1
|
Sohal VS. Transforming Discoveries About Cortical Microcircuits and Gamma Oscillations Into New Treatments for Cognitive Deficits in Schizophrenia. Am J Psychiatry 2022; 179:267-276. [PMID: 35360913 DOI: 10.1176/appi.ajp.20220147] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major cause of disability in schizophrenia is cognitive impairment, which remains largely refractory to existing treatments. This reflects the fact that antipsychotics and other therapies have not been designed to address specific brain abnormalities that cause cognitive impairment. This overview proposes that understanding how specific cellular and synaptic loci within cortical microcircuits contribute to cortical gamma oscillations may reveal treatments for cognitive impairment. Gamma oscillations are rhythmic patterns of high frequency (∼30-100 Hz) neuronal activity that are synchronized within and across brain regions, generated by a class of inhibitory interneurons that express parvalbumin, and recruited during a variety of cognitive tasks. In schizophrenia, both parvalbumin interneuron function and task-evoked gamma oscillations are deficient. While it has long been controversial whether gamma oscillations are merely a biomarker of circuit function or actually contribute to information processing by neuronal networks, recent neurobiological studies in mice have shown that disrupting or enhancing synchronized gamma oscillations can reproduce or ameliorate cognitive deficits resembling those seen in schizophrenia. In fact, transiently enhancing the synchrony of parvalbumin interneuron-generated gamma oscillations can lead to long-lasting improvements in cognition in mice that model aspects of schizophrenia. Gamma oscillations emerge from specific patterns of connections between a variety of cell types within cortical microcircuits. Thus, a critical next step is to understand how specific cell types and synapses generate gamma oscillations, mediate the effects of gamma oscillations on information processing, and/or undergo plasticity following the induction of gamma oscillations. Modulating these circuit loci, potentially in combination with other approaches such as cognitive training and brain stimulation, may yield potent and selective interventions for enhancing cognition in schizophrenia.
Collapse
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| |
Collapse
|
2
|
Petras K, Ten Oever S, Dalal SS, Goffaux V. Information redundancy across spatial scales modulates early visual cortical processing. Neuroimage 2021; 244:118613. [PMID: 34563683 PMCID: PMC8591375 DOI: 10.1016/j.neuroimage.2021.118613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/30/2021] [Accepted: 09/20/2021] [Indexed: 01/23/2023] Open
Abstract
Visual images contain redundant information across spatial scales where low spatial frequency contrast is informative towards the location and likely content of high spatial frequency detail. Previous research suggests that the visual system makes use of those redundancies to facilitate efficient processing. In this framework, a fast, initial analysis of low-spatial frequency (LSF) information guides the slower and later processing of high spatial frequency (HSF) detail. Here, we used multivariate classification as well as time-frequency analysis of MEG responses to the viewing of intact and phase scrambled images of human faces to demonstrate that the availability of redundant LSF information, as found in broadband intact images, correlates with a reduction in HSF representational dominance in both early and higher-level visual areas as well as a reduction of gamma-band power in early visual cortex. Our results indicate that the cross spatial frequency information redundancy that can be found in all natural images might be a driving factor in the efficient integration of fine image details.
Collapse
Affiliation(s)
- Kirsten Petras
- Psychological Sciences Research Institute (IPSY), UC Louvain, Belgium; Department of Cognitive Neuroscience, Maastricht University, the Netherlands.
| | - Sanne Ten Oever
- Department of Cognitive Neuroscience, Maastricht University, the Netherlands; Max Planck Institute for Psycholinguistics, the Netherlands; Donders Institute for Cognitive Neuroimaging, Radboud University, the Netherlands
| | - Sarang S Dalal
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
| | - Valerie Goffaux
- Psychological Sciences Research Institute (IPSY), UC Louvain, Belgium; Institute of Neuroscience (IONS), UC Louvain, Belgium; Department of Cognitive Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
3
|
Dynamic Protention: The Architecture of Real-Time Cognition for Future Events. Curr Top Behav Neurosci 2019. [PMID: 31041690 DOI: 10.1007/7854_2019_94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
For over 30 years now, a body of physiological evidence has been acquired which indicates that cognitive operations coordinate via the phase synchronization of neuronal firing. While usually ascribed to "binding," i.e., the putting together of basic perceptual features to form more complex perceptual units, this ascription is not without critics, who identify phase synchronization as a function of sensorimotor coordination. From the perspective of an experimental paradigm used to measure the effects of stimulus synchronization, we discuss what is "bound" and attempt a reconciliation between perceptual and sensorimotor accounts of oscillatory synchronization. Our evidence identifies a role for synchronization in protentive coding, this is to say, coding in anticipation of a future event, and hence describes the architecture of real-time cognition for future events.
Collapse
|
4
|
Thomschewski A, Hincapié AS, Frauscher B. Localization of the Epileptogenic Zone Using High Frequency Oscillations. Front Neurol 2019; 10:94. [PMID: 30804887 PMCID: PMC6378911 DOI: 10.3389/fneur.2019.00094] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/23/2019] [Indexed: 01/22/2023] Open
Abstract
For patients with drug-resistant focal epilepsy, surgery is the therapy of choice in order to achieve seizure freedom. Epilepsy surgery foremost requires the identification of the epileptogenic zone (EZ), defined as the brain area indispensable for seizure generation. The current gold standard for identification of the EZ is the seizure-onset zone (SOZ). The fact, however that surgical outcomes are unfavorable in 40-50% of well-selected patients, suggests that the SOZ is a suboptimal biomarker of the EZ, and that new biomarkers resulting in better postsurgical outcomes are needed. Research of recent years suggested that high-frequency oscillations (HFOs) are a promising biomarker of the EZ, with a potential to improve surgical success in patients with drug-resistant epilepsy without the need to record seizures. Nonetheless, in order to establish HFOs as a clinical biomarker, the following issues need to be addressed. First, evidence on HFOs as a clinically relevant biomarker stems predominantly from retrospective assessments with visual marking, leading to problems of reproducibility and reliability. Prospective assessments of the use of HFOs for surgery planning using automatic detection of HFOs are needed in order to determine their clinical value. Second, disentangling physiologic from pathologic HFOs is still an unsolved issue. Considering the appearance and the topographic location of presumed physiologic HFOs could be immanent for the interpretation of HFO findings in a clinical context. Third, recording HFOs non-invasively via scalp electroencephalography (EEG) and magnetoencephalography (MEG) is highly desirable, as it would provide us with the possibility to translate the use of HFOs to the scalp in a large number of patients. This article reviews the literature regarding these three issues. The first part of the article focuses on the clinical value of invasively recorded HFOs in localizing the EZ, the detection of HFOs, as well as their separation from physiologic HFOs. The second part of the article focuses on the current state of the literature regarding non-invasively recorded HFOs with emphasis on findings and technical considerations regarding their localization.
Collapse
Affiliation(s)
- Aljoscha Thomschewski
- Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
- Department of Psychology, Paris-Lodron University of Salzburg, Salzburg, Austria
| | - Ana-Sofía Hincapié
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Kloosterman NA, de Gee JW, Werkle-Bergner M, Lindenberger U, Garrett DD, Fahrenfort JJ. Humans strategically shift decision bias by flexibly adjusting sensory evidence accumulation. eLife 2019; 8:e37321. [PMID: 30724733 PMCID: PMC6365056 DOI: 10.7554/elife.37321] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
Decision bias is traditionally conceptualized as an internal reference against which sensory evidence is compared. Instead, we show that individuals implement decision bias by shifting the rate of sensory evidence accumulation toward a decision bound. Participants performed a target detection task while we recorded EEG. We experimentally manipulated participants' decision criterion for reporting targets using different stimulus-response reward contingencies, inducing either a liberal or a conservative bias. Drift diffusion modeling revealed that a liberal strategy biased sensory evidence accumulation toward target-present choices. Moreover, a liberal bias resulted in stronger midfrontal pre-stimulus 2-6 Hz (theta) power and suppression of pre-stimulus 8-12 Hz (alpha) power in posterior cortex. Alpha suppression in turn was linked to the output activity in visual cortex, as expressed through 59-100 Hz (gamma) power. These findings show that observers can intentionally control cortical excitability to strategically bias evidence accumulation toward the decision bound that maximizes reward.
Collapse
Affiliation(s)
- Niels A Kloosterman
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchMax Planck Institute for Human DevelopmentBerlinGermany
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Jan Willem de Gee
- Department of Neurophysiology and PathophysiologyUniversity Medical Center Hamburg-EppendorfHamburgGermany
- Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
| | - Markus Werkle-Bergner
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Ulman Lindenberger
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchMax Planck Institute for Human DevelopmentBerlinGermany
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing ResearchMax Planck Institute for Human DevelopmentBerlinGermany
- Center for Lifespan PsychologyMax Planck Institute for Human DevelopmentBerlinGermany
| | - Johannes Jacobus Fahrenfort
- Department of PsychologyUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Experimental and Applied PsychologyVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
6
|
Blanco-Elorrieta E, Ferreira VS, Del Prato P, Pylkkänen L. The priming of basic combinatory responses in MEG. Cognition 2017; 170:49-63. [PMID: 28942354 DOI: 10.1016/j.cognition.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Priming has been a powerful tool for the study of human memory and especially the memory representations relevant for language. However, although it is well established that lexical access can be primed, we do not know exactly what types of computations can be primed above the word level. This work took a neurobiological approach and assessed the ways in which the complex representation of a minimal combinatory phrase, such as red boat, can be primed, as evidenced by the spatiotemporal profiles of magnetoencephalography (MEG) signals. Specifically, we built upon recent progress on the neural signatures of phrasal composition and tested whether the brain activities implicated for the basic combination of two words could be primed. In two experiments, MEG was recorded during a picture naming task where the prime trials were designed to replicate previously reported combinatory effects and the target trials to test whether those combinatory effects could be primed. The manipulation of the primes was successful in eliciting larger activity for adjective-noun combinations than single nouns in left anterior temporal and ventromedial prefrontal cortices, replicating prior MEG studies on parallel contrasts. Priming of similarly timed activity was observed during target trials in anterior temporal cortex, but only when the prime and target shared an adjective. No priming in temporal cortex was observed for single word repetition and two control tasks showed that the priming effect was not elicited if the prime pictures were simply viewed but not named. In sum, this work provides evidence that very basic combinatory operations can be primed, with the necessity for some lexical overlap between prime and target suggesting combinatory conceptual, as opposed to syntactic processing. Both our combinatory and priming effects were early, onsetting between 100 and 150ms after picture onset and thus are likely to reflect the very earliest planning stages of a combinatory message. Thus our findings suggest that at the earliest stages of combinatory planning in production, a combinatory memory representation is formed that affects the planning of a relevantly similar combination on a subsequent trial.
Collapse
Affiliation(s)
- Esti Blanco-Elorrieta
- Department of Psychology, New York University, New York, NY 10003, USA; NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates
| | - Victor S Ferreira
- Department of Psychology, University of California, San Diego, La Jolla, CA 92093-0109, USA
| | - Paul Del Prato
- Department of Psychology, New York University, New York, NY 10003, USA
| | - Liina Pylkkänen
- Department of Psychology, New York University, New York, NY 10003, USA; NYUAD Institute, New York University Abu Dhabi, Abu Dhabi, P.O. Box 129188, United Arab Emirates; Department of Linguistics, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
Kampis D, Parise E, Csibra G, Kovács ÁM. On potential ocular artefacts in infant electroencephalogram: a reply to comments by Köster. Proc Biol Sci 2016; 283:rspb.2016.1285. [PMID: 27440669 PMCID: PMC4971214 DOI: 10.1098/rspb.2016.1285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 06/27/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Dora Kampis
- Department of Cognitive Science, Central European University, Budapest 1015, Hungary
| | - Eugenio Parise
- Department of Cognitive Science, Central European University, Budapest 1015, Hungary Department of Psychology, Flyde College, Lancaster University, Lancaster LA1 4YF, UK
| | - Gergely Csibra
- Department of Cognitive Science, Central European University, Budapest 1015, Hungary Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, UK
| | - Ágnes Melinda Kovács
- Department of Cognitive Science, Central European University, Budapest 1015, Hungary
| |
Collapse
|
8
|
Duffy FH, D'Angelo E, Rotenberg A, Gonzalez-Heydrich J. Neurophysiological differences between patients clinically at high risk for schizophrenia and neurotypical controls--first steps in development of a biomarker. BMC Med 2015; 13:276. [PMID: 26525736 PMCID: PMC4630963 DOI: 10.1186/s12916-015-0516-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Schizophrenia is a severe, disabling and prevalent mental disorder without cure and with a variable, incomplete pharmacotherapeutic response. Prior to onset in adolescence or young adulthood a prodromal period of abnormal symptoms lasting weeks to years has been identified and operationalized as clinically high risk (CHR) for schizophrenia. However, only a minority of subjects prospectively identified with CHR convert to schizophrenia, thereby limiting enthusiasm for early intervention(s). This study utilized objective resting electroencephalogram (EEG) quantification to determine whether CHR constitutes a cohesive entity and an evoked potential to assess CHR cortical auditory processing. METHODS This study constitutes an EEG-based quantitative neurophysiological comparison between two unmedicated subject groups: 35 neurotypical controls (CON) and 22 CHR patients. After artifact management, principal component analysis (PCA) identified EEG spectral and spectral coherence factors described by associated loading patterns. Discriminant function analysis (DFA) determined factors' discrimination success between subjects in the CON and CHR groups. Loading patterns on DFA-selected factors described CHR-specific spectral and coherence differences when compared to controls. The frequency modulated auditory evoked response (FMAER) explored functional CON-CHR differences within the superior temporal gyri. RESULTS Variable reduction by PCA identified 40 coherence-based factors explaining 77.8% of the total variance and 40 spectral factors explaining 95.9% of the variance. DFA demonstrated significant CON-CHR group difference (P <0.00001) and successful jackknifed subject classification (CON, 85.7%; CHR, 86.4% correct). The population distribution plotted along the canonical discriminant variable was clearly bimodal. Coherence factors delineated loading patterns of altered connectivity primarily involving the bilateral posterior temporal electrodes. However, FMAER analysis showed no CON-CHR group differences. CONCLUSIONS CHR subjects form a cohesive group, significantly separable from CON subjects by EEG-derived indices. Symptoms of CHR may relate to altered connectivity with the posterior temporal regions but not to primary auditory processing abnormalities within these regions.
Collapse
Affiliation(s)
- Frank H Duffy
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Eugene D'Angelo
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Alexander Rotenberg
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| | - Joseph Gonzalez-Heydrich
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
9
|
Elliott MA. Atemporal equilibria: pro- and retroactive coding in the dynamics of cognitive microstructures. Front Psychol 2014; 5:990. [PMID: 25309474 PMCID: PMC4162370 DOI: 10.3389/fpsyg.2014.00990] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 11/29/2022] Open
Abstract
Synchronization of spatially distributed neural assemblies at frequencies in the range 30-70 Hz (the "gamma" band) may be instrumental in grouping stimulus features. In agreement with this we have shown that detection reaction times to a grouping target stimulus are expedited when the stimulus is preceded by repeated presentation of a priming stimulus, presented below detection thresholds in a matrix that flickers at particular frequencies in the 27-68 Hz range. This dynamic priming effect can be partly explained as a function of the return phase of the priming stimulus relative to the premask matrix, indicating one of the primary consequences of repeating stimulation is pre-activation of a priming response relative to prime-stimulus presentation. However, this cannot entirely explain the relationship that develops between the timing of stimulus events (in this instance the time of target relative to priming-stimulus presentations) and response. By varying the frequency and phase of priming-stimulus and target presentations we discovered that given a particular relationship between the phase of target presentation relative to the return phase of the prime, target coding is expedited by a prime that achieves its maximum activation at a phase that would precede priming-stimulus presentation by several tens of milliseconds. However, and in addition, the cognition concerned is flexible enough to be able to achieve an identical prime retroactively, that is to say at a phase during or subsequent to priming-stimulus presentation. This occurs because of a different relationship between the phase of target presentation (defined relative to prime frequency) and the frequency of premask-matrix presentation. On this basis, it can be concluded that by virtue of the relationship between its dynamics and the timing of stimulus events, microstructural cognition functions in a temporal context that can shift from past to future states. Consequently and at the lowest level of psychological function, the conventional, one-dimensional model of time flow-from future to past states does not fully explain how cognition can function. In fact depending upon the interaction in phase between different coding frequencies, the same form of cognition can anticipate or retroactively code events. Consequently, and in so far as our cognition at this level provides a content structure for consciousness, our psychological lives may be fundamentally based upon the ability of our cognitive states to travel backwards and forwards across very short intervals of time.
Collapse
Affiliation(s)
- Mark A. Elliott
- School of Psychology, National University of Ireland GalwayGalway, Ireland
| |
Collapse
|
10
|
Pitts MA, Padwal J, Fennelly D, Martínez A, Hillyard SA. Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 2014; 101:337-50. [PMID: 25063731 DOI: 10.1016/j.neuroimage.2014.07.024] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/20/2014] [Accepted: 07/13/2014] [Indexed: 11/18/2022] Open
Abstract
A primary goal in cognitive neuroscience is to identify neural correlates of conscious perception (NCC). By contrasting conditions in which subjects are aware versus unaware of identical visual stimuli, a number of candidate NCCs have emerged; among them are induced gamma band activity in the EEG and the P3 event-related potential. In most previous studies, however, the critical stimuli were always directly relevant to the subjects' task, such that aware versus unaware contrasts may well have included differences in post-perceptual processing in addition to differences in conscious perception per se. Here, in a series of EEG experiments, visual awareness and task relevance were manipulated independently. Induced gamma activity and the P3 were absent for task-irrelevant stimuli regardless of whether subjects were aware of such stimuli. For task-relevant stimuli, gamma and the P3 were robust and dissociable, indicating that each reflects distinct post-perceptual processes necessary for carrying-out the task but not for consciously perceiving the stimuli. Overall, this pattern of results challenges a number of previous proposals linking gamma band activity and the P3 to conscious perception.
Collapse
Affiliation(s)
- Michael A Pitts
- Department of Psychology, Reed College, Portland, OR 97202, USA.
| | - Jennifer Padwal
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel Fennelly
- Department of Psychology, Reed College, Portland, OR 97202, USA
| | - Antígona Martínez
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Steven A Hillyard
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Chen CMA, Stanford AD, Mao X, Abi-Dargham A, Shungu DC, Lisanby SH, Schroeder CE, Kegeles LS. GABA level, gamma oscillation, and working memory performance in schizophrenia. NEUROIMAGE-CLINICAL 2014; 4:531-9. [PMID: 24749063 PMCID: PMC3989525 DOI: 10.1016/j.nicl.2014.03.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 01/05/2023]
Abstract
A relationship between working memory impairment, disordered neuronal oscillations, and abnormal prefrontal GABA function has been hypothesized in schizophrenia; however, in vivo GABA measurements and gamma band neural synchrony have not yet been compared in schizophrenia. This case–control pilot study (N = 24) compared baseline and working memory task-induced neuronal oscillations acquired with high-density electroencephalograms (EEGs) to GABA levels measured in vivo with magnetic resonance spectroscopy. Working memory performance, baseline GABA level in the left dorsolateral prefrontal cortex (DLPFC), and measures of gamma oscillations from EEGs at baseline and during a working memory task were obtained. A major limitation of this study is a relatively small sample size for several analyses due to the integration of diverse methodologies and participant compliance. Working memory performance was significantly lower for patients than for controls. During the working memory task, patients (n = 7) had significantly lower amplitudes in gamma oscillations than controls (n = 9). However, both at rest and across working memory stages, there were significant correlations between gamma oscillation amplitude and left DLPFC GABA level. Peak gamma frequency during the encoding stage of the working memory task (n = 16) significantly correlated with GABA level and working memory performance. Despite gamma band amplitude deficits in patients across working memory stages, both baseline and working memory-induced gamma oscillations showed strong dependence on baseline GABA levels in patients and controls. These findings suggest a critical role for GABA function in gamma band oscillations, even under conditions of system and cognitive impairments as seen in schizophrenia. We compared in vivo GABA measures and gamma band oscillations in schizophrenia. Correlations between left DLPFC GABA and gamma amplitude were significant. Peak gamma frequency significantly correlated with GABA and performance. Patients had significantly lower amplitudes in gamma oscillations than controls. Working memory performance was significantly lower for patients than for controls.
Collapse
Affiliation(s)
- Chi-Ming A Chen
- Department of Psychology, University of Connecticut, 406 Babbidge Road, Storrs, CT 06269, USA
| | - Arielle D Stanford
- Department of Psychiatry, Institute for the Neurosciences, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Xiangling Mao
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, USA
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, the New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA ; Department of Radiology, Columbia University, College of Physicians and Surgeons, The New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| | - Dikoma C Shungu
- Department of Radiology, Citigroup Biomedical Imaging Center, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Trent Drive and Erwin Road, Durham, NC 27710, USA
| | - Charles E Schroeder
- Cognitive Neuroscience and Schizophrenia Program, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Lawrence S Kegeles
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, the New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA ; Department of Radiology, Columbia University, College of Physicians and Surgeons, The New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|
12
|
Abstract
To understand dynamic cognitive processes, the high time resolution of EEG/MEG is invaluable. EEG/MEG signals can play an important role in providing measures of functional and effective connectivity in the brain. After a brief description of the foundations and basic methodological aspects of EEG/MEG signals, the relevance of the signals to obtain novel insights into the neuronal mechanisms underlying cognitive processes is surveyed, with emphasis on neuronal oscillations (ultra-slow, theta, alpha, beta, gamma, and HFOs) and combinations of oscillations. Three main functional roles of brain oscillations are put in evidence: (1) coding specific information, (2) setting and modulating brain attentional states, and (3) assuring the communication between neuronal populations such that specific dynamic workspaces may be created. The latter form the material core of cognitive functions.
Collapse
Affiliation(s)
- Fernando Lopes da Silva
- Center of Neuroscience, Swammerdam Institute for Life Sciences, Science Park 904, Kamer C3.274, 1098XH Amsterdam, the Netherlands; Instituto Superior Técnico, University of Lisbon, 1049-001 Lisbon, Portugal.
| |
Collapse
|
13
|
Muthukumaraswamy SD, Myers JFM, Wilson SJ, Nutt DJ, Hamandi K, Lingford-Hughes A, Singh KD. Elevating endogenous GABA levels with GAT-1 blockade modulates evoked but not induced responses in human visual cortex. Neuropsychopharmacology 2013; 38:1105-12. [PMID: 23361120 PMCID: PMC3629410 DOI: 10.1038/npp.2013.9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/13/2012] [Accepted: 11/26/2012] [Indexed: 02/01/2023]
Abstract
The electroencephalographic/magnetoencephalographic (EEG/MEG) signal is generated primarily by the summation of the postsynaptic currents of cortical principal cells. At a microcircuit level, these glutamatergic principal cells are reciprocally connected to GABAergic interneurons. Here we investigated the relative sensitivity of visual evoked and induced responses to altered levels of endogenous GABAergic inhibition. To do this, we pharmacologically manipulated the GABA system using tiagabine, which blocks the synaptic GABA transporter 1, and so increases endogenous GABA levels. In a single-blinded and placebo-controlled crossover study of 15 healthy participants, we administered either 15 mg of tiagabine or a placebo. We recorded whole-head MEG, while participants viewed a visual grating stimulus, before, 1, 3 and 5 h post tiagabine ingestion. Using beamformer source localization, we reconstructed responses from early visual cortices. Our results showed no change in either stimulus-induced gamma-band amplitude increases or stimulus-induced alpha amplitude decreases. However, the same data showed a 45% reduction in the evoked response component at ∼80 ms. These data demonstrate that, in early visual cortex the evoked response shows a greater sensitivity compared with induced oscillations to pharmacologically increased endogenous GABA levels. We suggest that previous studies correlating GABA concentrations as measured by magnetic resonance spectroscopy to gamma oscillation frequency may reflect underlying variations such as interneuron/inhibitory synapse density rather than functional synaptic GABA concentrations.
Collapse
|
14
|
Chen Y, Pan F, Wang H, Xiao S, Zhao L. Electrophysiological correlates of processing own- and other-race faces. Brain Topogr 2013; 26:606-15. [PMID: 23584931 DOI: 10.1007/s10548-013-0286-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/30/2013] [Indexed: 10/27/2022]
Abstract
Most adults have more experience in identifying faces of their own race than in identifying faces from another race, and thus may be considered as own-race face experts. This effect was investigated by recording and analyzing ERPs as well as induced gamma oscillations. The race modulation occurred post the stage of structural processing revealed by N170. Larger P2 component and induced gamma activity for own-race than other-race faces could be associated with more elaborate processing on the basis of configural computation due to more experience that we have for own-race faces.
Collapse
Affiliation(s)
- Yan Chen
- School of Education Science, Nantong University, Nantong, China
| | | | | | | | | |
Collapse
|
15
|
Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, Jerbi K, Litvak V, Maess B, Oostenveld R, Parkkonen L, Taylor JR, van Wassenhove V, Wibral M, Schoffelen JM. Good practice for conducting and reporting MEG research. Neuroimage 2013; 65:349-63. [PMID: 23046981 PMCID: PMC3925794 DOI: 10.1016/j.neuroimage.2012.10.001] [Citation(s) in RCA: 443] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 08/23/2012] [Accepted: 10/01/2012] [Indexed: 11/20/2022] Open
Abstract
Magnetoencephalographic (MEG) recordings are a rich source of information about the neural dynamics underlying cognitive processes in the brain, with excellent temporal and good spatial resolution. In recent years there have been considerable advances in MEG hardware developments and methods. Sophisticated analysis techniques are now routinely applied and continuously improved, leading to fascinating insights into the intricate dynamics of neural processes. However, the rapidly increasing level of complexity of the different steps in a MEG study make it difficult for novices, and sometimes even for experts, to stay aware of possible limitations and caveats. Furthermore, the complexity of MEG data acquisition and data analysis requires special attention when describing MEG studies in publications, in order to facilitate interpretation and reproduction of the results. This manuscript aims at making recommendations for a number of important data acquisition and data analysis steps and suggests details that should be specified in manuscripts reporting MEG studies. These recommendations will hopefully serve as guidelines that help to strengthen the position of the MEG research community within the field of neuroscience, and may foster discussion in order to further enhance the quality and impact of MEG research.
Collapse
Affiliation(s)
- Joachim Gross
- Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia 2012; 51:349-57. [PMID: 23084981 DOI: 10.1016/j.neuropsychologia.2012.10.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/28/2012] [Accepted: 10/07/2012] [Indexed: 11/23/2022]
Abstract
Working memory (WM) processes help keep information in an active state so it can be used to guide future behavior. Although numerous studies have investigated brain activity associated with spatial WM in humans and monkeys, little research has focused on the neural mechanisms of WM for temporal order information, and how processing of temporal and spatial information might differ. Available evidence indicates that similar frontoparietal regions are recruited during temporal and spatial WM, although there are data suggesting that they are distinct processes. The mechanisms that allow for differential maintenance of these two types of information are unclear. One possibility is that neural oscillations may differentially contribute to temporal and spatial WM. In the present study, we used scalp electroencephalography (EEG) to compare patterns of oscillatory activity during maintenance of spatial and temporal information in WM. Time-frequency analysis of EEG data revealed enhanced left frontal theta (5-8 Hz), enhanced posterior alpha (9-12 Hz), and enhanced left posterior beta (14-28 Hz) power during the delay period of correct temporal order trials compared to correct spatial trials. In contrast, gamma (30-50 Hz) power at right lateral frontal sites was increased during the delay period of spatial WM trials, as compared to temporal WM trials. The present results are consistent with the idea that neural oscillatory patterns provide distinct mechanisms for the maintenance of temporal and spatial information in WM. Specifically, theta oscillations are most critical for the maintenance of temporal information in WM. Possible roles of higher frequency oscillations in temporal and spatial memory are also discussed.
Collapse
|
17
|
Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 2012; 98:265-78. [PMID: 22420981 DOI: 10.1016/j.pneurobio.2012.02.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions.
Collapse
|
18
|
Increased phase synchronization during continuous face integration measured simultaneously with EEG and fMRI. Clin Neurophysiol 2012; 123:1536-48. [PMID: 22305306 DOI: 10.1016/j.clinph.2011.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/30/2011] [Accepted: 12/21/2011] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Gamma zero-lag phase synchronization has been measured in the animal brain during visual binding. Human scalp EEG studies used a phase locking factor (trial-to-trial phase-shift consistency) or gamma amplitude to measure binding but did not analyze common-phase signals so far. This study introduces a method to identify networks oscillating with near zero-lag phase synchronization in human subjects. METHODS We presented unpredictably moving face parts (NOFACE) which - during some periods - produced a complete schematic face (FACE). The amount of zero-lag phase synchronization was measured using global field synchronization (GFS). GFS provides global information on the amount of instantaneous coincidences in specific frequencies throughout the brain. RESULTS Gamma GFS was increased during the FACE condition. To localize the underlying areas, we correlated gamma GFS with simultaneously recorded BOLD responses. Positive correlates comprised the bilateral middle fusiform gyrus and the left precuneus. CONCLUSIONS These areas may form a network of areas transiently synchronized during face integration, including face-specific as well as binding-specific regions and regions for visual processing in general. SIGNIFICANCE Thus, the amount of zero-lag phase synchronization between remote regions of the human visual system can be measured with simultaneously acquired EEG/fMRI.
Collapse
|
19
|
Caplan D, Gow D. Effects of tasks on BOLD signal responses to sentence contrasts: Review and commentary. BRAIN AND LANGUAGE 2012; 120:174-186. [PMID: 20932562 PMCID: PMC3020235 DOI: 10.1016/j.bandl.2010.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 06/05/2010] [Accepted: 08/03/2010] [Indexed: 05/30/2023]
Abstract
Functional neuroimaging studies of syntactic processing have been interpreted as identifying the neural locations of parsing and interpretive operations. However, current behavioral studies of sentence processing indicate that many operations occur simultaneously with parsing and interpretation. In this review, we point to issues that arise in discriminating the effects of these concurrent processes from those of the parser/interpreter in neural measures and to approaches that may help resolve them.
Collapse
Affiliation(s)
- David Caplan
- Neuropsychology Laboratory, Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
20
|
Abstract
The temporal dynamics and anatomical correlates underlying human visual cognition are traditionally assessed as a function of stimulus properties and task demands. Any non-stimulus related activity is commonly dismissed as noise and eliminated to extract an evoked signal that is only a small fraction of the magnitude of the measured signal. We review studies that challenge this view by showing that non-stimulus related activity is not mere noise but that it has a well-structured organization which can largely determine the processing of upcoming stimuli. We review recent evidence from human electrophysiology that shows how different aspects of pre-stimulus activity such as pre-stimulus EEG frequency power and phase and pre-stimulus EEG microstates can determine qualitative and quantitative properties of both lower and higher-level visual processing. These studies show that low-level sensory processes depend on the momentary excitability of sensory cortices whereas perceptual processes leading to stimulus awareness depend on momentary pre-stimulus activity in higher-level non-visual brain areas. Also speed and accuracy of stimulus identification have likewise been shown to be modulated by pre-stimulus brain states.
Collapse
Affiliation(s)
- Juliane Britz
- Functional Brain Mapping Laboratory, Department of Fundamental Neuroscience and Clinic of Neurology, University Medical School and University Hospital of Geneva Geneva, Switzerland
| | | |
Collapse
|
21
|
Morgan HM, Muthukumaraswamy SD, Hibbs CS, Shapiro KL, Bracewell RM, Singh KD, Linden DEJ. Feature integration in visual working memory: parietal gamma activity is related to cognitive coordination. J Neurophysiol 2011; 106:3185-94. [PMID: 21940605 PMCID: PMC3234082 DOI: 10.1152/jn.00246.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which distinct subprocesses in the brain are coordinated is a central conundrum of systems neuroscience. The parietal lobe is thought to play a key role in visual feature integration, and oscillatory activity in the gamma frequency range has been associated with perception of coherent objects and other tasks requiring neural coordination. Here, we examined the neural correlates of integrating mental representations in working memory and hypothesized that parietal gamma activity would be related to the success of cognitive coordination. Working memory is a classic example of a cognitive operation that requires the coordinated processing of different types of information and the contribution of multiple cognitive domains. Using magnetoencephalography (MEG), we report parietal activity in the high gamma (80–100 Hz) range during manipulation of visual and spatial information (colors and angles) in working memory. This parietal gamma activity was significantly higher during manipulation of visual-spatial conjunctions compared with single features. Furthermore, gamma activity correlated with successful performance during the conjunction task but not during the component tasks. Cortical gamma activity in parietal cortex may therefore play a role in cognitive coordination.
Collapse
Affiliation(s)
- Helen M Morgan
- Wolfson Centre for Clinical and Cognitive Neuroscience, School of Psychology, Bangor University, Bangor, LL57 2AS, UK.
| | | | | | | | | | | | | |
Collapse
|
22
|
Minami T, Goto K, Kitazaki M, Nakauchi S. Effects of color information on face processing using event-related potentials and gamma oscillations. Neuroscience 2011; 176:265-73. [DOI: 10.1016/j.neuroscience.2010.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
|
23
|
Wang XJ. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 2010; 90:1195-268. [PMID: 20664082 DOI: 10.1152/physrev.00035.2008] [Citation(s) in RCA: 1211] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Synchronous rhythms represent a core mechanism for sculpting temporal coordination of neural activity in the brain-wide network. This review focuses on oscillations in the cerebral cortex that occur during cognition, in alert behaving conditions. Over the last two decades, experimental and modeling work has made great strides in elucidating the detailed cellular and circuit basis of these rhythms, particularly gamma and theta rhythms. The underlying physiological mechanisms are diverse (ranging from resonance and pacemaker properties of single cells to multiple scenarios for population synchronization and wave propagation), but also exhibit unifying principles. A major conceptual advance was the realization that synaptic inhibition plays a fundamental role in rhythmogenesis, either in an interneuronal network or in a reciprocal excitatory-inhibitory loop. Computational functions of synchronous oscillations in cognition are still a matter of debate among systems neuroscientists, in part because the notion of regular oscillation seems to contradict the common observation that spiking discharges of individual neurons in the cortex are highly stochastic and far from being clocklike. However, recent findings have led to a framework that goes beyond the conventional theory of coupled oscillators and reconciles the apparent dichotomy between irregular single neuron activity and field potential oscillations. From this perspective, a plethora of studies will be reviewed on the involvement of long-distance neuronal coherence in cognitive functions such as multisensory integration, working memory, and selective attention. Finally, implications of abnormal neural synchronization are discussed as they relate to mental disorders like schizophrenia and autism.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
24
|
Nottage JF. Uncovering Gamma in Visual Tasks. Brain Topogr 2009; 23:58-71. [DOI: 10.1007/s10548-009-0129-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 12/03/2009] [Indexed: 11/28/2022]
|
25
|
Stimulus-induced and state-dependent sustained gamma activity is tightly coupled to the hemodynamic response in humans. J Neurosci 2009; 29:13962-70. [PMID: 19890006 DOI: 10.1523/jneurosci.1402-09.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A prompt behavioral response to a stimulus depends both on the salience of the stimulus as well as the subject's preparedness. Thus, both stimulus properties and cognitive factors, such as attention, may determine the strength of neuronal synchronization in the gamma range. For a comprehensive investigation of stimulus-response processing through noninvasive imaging, it is, however, a crucial issue whether both kinds of gamma modulation elicit a hemodynamic response. Here, we show that, in the human visual cortex, stimulus strength and internal state modulate sustained gamma activity and hemodynamic response in close correspondence. When participants reported velocity changes of gratings varying in contrast, gamma activity (35-70 Hz) increased systematically with contrast. For stimuli of constant contrast, the amplitude of gamma activity before the behaviorally relevant velocity change was inversely correlated to the behavioral response latency. This indicates that gamma activity also reflects an overall attentive state. For both sources of variance, gamma activity was tightly coupled to the hemodynamic response measured through optical topography. Because of the close relationship between high-frequency neuronal activity and the hemodynamic signal, we conclude that both stimulus-induced and state-dependent gamma activity trigger a metabolic demand and are amenable to vascular-based imaging.
Collapse
|
26
|
Martinez-Conde S, Macknik SL, Troncoso XG, Hubel DH. Microsaccades: a neurophysiological analysis. Trends Neurosci 2009; 32:463-75. [PMID: 19716186 DOI: 10.1016/j.tins.2009.05.006] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 11/16/2022]
Abstract
Microsaccades are the largest and fastest of the fixational eye movements, which are involuntary eye movements produced during attempted visual fixation. In recent years, the interaction between microsaccades, perception and cognition has become one of the most rapidly growing areas of study in visual neuroscience. The neurophysiological consequences of microsaccades have been the focus of less attention, however, as have the oculomotor mechanisms that generate and control microsaccades. Here we review the latest neurophysiological findings concerning microsaccades and discuss their relationships to perception and cognition. We also point out the current gaps in our understanding of the neurobiology of microsaccades and identify the most promising lines of enquiry.
Collapse
|
27
|
Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 2009; 29:9481-9. [PMID: 19641111 DOI: 10.1523/jneurosci.1428-09.2009] [Citation(s) in RCA: 232] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Impairments in working memory (WM) are a core cognitive deficit in schizophrenia. Neurophysiological models suggest that deficits during WM maintenance in schizophrenia may be explained by abnormalities in the GABAergic system, which will lead to deficits in high-frequency oscillations. However, it is not yet clear which of the three WM phases (encoding, maintenance, retrieval) are affected by dysfunctional oscillatory activity. We investigated the relationship between impairments in oscillatory activity in a broad frequency range (3-100 Hz) and WM load in the different phases of WM in 14 patients with early-onset schizophrenia and 14 matched control participants using a delayed matching to sample paradigm. During encoding, successful memorization was predicted by evoked theta, alpha, and beta oscillatory activity in controls. Patients showed severe reductions in the evoked activity in these frequency bands. During early WM maintenance, patients showed a comparable WM load-dependent increase in induced alpha and gamma activity to controls. In contrast, during the later maintenance phase, patients showed a shift in the peak of induced gamma activity to the lower WM load conditions. Finally, induced theta and gamma activity were reduced in patients during retrieval. Our findings suggest that the WM deficit in schizophrenia is associated with impaired oscillatory activity during all phases of the task and that the cortical storage system reaches its capacity limit at lower loads. Inability to maintain oscillatory activity in specific frequency bands could thus result in the information overload that may underlie both cognitive deficits and psychopathological symptoms of schizophrenia.
Collapse
|
28
|
Rolfs M. Microsaccades: small steps on a long way. Vision Res 2009; 49:2415-41. [PMID: 19683016 DOI: 10.1016/j.visres.2009.08.010] [Citation(s) in RCA: 281] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 08/03/2009] [Accepted: 08/07/2009] [Indexed: 12/01/2022]
Abstract
Contrary to common wisdom, fixations are a dynamically rich behavior, composed of continual, miniature eye movements, of which microsaccades are the most salient component. Over the last few years, interest in these small movements has risen dramatically, driven by both neurophysiological and psychophysical results and by advances in techniques, analysis, and modeling of eye movements. The field has a long history but a significant portion of the earlier work has gone missing in the current literature, in part, as a result of the collapse of the field in the 1980s that followed a series of discouraging results. The present review compiles 60 years of work demonstrating the unique contribution of microsaccades to visual and oculomotor function. Specifically, the review covers the contribution of microsaccades to (1) the control of fixation position, (2) the reduction of perceptual fading and the continuity of perception, (3) the generation of synchronized visual transients, (4) visual acuity, (5) scanning of small spatial regions, (6) shifts of spatial attention, (7) resolving perceptual ambiguities in the face of multistable perception, as well as several other functions. The accumulated evidence demonstrates that microsaccades serve both perceptual and oculomotor goals and although in some cases their contribution is neither necessary nor unique, microsaccades are a malleable tool conveniently employed by the visual system.
Collapse
Affiliation(s)
- Martin Rolfs
- Université Paris Descartes, Laboratoire Psychologie de la Perception, 75006 Paris, France.
| |
Collapse
|
29
|
Melloni L, Schwiedrzik CM, Rodriguez E, Singer W. (Micro)Saccades, corollary activity and cortical oscillations. Trends Cogn Sci 2009; 13:239-45. [PMID: 19428286 DOI: 10.1016/j.tics.2009.03.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/20/2009] [Accepted: 03/27/2009] [Indexed: 11/24/2022]
Abstract
In natural vision, attention and eye movements are linked. Furthermore, eye movements structure the inflow of information into the visual system. Saccades, where little vision occurs, alternate with fixations, when most vision occurs. A mechanism must be in place to maximize information intake during fixations. Oscillatory synchrony has been proposed as a mechanism for rapid and reliable communication of signals, subserving cognitive functions such as attention and object identification. We propose that saccade-related corollary activity has a crucial role in anticipatory preparation of visual centers, which interacts with ongoing oscillation, favoring the processing of postfixational signals. During prolonged fixations, microsaccades could be generated to exploit this mechanism. Studying this interplay between the sensory and the motor system will provide novel insight into the dynamics of natural vision.
Collapse
Affiliation(s)
- Lucia Melloni
- Max Planck Institute for Brain Research, Department of Neurophysiology, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|