1
|
Zeng Y, Lao J, Wu Z, Lin G, Wang Q, Yang M, Zhang S, Xu D, Zhang M, Liang S, Liu Q, Yao K, Li J, Ning Y, Zhong X. Altered resting-state brain oscillation and the associated cognitive impairments in late-life depression with different depressive severity: An EEG power spectrum and functional connectivity study. J Affect Disord 2024; 348:124-134. [PMID: 37918574 DOI: 10.1016/j.jad.2023.10.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
OBJECTIVE Cognitive impairments are prevalent in late-life depression (LLD). However, it remains unclear whether there are concurrent brain oscillation alterations in resting condition across varying level of depression severity. This cross-sectional study aims to investigate the characteristics of altered resting-state oscillations, including power spectrum and functional connectivity, and their association with the cognitive impairments in LLD with different depression severity. METHODS A total of 65 patients with LLD and 40 elder participants without depression were recruited. Global cognition and subtle cognitive domains were evaluated. A five-minute resting-state electroencephalography (EEG) was conducted under eyes-closed conditions. Measurements included the ln-transformed absolute power for power spectrum analysis and the weighted phase lag index (wPLI) for functional connectivity analysis. RESULTS Attentional and executive dysfunction were exhibited in Moderate-Severe LLD group. Enhanced posterior upper gamma power was observed in both LLD groups. Additionally, enhanced parietal and fronto-parietal/occipital theta connectivity were observed in Moderate-Severe LLD group, which were associated with the attentional impairment. LIMITATIONS Limitations include a small sample size, concomitant medication use, and a relatively higher proportion of females. CONCLUSIONS Current study observed aberrant brain activity patterns in LLD across different levels of depression severity, which were linked to cognitive impairments. The altered posterior brain oscillations may be trait marker of LLD. Moreover, cognitive impairments and associated connectivity alterations were exhibited in moderate-severe group, which may be a state-like marker of moderate-to severe LLD. The study deepens understanding of cognitive impairments with the associated oscillation changes, carrying implications for neuromodulation targets in LLD.
Collapse
Affiliation(s)
- Yijie Zeng
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingyi Lao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhangying Wu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gaohong Lin
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiang Wang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingfeng Yang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Si Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Danyan Xu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuang Liang
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qin Liu
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kexin Yao
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiafu Li
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuping Ning
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou.
| | - Xiaomei Zhong
- Geriatric Neuroscience Center, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou.
| |
Collapse
|
2
|
Tatti E, Cacciola A, Carrara F, Luciani A, Quartarone A, Ghilardi MF. Movement-related ERS and connectivity in the gamma frequency decrease with practice. Neuroimage 2023; 284:120444. [PMID: 37926216 PMCID: PMC10758293 DOI: 10.1016/j.neuroimage.2023.120444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023] Open
Abstract
Previous work showed that movements are accompanied by modulation of electroencephalographic (EEG) activity in both beta (13-30 Hz) and gamma (>30 Hz) ranges. The amplitude of beta event-related synchronization (ERS) is not linked to movement characteristics, but progressively increases with motor practice, returning to baseline after a period of rest. Conversely, movement-related gamma ERS amplitude is proportional to movement distance and velocity. Here, high-density EEG was recorded in 51 healthy subjects to investigate whether i) three-hour practice in two learning tasks, one with a motor component and one without, affects gamma ERS amplitude and connectivity during a motor reaching test, and ii) 90-minutes of either sleep or quiet rest have an effect on gamma oscillatory activity. We found that, while gamma ERS was appropriately scaled to the target extent at all testing points, its amplitude decreased after practice, independently of the type of interposed learning, and after both quiet wake and nap, with partial correlations with subjective fatigue scores. During movement execution, connectivity patterns within fronto-parieto-occipital electrodes, over areas associated with attentional networks, decreased after both practice and after 90-minute rest. While confirming the prokinetic nature of movement-related gamma ERS, these findings demonstrated the preservation of gamma ERS scaling to movement velocity with practice, despite constant amplitude reduction. We thus speculate that such decreases, differently from the practice-related increases of beta ERS, are related to reduced attention or working memory mechanisms due to fatigue or a switch of strategy toward automatization of movement execution and do not specifically reflect plasticity phenomena.
Collapse
Affiliation(s)
- Elisa Tatti
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY 10031, United States.
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy; Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, China; Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Federico Carrara
- Department of Mathematics, Polytechnic University of Milan, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Adalgisa Luciani
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY 10031, United States; Section of Psychiatry, Department of Neuroscience, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Angelo Quartarone
- IRCCS-Centro Neurolesi Bonino-Pulejo, S.S. 113, Via Palermo, C. da Casazza, 98124 Messina, Italy.
| | - M Felice Ghilardi
- Department of Molecular, Cellular & Biomedical Sciences, CUNY, School of Medicine, New York, NY 10031, United States.
| |
Collapse
|
3
|
Luo C, Gao Y, Fan J, Liu Y, Yu Y, Zhang X. Compromised word-level neural tracking in the high-gamma band for children with attention deficit hyperactivity disorder. Front Hum Neurosci 2023; 17:1174720. [PMID: 37213926 PMCID: PMC10196181 DOI: 10.3389/fnhum.2023.1174720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/23/2023] Open
Abstract
Children with attention deficit hyperactivity disorder (ADHD) exhibit pervasive difficulties in speech perception. Given that speech processing involves both acoustic and linguistic stages, it remains unclear which stage of speech processing is impaired in children with ADHD. To investigate this issue, we measured neural tracking of speech at syllable and word levels using electroencephalography (EEG), and evaluated the relationship between neural responses and ADHD symptoms in 6-8 years old children. Twenty-three children participated in the current study, and their ADHD symptoms were assessed with SNAP-IV questionnaires. In the experiment, the children listened to hierarchical speech sequences in which syllables and words were, respectively, repeated at 2.5 and 1.25 Hz. Using frequency domain analyses, reliable neural tracking of syllables and words was observed in both the low-frequency band (<4 Hz) and the high-gamma band (70-160 Hz). However, the neural tracking of words in the high-gamma band showed an anti-correlation with the ADHD symptom scores of the children. These results indicate that ADHD prominently impairs cortical encoding of linguistic information (e.g., words) in speech perception.
Collapse
Affiliation(s)
- Cheng Luo
- Research Center for Applied Mathematics and Machine Intelligence, Research Institute of Basic Theories, Zhejiang Lab, Hangzhou, China
- Cheng Luo,
| | - Yayue Gao
- Department of Psychology, School of Humanities and Social Sciences, Beihang University, Beijing, China
- *Correspondence: Yayue Gao,
| | - Jianing Fan
- Department of Psychology, School of Humanities and Social Sciences, Beihang University, Beijing, China
| | - Yang Liu
- Department of Psychology, School of Humanities and Social Sciences, Beihang University, Beijing, China
| | - Yonglin Yu
- Department of Rehabilitation, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Yonglin Yu,
| | - Xin Zhang
- Department of Neurology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Xin Zhang,
| |
Collapse
|
4
|
ElShafei HA, Fornoni L, Masson R, Bertrand O, Bidet-Caulet A. What's in Your Gamma? Activation of the Ventral Fronto-Parietal Attentional Network in Response to Distracting Sounds. Cereb Cortex 2021; 30:696-707. [PMID: 31219542 DOI: 10.1093/cercor/bhz119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 11/14/2022] Open
Abstract
Auditory attention operates through top-down (TD) and bottom-up (BU) mechanisms that are supported by dorsal and ventral brain networks, respectively, with the main overlap in the lateral prefrontal cortex (lPFC). A good TD/BU balance is essential to be both task-efficient and aware of our environment, yet it is rarely investigated. Oscillatory activity is a novel method to probe the attentional dynamics with evidence that gamma activity (>30 Hz) could signal BU processing and thus would be a good candidate to support the activation of the ventral BU attention network. Magnetoencephalography data were collected from 21 young adults performing the competitive attention task, which enables simultaneous investigation of BU and TD attentional mechanisms. Distracting sounds elicited an increase in gamma activity in regions of the BU ventral network. TD attention modulated these gamma responses in regions of the inhibitory cognitive control system: the medial prefrontal and anterior cingulate cortices. Finally, distracting-sound-induced gamma activity was synchronous between the auditory cortices and several distant brain regions, notably the lPFC. We provide novel insight into the role of gamma activity 1) in supporting the activation of the ventral BU attention network and 2) in subtending the TD/BU attention balance in the PFC.
Collapse
Affiliation(s)
- Hesham A ElShafei
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Lesly Fornoni
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Rémy Masson
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Olivier Bertrand
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| | - Aurélie Bidet-Caulet
- Brain Dynamics and Cognition Team, Lyon Neuroscience Research Center; CRNL, INSERM U1028, CNRS UMR5292, University of Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
5
|
Apicella A, Arpaia P, Frosolone M, Moccaldi N. High-wearable EEG-based distraction detection in motor rehabilitation. Sci Rep 2021; 11:5297. [PMID: 33674657 PMCID: PMC7935996 DOI: 10.1038/s41598-021-84447-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/03/2021] [Indexed: 11/09/2022] Open
Abstract
A method for EEG-based distraction detection during motor-rehabilitation tasks is proposed. A wireless cap guarantees very high wearability with dry electrodes and a low number of channels. Experimental validation is performed on a dataset from 17 volunteers. Different feature extractions from spatial, temporal, and frequency domain and classification strategies were evaluated. The performances of five supervised classifiers in discriminating between attention on pure movement and with distractors were compared. A k-Nearest Neighbors classifier achieved an accuracy of 92.8 ± 1.6%. In this last case, the feature extraction is based on a custom 12 pass-band Filter-Bank (FB) and the Common Spatial Pattern (CSP) algorithm. In particular, the mean Recall of classification (percentage of true positive in distraction detection) is higher than 92% and allows the therapist or an automated system to know when to stimulate the patient's attention for enhancing the therapy effectiveness.
Collapse
Affiliation(s)
- Andrea Apicella
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Pasquale Arpaia
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy. .,Interdepartmental Center for Research on Management and Innovation in Healthcare (CIRMIS), University of Naples Federico II, Naples, Italy.
| | - Mirco Frosolone
- Department of Public Health and Preventive Medicine, University of Naples Federico II, Naples, Italy
| | - Nicola Moccaldi
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Moezzi B, Pratti LM, Hordacre B, Graetz L, Berryman C, Lavrencic LM, Ridding MC, Keage HAD, McDonnell MD, Goldsworthy MR. Characterization of Young and Old Adult Brains: An EEG Functional Connectivity Analysis. Neuroscience 2020; 422:230-239. [PMID: 31806080 DOI: 10.1016/j.neuroscience.2019.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/15/2019] [Accepted: 08/22/2019] [Indexed: 01/01/2023]
Abstract
Brain connectivity studies have reported that functional networks change with older age. We aim to (1) investigate whether electroencephalography (EEG) data can be used to distinguish between individual functional networks of young and old adults; and (2) identify the functional connections that contribute to this classification. Two eyes-open resting-state EEG recording sessions with 64 electrodes for each of 22 younger adults (19-37 years) and 22 older adults (63-85 years) were conducted. For each session, imaginary coherence matrices in delta, theta, alpha, beta and gamma bands were computed. A range of machine learning classification methods were utilized to distinguish younger and older adult brains. A support vector machine (SVM) classifier was 93% accurate in classifying the brains by age group. We report decreased functional connectivity with older age in delta, theta, alpha and gamma bands, and increased connectivity with older age in beta band. Most connections involving frontal, temporal, and parietal electrodes, and more than half of connections involving occipital electrodes, showed decreased connectivity with older age. Slightly less than half of the connections involving central electrodes showed increased connectivity with older age. Functional connections showing decreased strength with older age were not significantly different in electrode-to-electrode distance than those that increased with older age. Most of the connections used by the classifier to distinguish participants by age group belonged to the alpha band. Findings suggest a decrease in connectivity in key networks and frequency bands associated with attention and awareness, and an increase in connectivity of the sensorimotor functional networks with aging during a resting state.
Collapse
Affiliation(s)
- Bahar Moezzi
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Australia.
| | | | - Brenton Hordacre
- School of Health Sciences, University of South Australia, Australia
| | - Lynton Graetz
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Carolyn Berryman
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Louise M Lavrencic
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Australia; Neuroscience Research of Australia, Australia
| | - Michael C Ridding
- Robinson Research Institute, Adelaide Medical School, University of Adelaide, Australia
| | - Hannah A D Keage
- Cognitive Ageing and Impairment Neurosciences Laboratory, School of Psychology, Social Work and Social Policy, University of South Australia, Australia
| | - Mark D McDonnell
- Computational Learning Systems Laboratory, School of Information Technology and Mathematical Sciences, University of South Australia, Australia
| | | |
Collapse
|
7
|
Schneider TR, Hipp JF, Domnick C, Carl C, Büchel C, Engel AK. Modulation of neuronal oscillatory activity in the beta- and gamma-band is associated with current individual anxiety levels. Neuroimage 2018; 178:423-434. [DOI: 10.1016/j.neuroimage.2018.05.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 05/25/2018] [Indexed: 01/23/2023] Open
|
8
|
Rickard RE, Young AMJ, Gerdjikov TV. Cortical Local Field Potential Power Is Associated with Behavioral Detection of Near-threshold Stimuli in the Rat Whisker System: Dissociation between Orbitofrontal and Somatosensory Cortices. J Cogn Neurosci 2017; 30:42-49. [PMID: 28891783 DOI: 10.1162/jocn_a_01187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.
Collapse
|
9
|
Aliakbaryhosseinabadi S, Kamavuako EN, Jiang N, Farina D, Mrachacz-Kersting N. Classification of EEG signals to identify variations in attention during motor task execution. J Neurosci Methods 2017; 284:27-34. [DOI: 10.1016/j.jneumeth.2017.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
|
10
|
Lau WKW, Leung MK, Law ACK, Lee TMC. Moderating Effects of Cortisol on Neural-Cognitive Association in Cognitively Normal Elderly Subjects. Front Aging Neurosci 2017; 9:163. [PMID: 28596732 PMCID: PMC5443153 DOI: 10.3389/fnagi.2017.00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Cortisol homeostasis is important for healthy brain and cognitive aging. The aim of the current study is to investigate the role of serum cortisol levels in the relationship between regional brain volumes and cognitive processing speed in a group of cognitively normal elderly subjects. Forty-one healthy elderly participants were from a parallel longitudinal study. The reported data in this study reflects baseline measurements. Whole-brain anatomical scanning was performed using a 3.0 Tesla Philips Medical Systems Achieva scanner. Cognitive processing speed was assessed by the digit-symbol and symbol search tests, from the Chinese version of the Wechsler Adult Intelligence Scale—third edition (WAIS-III). Serum cortisol levels (sampled in the late morning) were measured by ELISA kits. Whole-brain regression analysis revealed that serum cortisol levels positively predicted the white matter volumes (WMV) of the right thalamus, the gray matter volumes (GMV) of the left thalamus and right cerebellar tonsil, and negatively predicted the WMV and GMV of the left middle temporal gyrus (MTG) in 41 healthy elderly participants. Furthermore, serum cortisol significantly moderated the relationship between the GMV of the left MTG and processing speed, as well as the GMV of the left thalamus and processing speed. This study provided the first piece of evidence supporting serum cortisol levels in moderating the relationship between regional brain volumes and processing speed in healthy elderly subjects. This observation enriches our understanding of the role of cortisol in brain morphology and cognitive functioning.
Collapse
Affiliation(s)
- Way K W Lau
- Neural Dysfunction Research Laboratory, Department of Psychiatry, The University of Hong KongHong Kong, Hong Kong.,Laboratory of Cognitive Affective Neuroscience, The University of Hong KongHong Kong, Hong Kong
| | - Mei Kei Leung
- Laboratory of Cognitive Affective Neuroscience, The University of Hong KongHong Kong, Hong Kong.,Laboratory of Neuropsychology, The University of Hong KongHong Kong, Hong Kong
| | - Andrew C K Law
- Neural Dysfunction Research Laboratory, Department of Psychiatry, The University of Hong KongHong Kong, Hong Kong.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong KongHong Kong, Hong Kong
| | - Tatia M C Lee
- Laboratory of Cognitive Affective Neuroscience, The University of Hong KongHong Kong, Hong Kong.,Laboratory of Neuropsychology, The University of Hong KongHong Kong, Hong Kong.,The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong KongHong Kong, Hong Kong.,Institute of Clinical Neuropsychology, The University of Hong KongHong Kong, Hong Kong
| |
Collapse
|
11
|
Modulations on cortical oscillations by subthalamic deep brain stimulation in patients with Parkinson disease: A MEG study. Neurosci Lett 2017; 636:95-100. [DOI: 10.1016/j.neulet.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/20/2022]
|
12
|
Akimoto Y, Nozawa T, Kanno A, Kambara T, Ihara M, Ogawa T, Goto T, Taki Y, Yokoyama R, Kotozaki Y, Nouchi R, Sekiguchi A, Takeuchi H, Miyauchi CM, Sugiura M, Okumura E, Sunda T, Shimizu T, Tozuka E, Hirose S, Nanbu T, Kawashima R. High-gamma power changes after cognitive intervention: preliminary results from twenty-one senior adult subjects. Brain Behav 2016; 6:e00427. [PMID: 26855826 PMCID: PMC4733105 DOI: 10.1002/brb3.427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/08/2015] [Accepted: 12/11/2015] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Brain-imaging techniques have begun to be popular in evaluating the effectiveness of cognitive intervention training. Although gamma activities are rarely used as an index of training effects, they have several characteristics that suggest their potential suitability for this purpose. This pilot study examined whether cognitive training in elderly people affected the high-gamma activity associated with attentional processing and whether high-gamma power changes were related to changes in behavioral performance. METHODS We analyzed (MEG) magnetoencephalography data obtained from 35 healthy elderly subjects (60-75 years old) who had participated in our previous intervention study in which the subjects were randomly assigned to one of the three types of intervention groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C was trained to solve a crossword puzzle as an active control group. High-gamma (52-100 Hz) activity during a three-stimulus visual oddball task was measured before and after training. As a result of exclusion in the MEG data analysis stage, the final sample consisted of five subjects in Group V, nine subjects in Group P, and seven subjects in Group C. RESULTS Results showed that high-gamma activities were differently altered between groups after cognitive intervention. In particular, members of Group V, who showed significant improvements in cognitive function after training, exhibited increased high-gamma power in the left middle frontal gyrus during top-down anticipatory target processing. High-gamma power changes in this region were also associated with changes in behavioral performance. CONCLUSIONS Our preliminary results suggest the usefulness of high-gamma activities as an index of the effectiveness of cognitive training in elderly subjects.
Collapse
Affiliation(s)
- Yoritaka Akimoto
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Takayuki Nozawa
- Smart Ageing International Research Center Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Akitake Kanno
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Toshimune Kambara
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan; Japan Society for the Promotion of Science (JSPS) Tokyo 102-8472 Japan
| | - Mizuki Ihara
- Smart Ageing International Research Center Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Takeshi Ogawa
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Takakuni Goto
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Yuka Kotozaki
- Smart Ageing International Research Center Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Rui Nouchi
- Smart Ageing International Research Center Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan; Human and Social Response Research Division International Research Institute of Disaster Science Tohoku University Sendai 980-8575 Japan
| | - Atsushi Sekiguchi
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan; Division of Medical Neuroimage Analysis Department of Community Medical Supports Tohoku Medical Megabank Organization Tohoku University Sendai 980-8575 Japan; Department of Adult Mental Health National Institute of Mental Health National Center of Neurology and Psychiatry Kodaira 187-8553 Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| | - Motoaki Sugiura
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan; Human and Social Response Research Division International Research Institute of Disaster Science Tohoku University Sendai 980-8575 Japan
| | - Eiichi Okumura
- Department of Epileptology Tohoku University Graduate School of Medicine Sendai 980-8575 Japan
| | - Takashi Sunda
- Mobility Services Laboratory Research Division 2 Nissan Motor Co., Ltd. Kanagawa 243-0123 Japan
| | - Toshiyuki Shimizu
- Mobility Services Laboratory Research Division 2 Nissan Motor Co., Ltd. Kanagawa 243-0123 Japan
| | - Eiji Tozuka
- Vehicle Test and Measurement Technology Development Department CAE and Testing Division 1 Nissan Motor Co., Ltd. Kanagawa 243-0192 Japan
| | - Satoru Hirose
- Mobility Services Laboratory Research Division 2 Nissan Motor Co., Ltd. Kanagawa 243-0123 Japan
| | - Tatsuyoshi Nanbu
- Prototype and Test Department Research Division 2 Nissan Motor Co., Ltd. Kanagawa 243-0123 Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan; Smart Ageing International Research Center Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan; Division of Developmental Cognitive Neuroscience Institute of Development, Aging and Cancer Tohoku University Sendai 980-8575 Japan
| |
Collapse
|