinello
- Behavioral Core Facility, Dominick S. Purpura Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Craig A Branch
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sriram Gubbi
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Internal Medicine, Jacobi Medical Center, Bronx, NY, USA
| | - Khushbu Patel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Douglas R Moellering
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stefano Tarantini
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tamas Kiss
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Bldg, Rm 236, 1300 Morris Park Avenue, Bronx, NY, 10461, USA. .,Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
24
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
25
|
Weissleder C, Barry G, Fung SJ, Wong MW, Double KL, Webster MJ, Weickert CS. Reduction in IGF1 mRNA in the Human Subependymal Zone During Aging. Aging Dis 2019; 10:197-204. [PMID: 30705779 PMCID: PMC6345338 DOI: 10.14336/ad.2018.0317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/17/2018] [Indexed: 01/09/2023] Open
Abstract
The cell proliferation marker, Ki67 and the immature neuron marker, doublecortin are both expressed in the major human neurogenic niche, the subependymal zone (SEZ), but expression progressively decreases across the adult lifespan (PMID: 27932973). In contrast, transcript levels of several mitogens (transforming growth factor α, epidermal growth factor and fibroblast growth factor 2) do not decline with age in the human SEZ, suggesting that other growth factors may contribute to the reduced neurogenic potential. While insulin like growth factor 1 (IGF1) regulates neurogenesis throughout aging in the mouse brain, the extent to which IGF1 and IGF family members change with age and relate to adult neurogenesis markers in the human SEZ has not yet been determined. We used quantitative polymerase chain reaction to examine gene expression of seven IGF family members [IGF1, IGF1 receptor, insulin receptor and high-affinity IGF binding proteins (IGFBPs) 2, 3, 4 and 5] in the human SEZ across the adult lifespan (n=50, 21-103 years). We found that only IGF1 expression significantly decreased with increasing age. IGFBP2 and IGFBP4 expression positively correlated with Ki67 mRNA. IGF1 expression positively correlated with doublecortin mRNA, whereas IGFBP2 expression negatively correlated with doublecortin mRNA. Our results suggest IGF family members are local regulators of neurogenesis and indicate that the age-related reduction in IGF1 mRNA may limit new neuron production by restricting neuronal differentiation in the human SEZ.
Collapse
Affiliation(s)
- Christin Weissleder
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Guy Barry
- 3QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Samantha J Fung
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Matthew W Wong
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia.,4School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kay L Double
- 5Discipline of Biomedical Science and Brain and Mind Centre, Sydney Medical School, University of Sydney, Australia
| | - Maree J Webster
- 6Laboratory of Brain Research, Stanley Medical Research Institute, Maryland, USA
| | - Cynthia Shannon Weickert
- 1Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, Australia.,2School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
26
|
Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S. 40 YEARS of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 2018; 61:T171-T185. [PMID: 29739805 PMCID: PMC5988994 DOI: 10.1530/jme-18-0093] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 12/30/2022]
Abstract
The insulin-like growth factor 1 (IGF1) signaling pathway has emerged as a major regulator of the aging process, from rodents to humans. However, given the pleiotropic actions of IGF1, its role in the aging brain remains complex and controversial. While IGF1 is clearly essential for normal development of the central nervous system, conflicting evidence has emerged from preclinical and human studies regarding its relationship to cognitive function, as well as cerebrovascular and neurodegenerative disorders. This review delves into the current state of the evidence examining the role of IGF1 in the aging brain, encompassing preclinical and clinical studies. A broad examination of the data indicates that IGF1 may indeed play opposing roles in the aging brain, depending on the underlying pathology and context. Some evidence suggests that in the setting of neurodegenerative diseases that manifest with abnormal protein deposition in the brain, such as Alzheimer's disease, reducing IGF1 signaling may serve a protective role by slowing disease progression and augmenting clearance of pathologic proteins to maintain cellular homeostasis. In contrast, inducing IGF1 deficiency has also been implicated in dysregulated function of cognition and the neurovascular system, suggesting that some IGF1 signaling may be necessary for normal brain function. Furthermore, states of acute neuronal injury, which necessitate growth, repair and survival signals to persevere, typically demonstrate salutary effects of IGF1 in that context. Appreciating the dual, at times opposing 'Dr Jekyll' and 'Mr Hyde' characteristics of IGF1 in the aging brain, will bring us closer to understanding its impact and devising more targeted IGF1-related interventions.
Collapse
Affiliation(s)
- Sriram Gubbi
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Internal MedicineJacobi Medical Center, Bronx, New York, USA
| | - Gabriela Farias Quipildor
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of GeneticsAlbert Einstein College of Medicine, Bronx, New York, USA
| | - Derek M Huffman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular PharmacologyAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Institute for Aging ResearchAlbert Einstein College of Medicine, Bronx, New York, USA
- Division of EndocrinologyDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Division of GeriatricsDepartment of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
27
|
Frater J, Lie D, Bartlett P, McGrath JJ. Insulin-like Growth Factor 1 (IGF-1) as a marker of cognitive decline in normal ageing: A review. Ageing Res Rev 2018; 42:14-27. [PMID: 29233786 DOI: 10.1016/j.arr.2017.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 01/09/2023]
Abstract
Insulin-like Growth Factor 1 (IGF-1) and its signaling pathway play a primary role in normal growth and ageing, however serum IGF-1 is known to reduce with advancing age. Recent findings suggest IGF-1 is essential for neurogenesis in the adult brain, and this reduction of IGF-1 with ageing may contribute to age-related cognitive decline. Experimental studies have shown manipulation of the GH/GF-1 axis can slow rates of cognitive decline in animals, making IGF-1 a potential biomarker of cognition, and/or its signaling pathway a possible therapeutic target to prevent or slow age-related cognitive decline. A systematic literature review and qualitative narrative summary of current evidence for IGF-1 as a biomarker of cognitive decline in the ageing brain was undertaken. Results indicate IGF-1 concentrations do not confer additional diagnostic information for those with cognitive decline, and routine clinical measurement of IGF-1 is not currently justified. In cases of established cognitive impairment, it remains unclear whether increasing circulating or brain IGF-1 may reverse or slow down the rate of further decline. Advances in neuroimaging, genetics, neuroscience and the availability of large well characterized biobanks will facilitate research exploring the role of IGF-1 in both normal ageing and age-related cognitive decline.
Collapse
|
28
|
The Protective Effects of IGF-I against β-Amyloid-related Downregulation of Hippocampal Somatostatinergic System Involve Activation of Akt and Protein Kinase A. Neuroscience 2018; 374:104-118. [PMID: 29406271 DOI: 10.1016/j.neuroscience.2018.01.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/14/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022]
Abstract
Somatostatin (SRIF), a neuropeptide highly distributed in the hippocampus and involved in learning and memory, is markedly reduced in the brain of Alzheimer's disease patients. The effects of insulin-like growth factor-I (IGF-I) against β amyloid (Aβ)-induced neuronal death and associated cognitive disorders have been extensively reported in experimental models of this disease. Here, we examined the effect of IGF-I on the hippocampal somatostatinergic system in Aβ-treated rats and the molecular mechanisms associated with changes in this peptidergic system. Intracerebroventricular Aβ25-35 administration during 14 days (300 pmol/day) to male rats increased Aβ25-35 levels and cell death and markedly reduced SRIF and SRIF receptor 2 levels in the hippocampus. These deleterious effects were associated with reduced Akt and cAMP response element-binding protein (CREB) phosphorylation and activation of c-Jun N-terminal kinase (JNK). Subcutaneous IGF-I co-administration (50 µg/kg/day) reduced hippocampal Aβ25-35 levels, cell death and JNK activation. In addition, IGF-I prevented the reduction in the components of the somatostatinergic system affected by Aβ infusion. Its co-administration also augmented protein kinase A (PKA) activity, as well as Akt and CREB phosphorylation. These results suggest that IGF-I co-administration may have protective effects on the hippocampal somatostatinergic system against Aβ insult through up-regulation of PKA activity and Akt and CREB phosphorylation.
Collapse
|
29
|
Perice L, Barzilai N, Verghese J, Weiss EF, Holtzer R, Cohen P, Milman S. Lower circulating insulin-like growth factor-I is associated with better cognition in females with exceptional longevity without compromise to muscle mass and function. Aging (Albany NY) 2017; 8:2414-2424. [PMID: 27744417 PMCID: PMC5115897 DOI: 10.18632/aging.101063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Mutations that reduce somatotropic signaling result in improved lifespan and health-span in model organisms and humans. However, whether reduced circulating insulin-like growth factor-I (IGF-I) level is detrimental to cognitive and muscle function in older adults remains understudied. A cross-sectional analysis was performed in Ashkenazi Jews with exceptional longevity (age ≥95 years). Cognition was assessed using the Mini-Mental State Examination and muscle function with the chair rise test, grip-strength, and gait speed. Muscle mass was estimated using the skeletal muscle index. Serum IGF-I was measured with liquid chromatography mass spectrometry. In gender stratified age-adjusted logistic regression analysis, females with IGF-I levels in the first tertile had lower odds of being cognitively impaired compared to females with IGF-I levels within the upper two tertiles, OR (95% CI) 0.39 (0.19-0.82). The result remained significant after adjustment for multiple parameters. No significant association was identified in males between IGF-I and cognition. No relationship was found between IGF-I tertiles and muscle function and muscle mass in females or males. Lower circulating IGF-I is associated with better cognitive function in females with exceptional longevity, with no detriment to skeletal muscle mass and function.
Collapse
Affiliation(s)
- Leland Perice
- Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nir Barzilai
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joe Verghese
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roee Holtzer
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY 10461
| | - Pinchas Cohen
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sofiya Milman
- Department of Medicine, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
30
|
Basu A, McFarlane HG, Kopchick JJ. Spatial learning and memory in male mice with altered growth hormone action. Horm Behav 2017; 93:18-30. [PMID: 28389277 DOI: 10.1016/j.yhbeh.2017.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 02/13/2017] [Accepted: 04/03/2017] [Indexed: 11/17/2022]
Abstract
Growth hormone (GH) has a significant influence on cognitive performance in humans and other mammals. To understand the influence of altered GH action on cognition, we assessed spatial learning and memory using a Barnes maze (BM) comparing twelve-month old, male, bovine GH (bGH) and GH receptor antagonist (GHA) transgenic mice and their corresponding wild type (WT) littermates. During the acquisition training period in the BM, bGH mice showed increased latency, traveled longer path lengths and made more errors to reach the target than WT mice, indicating significantly poorer learning. Short-term memory (STM) and long-term memory (LTM) trials showed significantly suppressed memory retention in bGH mice when compared to the WT group. Conversely, GHA mice showed significantly better learning parameters (latency, path length and errors) and increased use of an efficient search strategy than WT mice. Our study indicates a negative impact of GH excess and a beneficial effect of the inhibition of GH action on spatial learning and memory and, therefore, cognitive performance in male mice. Further research to elucidate GH's role in brain function will facilitate identifying therapeutic applications of GH or GHA for neuropathological and neurodegenerative conditions.
Collapse
Affiliation(s)
- Amrita Basu
- Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biological Sciences, Edison Biotechnology Insitute, Ohio University, Athens, OH, United States.
| | | | - John J Kopchick
- Molecular and Cellular Biology Program, Edison Biotechnology Institute, Ohio University, Athens, OH, United States; Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Edison Biotechnology Institute, Ohio University, Athens, OH, United States.
| |
Collapse
|
31
|
Podlutsky A, Valcarcel-Ares MN, Yancey K, Podlutskaya V, Nagykaldi E, Gautam T, Miller RA, Sonntag WE, Csiszar A, Ungvari Z. The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. GeroScience 2017; 39:147-160. [PMID: 28233247 DOI: 10.1007/s11357-017-9966-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 12/31/2022] Open
Abstract
Experimental, clinical, and epidemiological findings support the concept of developmental origins of health and disease (DOHAD), suggesting that early-life hormonal influences during a sensitive period around adolescence have a powerful impact on cancer morbidity later in life. The endocrine changes that occur during puberty are highly conserved across mammalian species and include dramatic increases in circulating GH and IGF-1 levels. Importantly, patients with developmental IGF-1 deficiency due to GH insensitivity (Laron syndrome) do not develop cancer during aging. Rodents with developmental GH/IGF-1 deficiency also exhibit significantly decreased cancer incidence at old age, marked resistance to chemically induced carcinogenesis, and cellular resistance to genotoxic stressors. Early-life treatment of GH/IGF-1-deficient mice and rats with GH reverses the cancer resistance phenotype; however, the underlying molecular mechanisms remain elusive. The present study was designed to test the hypothesis that developmental GH/IGF-1 status impacts cellular DNA repair mechanisms. To achieve that goal, we assessed repair of γ-irradiation-induced DNA damage (single-cell gel electrophoresis/comet assay) and basal and post-irradiation expression of DNA repair-related genes (qPCR) in primary fibroblasts derived from control rats, Lewis dwarf rats (a model of developmental GH/IGF-1 deficiency), and GH-replete dwarf rats (GH administered beginning at 5 weeks of age, for 30 days). We found that developmental GH/IGF-1 deficiency resulted in persisting increases in cellular DNA repair capacity and upregulation of several DNA repair-related genes (e.g., Gadd45a, Bbc3). Peripubertal GH treatment reversed the radiation resistance phenotype. Fibroblasts of GH/IGF-1-deficient Snell dwarf mice also exhibited improved DNA repair capacity, showing that the persisting influence of peripubertal GH/IGF-1 status is not species-dependent. Collectively, GH/IGF-1 levels during a critical period during early life determine cellular DNA repair capacity in rodents, presumably by transcriptional control of genes involved in DNA repair. Because lifestyle factors (e.g., nutrition and childhood obesity) cause huge variation in peripubertal GH/IGF-1 levels in children, further studies are warranted to determine their persisting influence on cellular cancer resistance pathways.
Collapse
Affiliation(s)
- Andrej Podlutsky
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Marta Noa Valcarcel-Ares
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Krysta Yancey
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Viktorija Podlutskaya
- Department of Biology and Wildlife, Center for Alaska Native Health Research, University of Alaska Fairbanks, 902 N. Koyukuk, Fairbanks, AK, 99775, USA
| | - Eszter Nagykaldi
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Tripti Gautam
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - William E Sonntag
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 N. E. 10th Street-BRC 1303, Oklahoma City, OK, 73104, USA.
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| |
Collapse
|
32
|
Gray SM, Thorner MO. Spatiotemporal Regulation of Insulin-Like Growth Factor-1 and Its Receptor in the Brain: Is There a Role for Growth Hormone? Endocrinology 2017; 158:229-232. [PMID: 28430923 PMCID: PMC5413082 DOI: 10.1210/en.2016-1884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 11/19/2022]
Affiliation(s)
- Sarah M Gray
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Michael O Thorner
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
33
|
Abstract
The interrelationships of growth hormone (GH) actions and aging are complex and incompletely understood. The very pronounced age-related decline in GH secretion together with benefits of GH therapy in individuals with congenital or adult GH deficiency (GHD) prompted interest in GH as an anti-aging agent. However, the benefits of treatment of normal elderly subjects with GH appear to be marginal and counterbalanced by worrisome side effects. In laboratory mice, genetic GH deficiency or resistance leads to a remarkable extension of longevity accompanied by signs of delayed and/or slower aging. Mechanisms believed to contribute to extended longevity of GH-related mutants include improved anti-oxidant defenses, enhanced insulin sensitivity and reduced insulin levels, reduced inflammation and cell senescence, major shifts in mitochondrial function and energy metabolism, and greater stress resistance. Negative association of the somatotropic signaling and GH/insulin-like growth factor 1 (IGF-1)-dependent traits with longevity has also been shown in other mammalian species. In humans, syndromes of GH resistance or deficiency have no consistent effect on longevity, but can provide striking protection from cancer, diabetes and atherosclerosis. More subtle alterations in various steps of GH and IGF-1 signaling are associated with reduced old-age mortality, particularly in women and with improved chances of attaining extremes of lifespan. Epidemiological studies raise a possibility that the relationship of IGF-1 and perhaps also GH levels with human healthy aging and longevity may be biphasic. However, the impact of somatotropic signaling on neoplastic disease is difficult to separate from its impact on aging, and IGF-1 levels exhibit opposite associations with different chronic, age-related diseases.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | - Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
| |
Collapse
|
34
|
Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome. Int J Mol Sci 2017; 18:ijms18010230. [PMID: 28124993 PMCID: PMC5297859 DOI: 10.3390/ijms18010230] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/02/2023] Open
Abstract
Caudal regression syndrome (CRS) is a malformation occurring during the fetal period and mainly characterized by an incomplete development of the spinal cord (SC), which is often accompanied by other developmental anomalies. We studied a 9-month old child with CRS who presented interruption of the SC at the L2–L3 level, sacral agenesis, a lack of innervation of the inferior limbs (flaccid paraplegia), and neurogenic bladder and bowel. Given the known positive effects of growth hormone (GH) on neural stem cells (NSCs), we treated him with GH and rehabilitation, trying to induce recovery from the aforementioned sequelae. The Gross Motor Function Test (GMFM)-88 test score was 12.31%. After a blood analysis, GH treatment (0.3 mg/day, 5 days/week, during 3 months and then 15 days without GH) and rehabilitation commenced. This protocol was followed for 5 years, the last GH dose being 1 mg/day. Blood analysis and physical exams were performed every 3 months initially and then every 6 months. Six months after commencing the treatment the GMFM-88 score increased to 39.48%. Responses to sensitive stimuli appeared in most of the territories explored; 18 months later sensitive innervation was complete and the patient moved all muscles over the knees and controlled his sphincters. Three years later he began to walk with crutches, there was plantar flexion, and the GMFM-88 score was 78.48%. In summary, GH plus rehabilitation may be useful for innervating distal areas below the level of the incomplete spinal cord in CRS. It is likely that GH acted on the ependymal SC NSCs, as the hormone does in the neurogenic niches of the brain, and rehabilitation helped to achieve practically full functionality.
Collapse
|
35
|
van der Spoel E, Jansen SW, Akintola AA, Ballieux BE, Cobbaert CM, Slagboom PE, Blauw GJ, Westendorp RGJ, Pijl H, Roelfsema F, van Heemst D. Growth hormone secretion is diminished and tightly controlled in humans enriched for familial longevity. Aging Cell 2016; 15:1126-1131. [PMID: 27605408 PMCID: PMC6398524 DOI: 10.1111/acel.12519] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2016] [Indexed: 01/16/2023] Open
Abstract
Reduced growth hormone (GH) signaling has been consistently associated with increased health and lifespan in various mouse models. Here, we assessed GH secretion and its control in relation with human familial longevity. We frequently sampled blood over 24 h in 19 middle‐aged offspring of long‐living families from the Leiden Longevity Study together with 18 of their partners as controls. Circulating GH concentrations were measured every 10 min and insulin‐like growth factor 1 (IGF‐1) and insulin‐like growth factor binding protein 3 (IGFBP3) every 4 h. Using deconvolution analysis, we found that 24‐h total GH secretion was 28% lower (P = 0.04) in offspring [172 (128–216) mU L−1] compared with controls [238 (193–284) mU L−1]. We used approximate entropy (ApEn) to quantify the strength of feedback/feedforward control of GH secretion. ApEn was lower (P = 0.001) in offspring [0.45 (0.39–0.53)] compared with controls [0.66 (0.56–0.77)], indicating tighter control of GH secretion. No significant differences were observed in circulating levels of IGF‐1 and IGFBP3 between offspring and controls. In conclusion, GH secretion in human familial longevity is characterized by diminished secretion rate and more tight control. These data imply that the highly conserved GH signaling pathway, which has been linked to longevity in animal models, is also associated with human longevity.
Collapse
Affiliation(s)
- Evie van der Spoel
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Steffy W. Jansen
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Abimbola A. Akintola
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Bart E. Ballieux
- Department of Clinical Chemistry and Laboratory Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Christa M. Cobbaert
- Department of Clinical Chemistry and Laboratory Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - P. Eline Slagboom
- Section Molecular Epidemiology; Department of Medical Statistics; Leiden University Medical Center; Leiden The Netherlands
| | - Gerard Jan Blauw
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Rudi G. J. Westendorp
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
- Department of Public Health and Center of Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - Hanno Pijl
- Section Endocrinology; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Ferdinand Roelfsema
- Section Endocrinology; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| | - Diana van Heemst
- Section Gerontology and Geriatrics; Department of Internal Medicine; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
36
|
Devesa J, Almengló C, Devesa P. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin Med Insights Endocrinol Diabetes 2016; 9:47-71. [PMID: 27773998 PMCID: PMC5063841 DOI: 10.4137/cmed.s38201] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown.
Collapse
Affiliation(s)
- Jesús Devesa
- Scientific Direction, Medical Center Foltra, Teo, Spain
| | | | - Pablo Devesa
- Research and Development, Medical Center Foltra, 15886-Teo, Spain
| |
Collapse
|
37
|
Milman S, Huffman DM, Barzilai N. The Somatotropic Axis in Human Aging: Framework for the Current State of Knowledge and Future Research. Cell Metab 2016; 23:980-989. [PMID: 27304500 PMCID: PMC4919980 DOI: 10.1016/j.cmet.2016.05.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/19/2022]
Abstract
Mutations resulting in reduced signaling of the growth hormone/insulin-like growth factor-1 (GH/IGF-1) axis are associated with increased life- and healthspan across model organisms. Similar findings have been noted in human cohorts with functional mutations in the somatotropic axis, suggesting that this pathway may also be relevant to human aging and protection from age-related diseases. While epidemiological data indicate that low circulating IGF-1 level may protect aging populations from cancer, results remain inconclusive regarding most other diseases. We propose that studies in humans and animals need to consider differences in sex, pathway function, organs, and time-specific effects of GH/IGF-1 signaling in order to better define the role of the somatotropic axis in aging. Agents that modulate signaling of the GH/IGF-1 pathway are available for human use, but before they can be implemented in clinical studies that target aging and age-related diseases, researchers need to address the challenges discussed in this Review.
Collapse
Affiliation(s)
- Sofiya Milman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Derek M Huffman
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology, Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine, Division of Geriatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
38
|
Tumati S, Burger H, Martens S, van der Schouw YT, Aleman A. Association between Cognition and Serum Insulin-Like Growth Factor-1 in Middle-Aged & Older Men: An 8 Year Follow-Up Study. PLoS One 2016; 11:e0154450. [PMID: 27115487 PMCID: PMC4846160 DOI: 10.1371/journal.pone.0154450] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 04/13/2016] [Indexed: 11/29/2022] Open
Abstract
Low levels of insulin-like growth factor-1 (IGF-1), an essential neurotrophic factor, have been associated with worse cognitive function in older adults. However, few studies have assessed the prospective association of serum IGF-1 with cognitive function. We aimed to determine the association between serum IGF-1 on concurrent and prospective cognitive function in a population sample of men aged 40–80 years. Blood samples were assessed for IGF-1 levels at baseline and neuropsychological assessments were performed at baseline (n = 400) and at follow-up after a mean duration of 8.3 years (n = 286). Linear regression analyses were carried out to determine the associations between quintiles of IGF-1 and cognitive function at the baseline and follow-up visits. Results showed that those in the top quintile of IGF-1 had lower processing capacity and global cognition scores at follow-up after controlling for cognitive function at baseline and other confounding factors. Additional analyses exploring associations with IGF-1 separately in middle-aged and older participants, and with quartiles of IGF-1 produced similar results. In those older than 60 years, high IGF-1 levels were also associated with lower baseline processing capacity. These results suggest that high IGF-1 levels are associated with worse long-term cognition in men. Together with past studies, we suggest that both, high and low levels of IGF-1 may be associated with poor cognitive function and that optimum levels of IGF-1 (quintile 2 and 3 in current study) may be associated with better cognitive function.
Collapse
Affiliation(s)
- Shankar Tumati
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
- * E-mail:
| | - Huibert Burger
- Department of General Practice, University Medical Center Groningen, Groningen, The Netherlands
- Interdisciplinary Center for Psychopathology and Emotion Regulation, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander Martens
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - André Aleman
- Department of Neuroscience, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
39
|
Ejaz A, Mitterberger MC, Lu Z, Mattesich M, Zwierzina ME, Hörl S, Kaiser A, Viertler HP, Rostek U, Meryk A, Khalid S, Pierer G, Bast RC, Zwerschke W. Weight Loss Upregulates the Small GTPase DIRAS3 in Human White Adipose Progenitor Cells, Which Negatively Regulates Adipogenesis and Activates Autophagy via Akt-mTOR Inhibition. EBioMedicine 2016; 6:149-161. [PMID: 27211557 PMCID: PMC4856797 DOI: 10.1016/j.ebiom.2016.03.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 01/14/2023] Open
Abstract
Long-term weight-loss (WL) interventions reduce insulin serum levels, protect from obesity, and postpone age-associated diseases. The impact of long-term WL on adipose-derived stromal/progenitor cells (ASCs) is unknown. We identified DIRAS3 and IGF-1 as long-term WL target genes up-regulated in ASCs in subcutaneous white adipose tissue of formerly obese donors (WLDs). We show that DIRAS3 negatively regulates Akt, mTOR and ERK1/2 signaling in ASCs undergoing adipogenesis and acts as a negative regulator of this pathway and an activator of autophagy. Studying the IGF-1–DIRAS3 interaction in ASCs of WLDs, we demonstrate that IGF-1, although strongly up-regulated in these cells, hardly activates Akt, while ERK1/2 and S6K1 phosphorylation is activated by IGF-1. Overexpression of DIRAS3 in WLD ASCs completely inhibits Akt phosphorylation also in the presence of IGF-1. Phosphorylation of ERK1/2 and S6K1 is lesser reduced under these conditions. In conclusion, our key findings are that DIRAS3 down-regulates Akt–mTOR signaling in ASCs of WLDs. Moreover, DIRAS3 inhibits adipogenesis and activates autophagy in these cells. Long-term weight loss (WL) induces DIRAS3 and IGF-1 in ASCs of sWAT in formerly obese humans. DIRAS3 selectively down-regulates IGF-1R-Akt–mTOR signaling in ASCs and channels the IGF-1 stimulus to the ERK1/2 branch. DIRAS3 inhibits adipogenesis and activates autophagy in ASCs.
Long-term weight loss (WL) interventions reduce insulin serum levels, protect from obesity and postpone age-associated diseases. The impact of WL on adipose-derived stromal/progenitor cells (ASCs), stem cell-like cells in human subcutaneous white adipose tissue (sWAT), is not understood. We found that WL induced GTP-binding RAS-like 3 (DIRAS3) and insulin-like growth factor 1 (IGF-1), regulators of the IGF-1–mTOR signal transduction pathway, in ASCs in sWAT of formerly obese humans. We demonstrate that DIRAS3 selectively down-regulates IGF-1R–Akt–mTOR signaling in ASCs upon WL even in the presence of high IGF-1 level and that DIRAS3 inhibits adipogenesis and activates autophagy in these cells.
Collapse
Affiliation(s)
- Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Maria C Mitterberger
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Zhen Lu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Marit E Zwierzina
- Department of Anatomy, Histology and Embryology, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Susanne Hörl
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Kaiser
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Hans-Peter Viertler
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Ursula Rostek
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Meryk
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | - Sana Khalid
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, 6020 Innsbruck, Austria
| | - Robert C Bast
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
40
|
Do A, Menon V, Zhi X, Gesing A, Wiesenborn DS, Spong A, Sun L, Bartke A, Masternak MM. Thyroxine modifies the effects of growth hormone in Ames dwarf mice. Aging (Albany NY) 2016; 7:241-55. [PMID: 25935838 PMCID: PMC4429089 DOI: 10.18632/aging.100739] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ames dwarf (df/df) mice lack growth hormone (GH), thyroid stimulating hormone and prolactin. Treatment of juvenile df/df mice with GH alone stimulates somatic growth, reduces insulin sensitivity and shortens lifespan. Early‐life treatment with thyroxine (T4) alone produces modest growth stimulation but does not affect longevity. In this study, we examined the effects of treatment of juvenile Ames dwarf mice with a combination of GH + T4 and compared them to the effects of GH alone. Treatment of female and male dwarfs with GH + T4 between the ages of 2 and 8 weeks rescued somatic growth yet did not reduce lifespan to match normal controls, thus contrasting with the previously reported effects of GH alone. While the male dwarf GH + T4 treatment group had no significant effect on lifespan, the female dwarfs undergoing treatment showed a decrease in maximal longevity. Expression of genes related to GH and insulin signaling in the skeletal muscle and white adipose tissue (WAT) of female dwarfs was differentially affected by treatment with GH + T4 vs. GH alone. Differences in the effects of GH + T4 vs. GH alone on insulin target tissues may contribute to the differential effects of these treatments on longevity.
Collapse
Affiliation(s)
- Andrew Do
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Vinal Menon
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina Columbia, SC 29209, USA
| | - Xu Zhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Adam Gesing
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Denise S Wiesenborn
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Department of Medical Biochemistry and Molecular Biology, University of Saarland, 66421 Homburg, Germany.,Department of Biotechnology, University of Applied Sciences Kaiserslautern, 66482 Zweibrücken, Germany
| | - Adam Spong
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Liou Sun
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.,Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
41
|
Ubaldi M, Ricciardelli E, Pasqualini L, Sannino G, Soverchia L, Ruggeri B, Falcinelli S, Renzi A, Ludka C, Ciccocioppo R, Hardiman G. Biomarkers of hippocampal gene expression in a mouse restraint chronic stress model. Pharmacogenomics 2016; 16:471-82. [PMID: 25916519 DOI: 10.2217/pgs.15.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Acute stress provides many beneficial effects whereas chronic stress contributes to a variety of human health issues including anxiety, depression, gastrointestinal problems, cardiac disease, sleep disorders and obesity. The goal of this work was to identify, using a rodent model, hippocampal gene signatures associated with prolonged chronic stress representing candidate biomarkers and therapeutic targets for early diagnosis and pharmacological intervention for stress induced disease. MATERIALS & METHODS Mice underwent 'restraint stress' over 7 consecutive days and hippocampal gene-expression changes were analyzed at 3, 12 and 24 h following the final restraint treatment. RESULTS Data indicated that mice exposed to chronic restraint stress exhibit a differential gene-expression profile compared with non-stressed controls. The greatest differences were observed 12 and 24 h following the final stress test. CONCLUSION Our study indicated that Gpr88, Ttr, Gh and Tac1 mRNAs were modulated in mice exposed to chronic restraint stress. These transcripts represent a panel of biomarkers and druggable targets for further analysis in the context of chronic stress associated disease in humans.
Collapse
Affiliation(s)
- Massimo Ubaldi
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna delle Carceri 9, Camerino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Puig KL, Kulas JA, Franklin W, Rakoczy SG, Taglialatela G, Brown-Borg HM, Combs CK. The Ames dwarf mutation attenuates Alzheimer's disease phenotype of APP/PS1 mice. Neurobiol Aging 2016; 40:22-40. [PMID: 26973101 DOI: 10.1016/j.neurobiolaging.2015.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
APP/PS1 double transgenic mice expressing human mutant amyloid precursor protein (APP) and presenilin-1 (PS1) demonstrate robust brain amyloid beta (Aβ) peptide containing plaque deposition, increased markers of oxidative stress, behavioral dysfunction, and proinflammatory gliosis. On the other hand, lack of growth hormone, prolactin, and thyroid-stimulating hormone due to a recessive mutation in the Prop 1 gene (Prop1df) in Ames dwarf mice results in a phenotype characterized by potentiated antioxidant mechanisms, improved learning and memory, and significantly increased longevity in homozygous mice. Based on this, we hypothesized that a similar hormone deficiency might attenuate disease changes in the brains of APP/PS1 mice. To test this idea, APP/PS1 mice were crossed to the Ames dwarf mouse line. APP/PS1, wild-type, df/+, df/df, df/+/APP/PS1, and df/df/APP/PS1 mice were compared at 6 months of age through behavioral testing and assessing amyloid burden, reactive gliosis, and brain cytokine levels. df/df mice demonstrated lower brain growth hormone and insulin-like growth factor 1 concentrations. This correlated with decreased astrogliosis and microgliosis in the df/df/APP/PS1 mice and, surprisingly, reduced Aβ plaque deposition and Aβ 1-40 and Aβ 1-42 concentrations. The df/df/APP/PS1 mice also demonstrated significantly elevated brain levels of multiple cytokines in spite of the attenuated gliosis. These data indicate that the df/df/APP/PS1 line is a unique resource in which to study aging and resistance to disease and suggest that the affected pituitary hormones may have a role in regulating disease progression.
Collapse
Affiliation(s)
- Kendra L Puig
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Joshua A Kulas
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Whitney Franklin
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Sharlene G Rakoczy
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Holly M Brown-Borg
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Colin K Combs
- Department of Basic Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA.
| |
Collapse
|
43
|
Abstract
BACKGROUND Communal online folk pharmacology fuels the drive for short cuts in attaining muscle enhancement, fat loss, and youthful skin. OBJECTIVES The study used "netnography" to explore female use of CJC-1295, a synthetic growth hormone analogue from the perspectives contained in Internet forum activity. METHODS A systematic Internet search was conducted using variation of the term "CJC-1295"; and combined with "forum." Ninety-six hits related to bodybuilding websites where CJC-1295 was mentioned. Following application of exclusion criteria to confine to female use and evidence of forum activity, 9 sites remained. These were searched internally for reference to CJC-1295. Twenty-three discussion threads relating to female use of CJC-1295 formed the end data set, and analyzed using the Empirical Phenomenological Psychological method. RESULTS Forum users appeared well versed and experienced in the poly use of performance and image drug supplementation. Choice to use CJC-1295 centered on weight loss, muscle enhancement, youthful skin, improved sleep, and injury healing. Concerns were described relating to female consequences of use given gender variations in growth hormone pulses affecting estimation of dosage, cycling, and long-term consequences. CONCLUSIONS Public health interventions should consider female self-medicating use of synthetic growth hormone within a repertoire of product supplementation, and related adverse health consequences.
Collapse
Affiliation(s)
- Marie Claire Van Hout
- a Waterford Institute of Technology , Health, Sport and Exercise Science , Waterford , Ireland
| | - Evelyn Hearne
- b Liverpool John Moore's University , Liverpool , United Kingdom
| |
Collapse
|
44
|
Bitto A, Wang AM, Bennett CF, Kaeberlein M. Biochemical Genetic Pathways that Modulate Aging in Multiple Species. Cold Spring Harb Perspect Med 2015; 5:5/11/a025114. [PMID: 26525455 DOI: 10.1101/cshperspect.a025114] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future.
Collapse
Affiliation(s)
- Alessandro Bitto
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | - Adrienne M Wang
- Department of Pathology, University of Washington, Seattle, Washington 98195
| | | | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
45
|
Growth hormone (GH) increases cognition and expression of ionotropic glutamate receptors (AMPA and NMDA) in transgenic zebrafish (Danio rerio). Behav Brain Res 2015; 294:36-42. [PMID: 26235327 DOI: 10.1016/j.bbr.2015.07.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/14/2015] [Accepted: 07/27/2015] [Indexed: 11/21/2022]
Abstract
The growth hormone/insulin-like factor I (GH/IGF-I) somatotropic axis is responsible for somatic growth in vertebrates, and has important functions in the nervous system. Among these, learning and memory functions related to the neural expression of ionotropic glutamate receptors, mainly types AMPA (α-amino-3hydroxy-5methylisoxazole-4propionic) and NMDA (N-methyl-d-aspartate) can be highlighted. Studies on these mechanisms have been almost exclusively conducted on mammal models, with little information available on fish. Consequently, this study aimed at evaluating the effects of the somatotropic axis on learning and memory of a GH-transgenic zebrafish (Danio rerio) model (F0104 strain). Long-term memory (LTM) was tested in an inhibitory avoidance apparatus, and brain expression of igf-I and genes that code for the main subunits of the AMPA and NMDA receptors were evaluated. Results showed a significant increase in LTM for transgenic fish. Transgenic animals also showed a generalized pattern of increase in the expression of AMPA and NMDA genes, as well as a three-fold induction in igf-I expression in the brain. When analyzed together, these results indicate that GH, mediated by IGF-I, has important effects on the brain, with improvement in LTM as a result of increased glutamate receptors. The transgenic strain F0104 was shown to be an interesting model for elucidating the intricate mechanisms related to the effect of the somatotropic axis on learning and memory in vertebrates.
Collapse
|
46
|
The Drosophila insulin receptor independently modulates lifespan and locomotor senescence. PLoS One 2015; 10:e0125312. [PMID: 26020640 PMCID: PMC4447345 DOI: 10.1371/journal.pone.0125312] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/16/2015] [Indexed: 01/12/2023] Open
Abstract
The Insulin/IGF-like signalling (IIS) pathway plays an evolutionarily conserved role in ageing. In model organisms reduced IIS extends lifespan and ameliorates some forms of functional senescence. However, little is known about IIS in nervous system ageing and behavioural senescence. To investigate this role in Drosophila melanogaster, we measured the effect of reduced IIS on senescence of two locomotor behaviours, negative geotaxis and exploratory walking. Two long-lived fly models with systemic IIS reductions (daGAL4/UAS-InRDN (ubiquitous expression of a dominant negative insulin receptor) and d2GAL/UAS-rpr (ablation of insulin-like peptide producing cells)) showed an amelioration of negative geotaxis senescence similar to that previously reported for the long-lived IIS mutant chico. In contrast, exploratory walking in daGAL4/UAS-InRDN and d2GAL/UAS-rpr flies declined with age similarly to controls. To determine the contribution of IIS in the nervous system to these altered senescence patterns and lifespan, the InRDN was targeted to neurons (elavGAL4/UAS-InRDN), which resulted in extension of lifespan in females, normal negative geotaxis senescence in males and females, and detrimental effects on age-specific exploratory walking behaviour in males and females. These data indicate that the Drosophila insulin receptor independently modulates lifespan and age-specific function of different types of locomotor behaviour. The data suggest that ameliorated negative geotaxis senescence of long-lived flies with systemic IIS reductions is due to ageing related effects of reduced IIS outside the nervous system. The lifespan extension and coincident detrimental or neutral effects on locomotor function with a neuron specific reduction (elavGAL4/UAS-InRDN) indicates that reduced IIS is not beneficial to the neural circuitry underlying the behaviours despite increasing lifespan.
Collapse
|
47
|
Hascup ER, Wang F, Kopchick JJ, Bartke A. Inflammatory and Glutamatergic Homeostasis Are Involved in Successful Aging. J Gerontol A Biol Sci Med Sci 2015; 71:281-9. [PMID: 25711529 DOI: 10.1093/gerona/glv010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/10/2015] [Indexed: 11/13/2022] Open
Abstract
Whole body studies using long-lived growth hormone receptor gene disrupted or knock out (GHR-KO) mice report global GH resistance, increased insulin sensitivity, reduced insulin-like growth factor 1 (IGF-1), and cognitive retention in old-age, however, little is known about the neurobiological status of these mice. The aim of this study was to determine if glutamatergic and inflammatory markers that are altered in aging and/or age-related diseases and disorders, are preserved in mice that experience increased healthspan. We examined messenger ribonucleic acid (mRNA) expression levels in the brain of 4- to 6-, 8- to 10-, and 20- to 22-month GHR-KO and normal aging control mice. In the hippocampus, glutamate transporter 1 (GLT-1) and anti-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB)-p50 were elevated in 8- to 10-month GHR-KO mice compared with age-matched controls. In the hypothalamus, NFκB-p50, NFκB-p65, IGF-1 receptor (IGF-1R), glutamate/aspartate transporter (GLAST), and 2-amino-3-(5-methyl-3-oxo 2,3-dihydro-1,2 oxazol-4-yl) propanoic acid receptor subunit 1 (GluA1) were elevated in 8- to 10- and/or 20- to 22-month GHR-KO mice when comparing genotypes. Finally, interleukin 1-beta (IL-1β) mRNA was reduced in 4- to 6- and/or 8- to 10-month GHR-KO mice compared with normal littermates in all brain areas examined. These data support the importance of decreased brain inflammation in early adulthood and maintained homeostasis of the glutamatergic and inflammatory systems in extended longevity.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Neurology and the Center for Alzheimer's Disease and Related Disorders, Southern Illinois University School of Medicine, Springfield.
| | - Feiya Wang
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield
| | - John J Kopchick
- Edison Biotechnology Institute Department of Biomedical Sciences, Ohio University, Athens
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield
| |
Collapse
|
48
|
Differential effects of delayed aging on phenotype and striatal pathology in a murine model of Huntington disease. J Neurosci 2015; 34:15658-68. [PMID: 25411494 DOI: 10.1523/jneurosci.1830-14.2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The common neurodegenerative syndromes exhibit age-related incidence, and many Mendelian neurodegenerative diseases exhibit age-related penetrance. Mutations slowing aging retard age related pathologies. To assess whether delayed aging retards the effects of a mutant allele causing a Huntington's disease (HD)-like syndrome, we generated compound mutant mice, placing a dominant HD knock-in polyglutamine allele onto the slow-aging Snell dwarf genotype. The Snell genotype did not affect mutant huntingtin protein expression. Bigenic and control mice were evaluated prospectively from 10 to 100 weeks of age. Adult HD knock-in allele mice lost weight progressively with weight loss blunted significantly in male bigenic HD knock-in/Snell dwarf mice. Impaired balance beam performance developed significantly more slowly in bigenic HD knock-in/Snell dwarf mice. Striatal dopamine receptor expression was diminished significantly and similarly in all HD-like mice, regardless of the Snell genotype. Striatal neuronal intranuclear inclusion burden was similar between HD knock-in mice with and without the Snell genotype, whereas nigral neuropil aggregates were diminished in bigenic HD knock-in/Snell dwarf mice. Compared with control mice, Snell dwarf mice exhibited differences in regional benzodiazepine and cannabinoid receptor binding site expression. These results indicate that delaying aging delayed behavioral decline with little effect on the development of striatal pathology in this model of HD but may have altered synaptic pathology. These results indicate that mutations prolonging lifespan in mice delay onset of significant phenotypic features of this model and also demonstrate dissociation between striatal pathology and a commonly used behavioral measure of disease burden in HD models.
Collapse
|
49
|
Li N, Wang Y, Zhao X, Gao Y, Song M, Yu L, Wang L, Li N, Chen Q, Li Y, Cai J, Wang X. Long-term effect of early-life stress from earthquake exposure on working memory in adulthood. Neuropsychiatr Dis Treat 2015; 11:2959-65. [PMID: 26648728 PMCID: PMC4664544 DOI: 10.2147/ndt.s88770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate the long-term effect of 1976 Tangshan earthquake exposure in early life on performance of working memory in adulthood. METHODS A total of 907 study subjects born and raised in Tangshan were enrolled in this study. They were divided into three groups according to the dates of birth: infant exposure (3-12 months, n=274), prenatal exposure (n=269), and no exposure (born at least 1 year after the earthquake, n=364). The prenatal group was further divided into first, second, and third trimester subgroups based on the timing of exposure during pregnancy. Hopkins Verbal Learning Test-Revised and Brief Visuospatial Memory Test-Revised (BVMT-R) were used to measure the performance of working memory. Unconditional logistic regression analysis was used to analyze the influential factors for impaired working memory. RESULTS The Hopkins Verbal Learning Test-Revised scores did not show significant difference across the three groups. Compared with no exposure group, the BVMT-R scores were slightly lower in the prenatal exposure group and markedly decreased in the infant exposure group. When the BVMT-R scores were analyzed in three subgroups, the results showed that the subjects whose mothers were exposed to earthquake in the second and third trimesters of pregnancy had significantly lower BVMT-R scores compared with those in the first trimester. Education level and early-life earthquake exposure were identified as independent risk factors for reduced performance of visuospatial memory indicated by lower BVMT-R scores. CONCLUSION Infant exposure to earthquake-related stress impairs visuospatial memory in adulthood. Fetuses in the middle and late stages of development are more vulnerable to stress-induced damage that consequently results in impaired visuospatial memory. Education and early-life trauma can also influence the performance of working memory in adulthood.
Collapse
Affiliation(s)
- Na Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Yumei Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Xiaochuan Zhao
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Yuanyuan Gao
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Mei Song
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Lulu Yu
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Lan Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Ning Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Qianqian Chen
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Yunpeng Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Jiajia Cai
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| | - Xueyi Wang
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei, People's Republic of China ; Mental Health Institute of Hebei Medical University, Hebei, People's Republic of China ; Brain Ageing and Cognitive Neuroscience Laboratory, Hebei, People's Republic of China
| |
Collapse
|
50
|
Kim Y, Kim S, Kim C, Sato T, Kojima M, Park S. Ghrelin is required for dietary restriction-induced enhancement of hippocampal neurogenesis: lessons from ghrelin knockout mice. Endocr J 2015; 62:269-75. [PMID: 25735661 DOI: 10.1507/endocrj.ej14-0436] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis occurs in the adult hippocampus and is enhanced by dietary restriction (DR), and neurogenesis enhancement is paralleled by circulating ghrelin level enhancement. We have previously reported that ghrelin modulates adult neurogenesis in the hippocampus. In order to investigate the possible role of ghrelin in DR-induced hippocampal neurogenesis in adult mice, ghrelin knockout (GKO) mice and wild-type (WT) mice were maintained for 3 months on DR or ad libitum (AL) diets. Protein levels of ghrelin in the stomach and the hippocampus were increased by DR in WT mice. One day after BrdU administration, the number of BrdU-labeled cells in the hippocampal dentate gyrus was decreased in GKO mice maintained on the AL diet. DR failed to alter the proliferation of progenitor cells in both WT and GKO mice. Four weeks after BrdU injection, the number of surviving cells in the dentate gyrus was decreased in AL-fed GKO mice. DR increased survival of newborn cells in WT mice, but not in GKO mice. Levels of brain-derived neurotrophic factor protein in the hippocampus were similar between WT and GKO mice, and were increased by DR both in WT and GKO mice. These results suggest that elevated levels of ghrelin during DR may have an important role in the enhancement of neurogenesis induced by DR.
Collapse
Affiliation(s)
- Yumi Kim
- Department of Pharmacology and Medical Research Center for Bioreaction to ROS and Biomedical Science Institute, School of Medicine, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|