1
|
Liang M, Gerwien J, Gutschalk A. A listening advantage for native speech is reflected by attention-related activity in auditory cortex. Commun Biol 2025; 8:180. [PMID: 39910341 PMCID: PMC11799217 DOI: 10.1038/s42003-025-07601-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
The listening advantage for native speech is well known, but the neural basis of the effect remains unknown. Here we test the hypothesis that attentional enhancement in auditory cortex is stronger for native speech, using magnetoencephalography. Chinese and German speech stimuli were recorded by a bilingual speaker and combined into a two-stream, cocktail-party scene, with consistent and inconsistent language combinations. A group of native speakers of Chinese and a group of native speakers of German performed a detection task in the cued target stream. Results show that attention enhances negative-going activity in the temporal response function deconvoluted from the speech envelope. This activity is stronger when the target stream is in the native compared to the non-native language, and for inconsistent compared to consistent language stimuli. We interpret the findings to show that the stronger activity for native speech could be related to better top-down prediction of the native speech streams.
Collapse
Affiliation(s)
- Meng Liang
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Johannes Gerwien
- Institute of German as a Foreign Language Philology, University of Heidelberg, Plöck 55, 69117, Heidelberg, Germany
| | - Alexander Gutschalk
- Department of Neurology, University of Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Dieudonné B, Decruy L, Vanthornhout J. Neural tracking of the speech envelope predicts binaural unmasking. Eur J Neurosci 2025; 61:e16638. [PMID: 39653384 DOI: 10.1111/ejn.16638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024]
Abstract
Binaural unmasking is a remarkable phenomenon that it is substantially easier to detect a signal in noise when the interaural parameters of the signal are different from those of the noise - a useful mechanism in so-called cocktail party scenarios. In this study, we investigated the effect of binaural unmasking on neural tracking of the speech envelope. We measured EEG in 8 participants who listened to speech in noise at a fixed signal-to-noise ratio, in two conditions: one where speech and noise had the same interaural phase difference (both speech and noise having an opposite waveform across ears, SπNπ), and one where the interaural phase difference of the speech was different from that of the noise (only the speech having an opposite waveform across ears, SπN). We measured a clear benefit of binaural unmasking in behavioural speech understanding scores, accompanied by increased neural tracking of the speech envelope. Moreover, analysing the temporal response functions revealed that binaural unmasking also resulted in decreased peak latencies and increased peak amplitudes. Our results are consistent with previous research using auditory evoked potentials and steady-state responses to quantify binaural unmasking at cortical levels. Moreover, they confirm that neural tracking of speech is associated with speech understanding, even if the acoustic signal-to-noise ratio is kept constant. From a clinical perspective, these results offer the potential for the objective evaluation of binaural speech understanding mechanisms, and the objective detection of pathologies sensitive to binaural processing, such as asymmetric hearing loss, auditory neuropathy and age-related deficits.
Collapse
Affiliation(s)
- Benjamin Dieudonné
- Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Lien Decruy
- Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| | - Jonas Vanthornhout
- Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Giroud J, Trébuchon A, Mercier M, Davis MH, Morillon B. The human auditory cortex concurrently tracks syllabic and phonemic timescales via acoustic spectral flux. SCIENCE ADVANCES 2024; 10:eado8915. [PMID: 39705351 DOI: 10.1126/sciadv.ado8915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Dynamical theories of speech processing propose that the auditory cortex parses acoustic information in parallel at the syllabic and phonemic timescales. We developed a paradigm to independently manipulate both linguistic timescales, and acquired intracranial recordings from 11 patients who are epileptic listening to French sentences. Our results indicate that (i) syllabic and phonemic timescales are both reflected in the acoustic spectral flux; (ii) during comprehension, the auditory cortex tracks the syllabic timescale in the theta range, while neural activity in the alpha-beta range phase locks to the phonemic timescale; (iii) these neural dynamics occur simultaneously and share a joint spatial location; (iv) the spectral flux embeds two timescales-in the theta and low-beta ranges-across 17 natural languages. These findings help us understand how the human brain extracts acoustic information from the continuous speech signal at multiple timescales simultaneously, a prerequisite for subsequent linguistic processing.
Collapse
Affiliation(s)
- Jérémy Giroud
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Agnès Trébuchon
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
- APHM, Clinical Neurophysiology, Timone Hospital, Marseille, France
| | - Manuel Mercier
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - Matthew H Davis
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Benjamin Morillon
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France
| |
Collapse
|
4
|
Baus C, Millan I, Chen XJ, Blanco-Elorrieta E. Exploring the Interplay Between Language Comprehension and Cortical Tracking: The Bilingual Test Case. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:484-496. [PMID: 38911463 PMCID: PMC11192516 DOI: 10.1162/nol_a_00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/04/2024] [Indexed: 06/25/2024]
Abstract
Cortical tracking, the synchronization of brain activity to linguistic rhythms is a well-established phenomenon. However, its nature has been heavily contested: Is it purely epiphenomenal or does it play a fundamental role in speech comprehension? Previous research has used intelligibility manipulations to examine this topic. Here, we instead varied listeners' language comprehension skills while keeping the auditory stimulus constant. To do so, we tested 22 native English speakers and 22 Spanish/Catalan bilinguals learning English as a second language (SL) in an EEG cortical entrainment experiment and correlated the responses with the magnitude of the N400 component of a semantic comprehension task. As expected, native listeners effectively tracked sentential, phrasal, and syllabic linguistic structures. In contrast, SL listeners exhibited limitations in tracking sentential structures but successfully tracked phrasal and syllabic rhythms. Importantly, the amplitude of the neural entrainment correlated with the amplitude of the detection of semantic incongruities in SLs, showing a direct connection between tracking and the ability to understand speech. Together, these findings shed light on the interplay between language comprehension and cortical tracking, to identify neural entrainment as a fundamental principle for speech comprehension.
Collapse
Affiliation(s)
- Cristina Baus
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | - Esti Blanco-Elorrieta
- Department of Psychology, New York University, New York, NY, USA
- Department of Neural Science, New York University, New York, NY, USA
| |
Collapse
|
5
|
Ershaid H, Lizarazu M, McLaughlin D, Cooke M, Simantiraki O, Koutsogiannaki M, Lallier M. Contributions of listening effort and intelligibility to cortical tracking of speech in adverse listening conditions. Cortex 2024; 172:54-71. [PMID: 38215511 DOI: 10.1016/j.cortex.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/14/2024]
Abstract
Cortical tracking of speech is vital for speech segmentation and is linked to speech intelligibility. However, there is no clear consensus as to whether reduced intelligibility leads to a decrease or an increase in cortical speech tracking, warranting further investigation of the factors influencing this relationship. One such factor is listening effort, defined as the cognitive resources necessary for speech comprehension, and reported to have a strong negative correlation with speech intelligibility. Yet, no studies have examined the relationship between speech intelligibility, listening effort, and cortical tracking of speech. The aim of the present study was thus to examine these factors in quiet and distinct adverse listening conditions. Forty-nine normal hearing adults listened to sentences produced casually, presented in quiet and two adverse listening conditions: cafeteria noise and reverberant speech. Electrophysiological responses were registered with electroencephalogram, and listening effort was estimated subjectively using self-reported scores and objectively using pupillometry. Results indicated varying impacts of adverse conditions on intelligibility, listening effort, and cortical tracking of speech, depending on the preservation of the speech temporal envelope. The more distorted envelope in the reverberant condition led to higher listening effort, as reflected in higher subjective scores, increased pupil diameter, and stronger cortical tracking of speech in the delta band. These findings suggest that using measures of listening effort in addition to those of intelligibility is useful for interpreting cortical tracking of speech results. Moreover, reading and phonological skills of participants were positively correlated with listening effort in the cafeteria condition, suggesting a special role of expert language skills in processing speech in this noisy condition. Implications for future research and theories linking atypical cortical tracking of speech and reading disorders are further discussed.
Collapse
Affiliation(s)
- Hadeel Ershaid
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Mikel Lizarazu
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Drew McLaughlin
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain.
| | - Martin Cooke
- Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| | | | | | - Marie Lallier
- Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Ikerbasque, Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
6
|
Zoefel B, Kösem A. Neural tracking of continuous acoustics: properties, speech-specificity and open questions. Eur J Neurosci 2024; 59:394-414. [PMID: 38151889 DOI: 10.1111/ejn.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Human speech is a particularly relevant acoustic stimulus for our species, due to its role of information transmission during communication. Speech is inherently a dynamic signal, and a recent line of research focused on neural activity following the temporal structure of speech. We review findings that characterise neural dynamics in the processing of continuous acoustics and that allow us to compare these dynamics with temporal aspects in human speech. We highlight properties and constraints that both neural and speech dynamics have, suggesting that auditory neural systems are optimised to process human speech. We then discuss the speech-specificity of neural dynamics and their potential mechanistic origins and summarise open questions in the field.
Collapse
Affiliation(s)
- Benedikt Zoefel
- Centre de Recherche Cerveau et Cognition (CerCo), CNRS UMR 5549, Toulouse, France
- Université de Toulouse III Paul Sabatier, Toulouse, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, Bron, France
| |
Collapse
|
7
|
MacIntyre AD, Carlyon RP, Goehring T. Neural Decoding of the Speech Envelope: Effects of Intelligibility and Spectral Degradation. Trends Hear 2024; 28:23312165241266316. [PMID: 39183533 PMCID: PMC11345737 DOI: 10.1177/23312165241266316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 08/27/2024] Open
Abstract
During continuous speech perception, endogenous neural activity becomes time-locked to acoustic stimulus features, such as the speech amplitude envelope. This speech-brain coupling can be decoded using non-invasive brain imaging techniques, including electroencephalography (EEG). Neural decoding may provide clinical use as an objective measure of stimulus encoding by the brain-for example during cochlear implant listening, wherein the speech signal is severely spectrally degraded. Yet, interplay between acoustic and linguistic factors may lead to top-down modulation of perception, thereby complicating audiological applications. To address this ambiguity, we assess neural decoding of the speech envelope under spectral degradation with EEG in acoustically hearing listeners (n = 38; 18-35 years old) using vocoded speech. We dissociate sensory encoding from higher-order processing by employing intelligible (English) and non-intelligible (Dutch) stimuli, with auditory attention sustained using a repeated-phrase detection task. Subject-specific and group decoders were trained to reconstruct the speech envelope from held-out EEG data, with decoder significance determined via random permutation testing. Whereas speech envelope reconstruction did not vary by spectral resolution, intelligible speech was associated with better decoding accuracy in general. Results were similar across subject-specific and group analyses, with less consistent effects of spectral degradation in group decoding. Permutation tests revealed possible differences in decoder statistical significance by experimental condition. In general, while robust neural decoding was observed at the individual and group level, variability within participants would most likely prevent the clinical use of such a measure to differentiate levels of spectral degradation and intelligibility on an individual basis.
Collapse
Affiliation(s)
| | - Robert P. Carlyon
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Tobias Goehring
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
Karunathilake IMD, Kulasingham JP, Simon JZ. Neural tracking measures of speech intelligibility: Manipulating intelligibility while keeping acoustics unchanged. Proc Natl Acad Sci U S A 2023; 120:e2309166120. [PMID: 38032934 PMCID: PMC10710032 DOI: 10.1073/pnas.2309166120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
Neural speech tracking has advanced our understanding of how our brains rapidly map an acoustic speech signal onto linguistic representations and ultimately meaning. It remains unclear, however, how speech intelligibility is related to the corresponding neural responses. Many studies addressing this question vary the level of intelligibility by manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle the effects of intelligibility from underlying acoustical confounds. Here, using magnetoencephalography recordings, we study neural measures of speech intelligibility by manipulating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical degraded speech stimuli (three-band noise-vocoded, ~20 s duration) are presented twice, but the second presentation is preceded by the original (nondegraded) version of the speech. This intermediate priming, which generates a "pop-out" percept, substantially improves the intelligibility of the second degraded speech passage. We investigate how intelligibility and acoustical structure affect acoustic and linguistic neural representations using multivariate temporal response functions (mTRFs). As expected, behavioral results confirm that perceived speech clarity is improved by priming. mTRFs analysis reveals that auditory (speech envelope and envelope onset) neural representations are not affected by priming but only by the acoustics of the stimuli (bottom-up driven). Critically, our findings suggest that segmentation of sounds into words emerges with better speech intelligibility, and most strongly at the later (~400 ms latency) word processing stage, in prefrontal cortex, in line with engagement of top-down mechanisms associated with priming. Taken together, our results show that word representations may provide some objective measures of speech comprehension.
Collapse
Affiliation(s)
| | | | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD20742
- Department of Biology, University of Maryland, College Park, MD20742
- Institute for Systems Research, University of Maryland, College Park, MD20742
| |
Collapse
|
9
|
Van Hirtum T, Somers B, Dieudonné B, Verschueren E, Wouters J, Francart T. Neural envelope tracking predicts speech intelligibility and hearing aid benefit in children with hearing loss. Hear Res 2023; 439:108893. [PMID: 37806102 DOI: 10.1016/j.heares.2023.108893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/01/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
Early assessment of hearing aid benefit is crucial, as the extent to which hearing aids provide audible speech information predicts speech and language outcomes. A growing body of research has proposed neural envelope tracking as an objective measure of speech intelligibility, particularly for individuals unable to provide reliable behavioral feedback. However, its potential for evaluating speech intelligibility and hearing aid benefit in children with hearing loss remains unexplored. In this study, we investigated neural envelope tracking in children with permanent hearing loss through two separate experiments. EEG data were recorded while children listened to age-appropriate stories (Experiment 1) or an animated movie (Experiment 2) under aided and unaided conditions (using personal hearing aids) at multiple stimulus intensities. Neural envelope tracking was evaluated using a linear decoder reconstructing the speech envelope from the EEG in the delta band (0.5-4 Hz). Additionally, we calculated temporal response functions (TRFs) to investigate the spatio-temporal dynamics of the response. In both experiments, neural tracking increased with increasing stimulus intensity, but only in the unaided condition. In the aided condition, neural tracking remained stable across a wide range of intensities, as long as speech intelligibility was maintained. Similarly, TRF amplitudes increased with increasing stimulus intensity in the unaided condition, while in the aided condition significant differences were found in TRF latency rather than TRF amplitude. This suggests that decreasing stimulus intensity does not necessarily impact neural tracking. Furthermore, the use of personal hearing aids significantly enhanced neural envelope tracking, particularly in challenging speech conditions that would be inaudible when unaided. Finally, we found a strong correlation between neural envelope tracking and behaviorally measured speech intelligibility for both narrated stories (Experiment 1) and movie stimuli (Experiment 2). Altogether, these findings indicate that neural envelope tracking could be a valuable tool for predicting speech intelligibility benefits derived from personal hearing aids in hearing-impaired children. Incorporating narrated stories or engaging movies expands the accessibility of these methods even in clinical settings, offering new avenues for using objective speech measures to guide pediatric audiology decision-making.
Collapse
Affiliation(s)
- Tilde Van Hirtum
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Ben Somers
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Benjamin Dieudonné
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Eline Verschueren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Jan Wouters
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium
| | - Tom Francart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Oto-rhino-laryngology, Herestraat 49 bus 721, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Karunathilake ID, Kulasingham JP, Simon JZ. Neural Tracking Measures of Speech Intelligibility: Manipulating Intelligibility while Keeping Acoustics Unchanged. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.18.541269. [PMID: 37292644 PMCID: PMC10245672 DOI: 10.1101/2023.05.18.541269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Neural speech tracking has advanced our understanding of how our brains rapidly map an acoustic speech signal onto linguistic representations and ultimately meaning. It remains unclear, however, how speech intelligibility is related to the corresponding neural responses. Many studies addressing this question vary the level of intelligibility by manipulating the acoustic waveform, but this makes it difficult to cleanly disentangle effects of intelligibility from underlying acoustical confounds. Here, using magnetoencephalography (MEG) recordings, we study neural measures of speech intelligibility by manipulating intelligibility while keeping the acoustics strictly unchanged. Acoustically identical degraded speech stimuli (three-band noise vocoded, ~20 s duration) are presented twice, but the second presentation is preceded by the original (non-degraded) version of the speech. This intermediate priming, which generates a 'pop-out' percept, substantially improves the intelligibility of the second degraded speech passage. We investigate how intelligibility and acoustical structure affects acoustic and linguistic neural representations using multivariate Temporal Response Functions (mTRFs). As expected, behavioral results confirm that perceived speech clarity is improved by priming. TRF analysis reveals that auditory (speech envelope and envelope onset) neural representations are not affected by priming, but only by the acoustics of the stimuli (bottom-up driven). Critically, our findings suggest that segmentation of sounds into words emerges with better speech intelligibility, and most strongly at the later (~400 ms latency) word processing stage, in prefrontal cortex (PFC), in line with engagement of top-down mechanisms associated with priming. Taken together, our results show that word representations may provide some objective measures of speech comprehension.
Collapse
Affiliation(s)
| | | | - Jonathan Z. Simon
- Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
11
|
Gillis M, Vanthornhout J, Francart T. Heard or Understood? Neural Tracking of Language Features in a Comprehensible Story, an Incomprehensible Story and a Word List. eNeuro 2023; 10:ENEURO.0075-23.2023. [PMID: 37451862 DOI: 10.1523/eneuro.0075-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Speech comprehension is a complex neural process on which relies on activation and integration of multiple brain regions. In the current study, we evaluated whether speech comprehension can be investigated by neural tracking. Neural tracking is the phenomenon in which the brain responses time-lock to the rhythm of specific features in continuous speech. These features can be acoustic, i.e., acoustic tracking, or derived from the content of the speech using language properties, i.e., language tracking. We evaluated whether neural tracking of speech differs between a comprehensible story, an incomprehensible story, and a word list. We evaluated the neural responses to speech of 19 participants (six men). No significant difference regarding acoustic tracking was found. However, significant language tracking was only found for the comprehensible story. The most prominent effect was visible to word surprisal, a language feature at the word level. The neural response to word surprisal showed a prominent negativity between 300 and 400 ms, similar to the N400 in evoked response paradigms. This N400 was significantly more negative when the story was comprehended, i.e., when words could be integrated in the context of previous words. These results show that language tracking can capture the effect of speech comprehension.
Collapse
Affiliation(s)
- Marlies Gillis
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Jonas Vanthornhout
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| | - Tom Francart
- Experimental Oto-Rhino-Laryngology, Department of Neurosciences, Katholieke Universiteit Leuven, Leuven 3000, Belgium
| |
Collapse
|