1
|
Li G, Brumback BD, Huang L, Zhang DM, Yin T, Lipovsky CE, Hicks SC, Jimenez J, Boyle PM, Rentschler SL. Acute Glycogen Synthase Kinase-3 Inhibition Modulates Human Cardiac Conduction. JACC Basic Transl Sci 2022; 7:1001-1017. [PMID: 36337924 PMCID: PMC9626903 DOI: 10.1016/j.jacbts.2022.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/14/2023]
Abstract
Glycogen synthase kinase 3 (GSK-3) inhibition has emerged as a potential therapeutic target for several diseases, including cancer. However, the role for GSK-3 regulation of human cardiac electrophysiology remains ill-defined. We demonstrate that SB216763, a GSK-3 inhibitor, can acutely reduce conduction velocity in human cardiac slices. Combined computational modeling and experimental approaches provided mechanistic insight into GSK-3 inhibition-mediated changes, revealing that decreased sodium-channel conductance and tissue conductivity may underlie the observed phenotypes. Our study demonstrates that GSK-3 inhibition in human myocardium alters electrophysiology and may predispose to an arrhythmogenic substrate; therefore, monitoring for adverse arrhythmogenic events could be considered.
Collapse
Key Words
- ABC, active β-catenin
- APD, action potential duration
- BDM, 2,3-butanedione monoxime
- CV, conduction velocity
- Cx43, connexin 43
- GNa, sodium-channel conductance
- GOF, gain of function
- GSK-3 inhibitor
- GSK-3, glycogen synthase kinase 3
- INa, sodium current
- LV, left ventricle
- NaV1.5, pore-forming α-subunit protein of the voltage-gated cardiac sodium channel
- PCR, polymerase chain reaction
- RMP, resting membrane potential
- RT-qPCR, reverse transcription-quantitative polymerase chain reaction
- SB2, SB216763
- SB216763
- cDNA, complementary DNA
- dVm/dtmax, maximum upstroke velocity
- electrophysiology
- human cardiac slices
Collapse
Affiliation(s)
- Gang Li
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
| | - Brittany D. Brumback
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
| | - Lei Huang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - David M. Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Catherine E. Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Stephanie C. Hicks
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Jesus Jimenez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
| | - Patrick M. Boyle
- Department of Bioengineering, Center for Cardiovascular Biology, and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine in St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University McKelvey School of Engineering in St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, Missouri, USA
| |
Collapse
|
2
|
Lee J, Lee CW, Jang Y, You JS, Park YS, Ji E, Yu H, Oh S, Ryoo HA, Cho N, Park JY, Yoon J, Baek JH, Park HY, Ha TH, Myung W. Efficacy and safety of daily home-based transcranial direct current stimulation as adjunct treatment for bipolar depressive episodes: Double-blind sham-controlled randomized clinical trial. Front Psychiatry 2022; 13:969199. [PMID: 36203828 PMCID: PMC9530445 DOI: 10.3389/fpsyt.2022.969199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background Although transcranial direct current stimulation (tDCS) is known to be a promising therapeutic modality for unipolar depression, the efficacy and safety of tDCS for bipolar depressive episodes (BD) are still unknown and clinical trials of home-based tDCS treatment are scarce. As a result, we set out to investigate the efficacy and safety of home-based tDCS for the treatment BD. Methods Participants (n = 64), diagnosed as bipolar disorder as per the diagnostic and statistical manual of mental disorders (DSM-5), were randomly assigned to receive tDCS. Hamilton Depression Rating Scale (HDRS-17) scores were measured at the baseline, week 2, 4, and 6, and home-based tDCS (for 30 min with 2 mA) was self-administered daily. Results Of the 64 patients (15.6% bipolar disorder I, 84.4% bipolar disorder II), 41 patients completed the entire assessment. In the intention-to-treat analysis, time-group interaction for the HDRS-17 [F (3, 146.36) = 2.060; p = 0.108] and adverse effect differences between two groups were not statistically significant, except the pain score, which was higher in the active group than the sham group (week 0-2: p < 0.01, week 2-4: p < 0.05, and week 4-6: p < 0.01). Conclusion Even though we found no evidence for the efficacy of home-based tDCS for patients with BD, this tool was found to be a safe and tolerable treatment modality for BD. Clinical trial registration [https://clinicaltrials.gov/show/NCT03974815], identifier [NCT03974815].
Collapse
Affiliation(s)
- Jangwon Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Chan Woo Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yoonjeong Jang
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Ji Seon You
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Yun Seong Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Eunjeong Ji
- Medical Research Collaborating Centre, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Hyeona Yu
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Sunghee Oh
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Hyun A. Ryoo
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Nayoung Cho
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Ji Yoon Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Joohyun Yoon
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Ji Hyun Baek
- Department of Psychiatry, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Youn Park
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Tae Hyon Ha
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seoul, South Korea
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Martinez-Espinosa PL, Yang C, Xia XM, Lingle CJ. Nav1.3 and FGF14 are primary determinants of the TTX-sensitive sodium current in mouse adrenal chromaffin cells. J Gen Physiol 2021; 153:211839. [PMID: 33651884 PMCID: PMC8020717 DOI: 10.1085/jgp.202012785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
Adrenal chromaffin cells (CCs) in rodents express rapidly inactivating, tetrodotoxin (TTX)-sensitive sodium channels. The resulting current has generally been attributed to Nav1.7, although a possible role for Nav1.3 has also been suggested. Nav channels in rat CCs rapidly inactivate via two independent pathways which differ in their time course of recovery. One subpopulation recovers with time constants similar to traditional fast inactivation and the other ∼10-fold slower, but both pathways can act within a single homogenous population of channels. Here, we use Nav1.3 KO mice to probe the properties and molecular components of Nav current in CCs. We find that the absence of Nav1.3 abolishes all Nav current in about half of CCs examined, while a small, fast inactivating Nav current is still observed in the rest. To probe possible molecular components underlying slow recovery from inactivation, we used mice null for fibroblast growth factor homology factor 14 (FGF14). In these cells, the slow component of recovery from fast inactivation is completely absent in most CCs, with no change in the time constant of fast recovery. The use dependence of Nav current reduction during trains of stimuli in WT cells is completely abolished in FGF14 KO mice, directly demonstrating a role for slow recovery from inactivation in determining Nav current availability. Our results indicate that FGF14-mediated inactivation is the major determinant defining use-dependent changes in Nav availability in CCs. These results establish that Nav1.3, like other Nav isoforms, can also partner with FGF subunits, strongly regulating Nav channel function.
Collapse
Affiliation(s)
| | - Chengtao Yang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Christopher J Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
4
|
Neurological Disorders and Risk of Arrhythmia. Int J Mol Sci 2020; 22:ijms22010188. [PMID: 33375447 PMCID: PMC7795827 DOI: 10.3390/ijms22010188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023] Open
Abstract
Neurological disorders including depression, anxiety, post-traumatic stress disorder (PTSD), schizophrenia, autism and epilepsy are associated with an increased incidence of cardiovascular disorders and susceptibility to heart failure. The underlying molecular mechanisms that link neurological disorders and adverse cardiac function are poorly understood. Further, a lack of progress is likely due to a paucity of studies that investigate the relationship between neurological disorders and cardiac electrical activity in health and disease. Therefore, there is an important need to understand the spatiotemporal behavior of neurocardiac mechanisms. This can be advanced through the identification and validation of neurological and cardiac signaling pathways that may be adversely regulated. In this review we highlight how dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis, autonomic nervous system (ANS) activity and inflammation, predispose to psychiatric disorders and cardiac dysfunction. Moreover, antipsychotic and antidepressant medications increase the risk for adverse cardiac events, mostly through the block of the human ether-a-go-go-related gene (hERG), which plays a critical role in cardiac repolarization. Therefore, understanding how neurological disorders lead to adverse cardiac ion channel remodeling is likely to have significant implications for the development of effective therapeutic interventions and helps improve the rational development of targeted therapeutics with significant clinical implications.
Collapse
|
5
|
Clinical Risk Factors for Therapeutic Lithium-Associated Electrocardiographic Changes in Patients With Bipolar Disorder. J Clin Psychopharmacol 2020; 40:46-53. [PMID: 31834090 DOI: 10.1097/jcp.0000000000001164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE/BACKGROUND Lithium, a common medication used in bipolar disorder treatment, can exert an inhibitory effect on sodium and potassium channels and potentially cause cardiac electrical conduction disturbance and corrected QT (QTc) prolongation. This study aimed to examine whether lithium at therapeutic levels can change electrocardiographic parameters in different groups of patients with bipolar disorder and to identify the potential clinical risk factors. METHODS/PROCEDURES Standard 12-lead electrocardiogram data before and after lithium treatment in bipolar disorder patients after at least 2-week dropout of psychotropic medications were analyzed. FINDINGS/RESULTS A total of 39 patients with bipolar disorder receiving lithium treatment were enrolled. Nineteen patients (48.7%) exhibited increased from P wave beginning to QRS complex beginning intervals after lithium treatment (mean serum level, 0.653 ± 0.247 mmol/L). Twenty-four patients (61.5%) exhibited increased a combination of Q, R, and S waves complex durations and increased QTc intervals. Twenty-three patients (59.0%) exhibited increased corrected JT (JTc) intervals. The patient group with increased QTc or JTc intervals exhibited a higher mean systolic blood pressure than did the patient group without increased QTc (134.7 ± 19.2 mm Hg vs 115.7 ± 11.8 mm Hg, P = 0.020) or JTc intervals (134.4 ± 19.6 mm Hg vs 117.6 ± 13.3 mm Hg, P = 0.054), respectively. Biochemical and hemodynamic parameters were comparable between patients with and without increased a combination of Q, R, and S waves complex durations or from P wave beginning to QRS complex beginning intervals. IMPLICATIONS/CONCLUSIONS Elevated systolic blood pressure may be the risk factor for the ventricular conduction delay in bipolar disorder patients receiving lithium at therapeutic levels.
Collapse
|
6
|
Lithium chloride confers protection against viral myocarditis via suppression of coxsackievirus B3 virus replication. Microb Pathog 2020; 144:104169. [PMID: 32205210 PMCID: PMC7102605 DOI: 10.1016/j.micpath.2020.104169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Viral myocarditis (VMC) is a type of inflammation affecting myocardial cells caused by viral infection and has been an important cause of dilated cardiomyopathy (DCM) worldwide. Type B3 coxsackievirus (CVB3), a non-enveloped positive-strand RNA virus of the Enterovirus genus, is one of most common agent of viral myocarditis. Till now, effective treatments for VMC are lacking due to lack of drugs or vaccine. Lithium chloride (LiCl) is applied in the clinical management of manic depressive disorders. Accumulating evidence have demonstrated that LiCl, also as an effective antiviral drug, exhibited antiviral effects for specific viruses. However, there are few reports of evaluating LiCl's antiviral effect in mice model. Here, we investigated the inhibitory influence of LiCl on the CVB3 replication in vitro and in vivo and the development of CVB3-induced VMC. We found that LiCl significantly suppressed CVB3 replication in HeLa via inhibiting virus-induced cell apoptosis. Moreover, LiCl treatment in vivo obviously inhibited virus replication within the myocardium and alleviated CVB3-induced acute myocarditis. Collectively, our data demonstrated that LiCl inhibited CVB3 replication and negatively regulated virus-triggered inflammatory responses. Our finding further expands the antiviral targets of LiCl and provides an alternative agent for viral myocarditis.
Collapse
|
7
|
Goldberg JF. Complex Combination Pharmacotherapy for Bipolar Disorder: Knowing When Less Is More or More Is Better. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2019; 17:218-231. [PMID: 32047367 PMCID: PMC6999211 DOI: 10.1176/appi.focus.20190008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Combination pharmacotherapy for bipolar disorder is commonplace and often reflects the severity and complexity of the illness and the comorbid conditions frequently associated with it. Across treatment settings, about one-fifth of patients with bipolar disorder appear to receive four or more psychotropic medications. Practice patterns often outpace the evidence-based literature, insofar as few systematic studies have examined the efficacy and safety of two or more medications for any given phase of illness. Most randomized trials of combination pharmacotherapy focus on the utility of pairing a mood stabilizer with a second-generation antipsychotic for prevention of either acute mania or relapse. In real-world practice, patients with bipolar disorder often take more elaborate combinations of mood stabilizers, antipsychotics, antidepressants, anxiolytics, stimulants, and other psychotropics for indefinite periods that do not necessarily arise purposefully and logically. In this article, I identify clinical factors associated with complex combination pharmacotherapy for patients with bipolar disorder; describe approaches to ensuring that each component of a treatment regimen has a defined role; discuss the elimination of unnecessary, ineffective, or redundant drugs in a regimen; and address complementary, safe, rationale-based drug combinations that target specific domains of psychopathology for which monotherapies often provide inadequate benefit.
Collapse
Affiliation(s)
- Joseph F Goldberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City
| |
Collapse
|
8
|
Moretti C, Trabalza S, Granieri L, Caballo‐Ponce E, Devescovi G, Del Pino AM, Ramos C, Venturi V, van den Burg HA, Buonaurio R, Palmerini CA. A Na + /Ca 2+ exchanger of the olive pathogen Pseudomonas savastanoi pv. savastanoi is critical for its virulence. MOLECULAR PLANT PATHOLOGY 2019; 20:716-730. [PMID: 30912619 PMCID: PMC6637891 DOI: 10.1111/mpp.12787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In a number of compatible plant-bacterium interactions, a rise in apoplastic Ca2+ levels is observed, suggesting that Ca2+ represents an important environmental clue, as reported for bacteria infecting mammalians. We demonstrate that Ca2+ entry in Pseudomonas savastanoi pv. savastanoi (Psav) strain DAPP-PG 722 is mediated by a Na+ /Ca2+ exchanger critical for virulence. Using the fluorescent Ca2+ probe Fura 2-AM, we demonstrate that Ca2+ enters Psav cells foremost when they experience low levels of energy, a situation mimicking the apoplastic fluid. In fact, Ca2+ entry was suppressed in the presence of high concentrations of glucose, fructose, sucrose or adenosine triphosphate (ATP). Since Ca2+ entry was inhibited by nifedipine and LiCl, we conclude that the channel for Ca2+ entry is a Na+ /Ca2+ exchanger. In silico analysis of the Psav DAPP-PG 722 genome revealed the presence of a single gene coding for a Na+ /Ca2+ exchanger (cneA), which is a widely conserved and ancestral gene within the P. syringae complex based on gene phylogeny. Mutation of cneA compromised not only Ca2+ entry, but also compromised the Hypersensitive response (HR) in tobacco leaves and blocked the ability to induce knots in olive stems. The expression of both pathogenicity (hrpL, hrpA and iaaM) and virulence (ptz) genes was reduced in this Psav-cneA mutant. Complementation of the Psav-cneA mutation restored both Ca2+ entry and pathogenicity in olive plants, but failed to restore the HR in tobacco leaves. In conclusion, Ca2+ entry acts as a 'host signal' that allows and promotes Psav pathogenicity on olive plants.
Collapse
Affiliation(s)
- Chiaraluce Moretti
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Simone Trabalza
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Letizia Granieri
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Eloy Caballo‐Ponce
- Instituto de Hortofruticultura Subtropical y Mediterránea La MayoraUniversidad de Málaga‐Consejo Superior de Investigaciones Científicas (IHSM‐UMACSIC)Área de GenéticaMálagaSpain
| | - Giulia Devescovi
- Bacteriology Group, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Alberto Marco Del Pino
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Cayo Ramos
- Bacteriology Group, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Vittorio Venturi
- Bacteriology Group, International Centre for Genetic Engineering and BiotechnologyTriesteItaly
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS)University of AmsterdamAmsterdamNetherlands
| | - Roberto Buonaurio
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| | - Carlo Alberto Palmerini
- Department of Agricultural, Food and Environmental ScienceUniversity of PerugiaBorgo XX Giugno 74, Perugia06121Italy
| |
Collapse
|
9
|
Hook V, Kind T, Podvin S, Palazoglu M, Tran C, Toneff T, Samra S, Lietz C, Fiehn O. Metabolomics Analyses of 14 Classical Neurotransmitters by GC-TOF with LC-MS Illustrates Secretion of 9 Cell-Cell Signaling Molecules from Sympathoadrenal Chromaffin Cells in the Presence of Lithium. ACS Chem Neurosci 2019; 10:1369-1379. [PMID: 30698015 DOI: 10.1021/acschemneuro.8b00432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The classical small molecule neurotransmitters are essential for cell-cell signaling in the nervous system for regulation of behaviors and physiological functions. Metabolomics approaches are ideal for quantitative analyses of neurotransmitter profiles but have not yet been achieved for the repertoire of 14 classical neurotransmitters. Therefore, this study developed targeted metabolomics analyses by full scan gas chromatography/time-of-flight mass spectrometry (GC-TOF) and hydrophilic interaction chromatography-QTRAP mass spectrometry (HILIC-MS/MS) operated in positive ionization mode for identification and quantitation of 14 neurotransmitters consisting of acetylcholine, adenosine, anandamide, aspartate, dopamine, epinephrine, GABA, glutamate, glycine, histamine, melatonin, norepinephrine, serine, and serotonin. GC-TOF represents a new metabolomics method for neurotransmitter analyses. Sensitive measurements of 11 neurotransmitters were achieved by GC-TOF, and three neurotransmitters were analyzed by LC-MS/MS (acetylcholine, anandamide, and melatonin). The limits of detection (LOD) and limits of quantitation (LOQ) were assessed for linearity for GC-TOF and LC-MS/MS protocols. In neurotransmitter-containing dense core secretory vesicles of adrenal medulla, known as chromaffin granules (CG), metabolomics measured the concentrations of 9 neurotransmitters consisting of the catecholamines dopamine, norepinephrine, and epinephrine, combined with glutamate, serotonin, adenosine, aspartate, glycine, and serine. The CG neurotransmitters were constitutively secreted from sympathoadrenal chromaffin cells in culture. Nicotine- and KCl-stimulated release of the catecholamines and adenosine. Lithium, a drug used for the treatment of bipolar disorder, decreased the constitutive secretion of dopamine and norepinephrine and decreased nicotine-stimulated secretion of epinephrine. Lithium had no effect on other secreted neurotransmitters. Overall, the newly developed GC-TOF with LC-MS/MS metabolomics methods for analyses of 14 neurotransmitters will benefit investigations of neurotransmitter regulation in biological systems and in human disease conditions related to drug treatments.
Collapse
Affiliation(s)
- Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences and Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Tobias Kind
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mine Palazoglu
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Carol Tran
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Thomas Toneff
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Stephanie Samra
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Christopher Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Oliver Fiehn
- West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
10
|
Dascal N, Rubinstein M. Lithium reduces the span of G protein-activated K + (GIRK) channel inhibition in hippocampal neurons. Bipolar Disord 2017; 19:568-574. [PMID: 28895268 DOI: 10.1111/bdi.12536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Lithium (Li+ ) is one of the most widely used treatments for bipolar disorder (BD). However, the molecular and neuronal basis of BD, as well as the mechanisms of Li+ actions are poorly understood. Cellular and biochemical studies identified G proteins as being among the cellular targets for Li+ action, while genetic studies indicated an association with the KCNJ3 gene, which encodes the G protein-activated inwardly rectifying K+ (GIRK) channels. GIRK channels regulate neuronal excitability by mediating the inhibitory effects of multiple neurotransmitters and contribute to the resting potassium conductance. Here, we explored the effects of therapeutic dose of Li+ on neuronal excitability and the role of GIRK channels in Li+ actions. METHODS Effects of Li+ on excitability were studied in hippocampal brain slices using whole-cell electrophysiological recordings. RESULTS A therapeutic dose of Li+ (1 mM) dually regulated the function of GIRK channels in hippocampal slices. Li+ hyperpolarized the resting membrane potential of hippocampal CA1 pyramidal neurons and prolonged the latency to reach the action potential threshold and peak. These effects were abolished in the presence of tertiapin, a specific GIRK channel blocker, and at doses above the therapeutic window (2 mM). In contrast, Li+ reduced GIRK channel opening induced by GABAB receptor (GABAB R) activation, causing reduced hyperpolarization of the membrane potential, attenuated reduction of input resistance, and a smaller decrease of neuronal firing. CONCLUSIONS A therapeutic dose of Li+ reduces the span of GIRK channel-mediated inhibition due to enhancement of basal GIRK currents and inhibition of GABAB R evoked responses, providing an important link between Li+ action, neuronal excitability, and cellular and genetic targets of BD.
Collapse
Affiliation(s)
- Nathan Dascal
- The Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Rubinstein
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,The Goldschleger Eye Research Institute, Sheba Medical Center, Tel Hashomer, Israel.,The Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Lithium-Responsive Seizure-Like Hyperexcitability Is Caused by a Mutation in the Drosophila Voltage-Gated Sodium Channel Gene paralytic. eNeuro 2016; 3:eN-NWR-0221-16. [PMID: 27844061 PMCID: PMC5103163 DOI: 10.1523/eneuro.0221-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023] Open
Abstract
Shudderer (Shu) is an X-linked dominant mutation in Drosophila melanogaster identified more than 40 years ago. A previous study showed that Shu caused spontaneous tremors and defects in reactive climbing behavior, and that these phenotypes were significantly suppressed when mutants were fed food containing lithium, a mood stabilizer used in the treatment of bipolar disorder (Williamson, 1982). This unique observation suggested that the Shu mutation affects genes involved in lithium-responsive neurobiological processes. In the present study, we identified Shu as a novel mutant allele of the voltage-gated sodium (Nav) channel gene paralytic (para). Given that hypomorphic para alleles and RNA interference-mediated para knockdown reduced the severity of Shu phenotypes, Shu was classified as a para hypermorphic allele. We also demonstrated that lithium could improve the behavioral abnormalities displayed by other Nav mutants, including a fly model of the human generalized epilepsy with febrile seizures plus. Our electrophysiological analysis of Shu showed that lithium treatment did not acutely suppress Nav channel activity, indicating that the rescue effect of lithium resulted from chronic physiological adjustments to this drug. Microarray analysis revealed that lithium significantly alters the expression of various genes in Shu, including those involved in innate immune responses, amino acid metabolism, and oxidation-reduction processes, raising the interesting possibility that lithium-induced modulation of these biological pathways may contribute to such adjustments. Overall, our findings demonstrate that Nav channel mutants in Drosophila are valuable genetic tools for elucidating the effects of lithium on the nervous system in the context of neurophysiology and behavior.
Collapse
|
12
|
Lithium ions in nanomolar concentration modulate glycine-activated chloride current in rat hippocampal neurons. Neurochem Int 2016; 94:67-73. [DOI: 10.1016/j.neuint.2016.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 11/17/2022]
|
13
|
Makhija S, Gupta R, Toteja R. Lithium-induced developmental anomalies in the spirotrich ciliate Stylonychia lemnae (Ciliophora, Hypotrichida). Eur J Protistol 2015; 51:290-8. [PMID: 26164817 DOI: 10.1016/j.ejop.2015.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 10/23/2022]
Abstract
Lithium is known to have profound biological effects of varying intensity in different life forms. In the present investigation, the effect of lithium was studied on the spirotrich ciliate Stylonychia lemnae. Lithium treatment brings about quantitative changes in the patterning of ciliary structures in S. lemnae. The dorsal surface of the affected cells develops supernumerary ciliary kineties due to excessive proliferation of the kinetosomes. The ventral surface on the other hand develops fewer than normal cirri formed from reduced numbers of ciliary primordia. The adoral zone of membranelles (AZM) fails to remodel properly as, in certain segments, membranelles become disarranged and misaligned. Lithium-induced changes are transitory as the normal pattern is restored during recovery after the cells are shifted to normal medium, suggesting non-genic regulation of cortical pattern. Lithium also affects the process of cell proliferation as the number of cells undergoing division is negligible as compared to reorganizing cells. The results point to the extremely complex and heterogeneous organization of the cellular cortex (plasma membrane and cytoskeleton) which is capable of exerting autonomous control over the phenotype and cortical pattern.
Collapse
Affiliation(s)
- Seema Makhija
- Acharya Narendra Dev College, University of Delhi, Delhi, India.
| | - Renu Gupta
- Maitreyi College, University of Delhi, Delhi, India.
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, Delhi, India
| |
Collapse
|
14
|
James TF, Nenov MN, Wildburger NC, Lichti CF, Luisi J, Vergara F, Panova-Electronova NI, Nilsson CL, Rudra JS, Green TA, Labate D, Laezza F. The Nav1.2 channel is regulated by GSK3. Biochim Biophys Acta Gen Subj 2015; 1850:832-44. [PMID: 25615535 DOI: 10.1016/j.bbagen.2015.01.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 12/17/2014] [Accepted: 01/14/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphorylation plays an essential role in regulating voltage-gated sodium (Na(v)) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Na(v) channels. We posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Na(v) channels. METHODS We used patch-clamp electrophysiology to record sodium currents from Na(v)1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. RESULTS We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Na(v)1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Na(v)1.2-encoded currents. Neither mRNA nor total protein expression was changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Na(v)1.2 channel indicates that cell surface expression of CD4-Na(v)1.2 C-tail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T(1966) at the C-terminal tail of Na(v)1.2. CONCLUSION These findings provide evidence for a new mechanism by which GSK3 modulates Na(v) channel function via its C-terminal tail. GENERAL SIGNIFICANCE These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Thomas F James
- Department of Pharmacology & Toxicology, USA; Neuroscience Graduate Program, USA
| | | | - Norelle C Wildburger
- Department of Pharmacology & Toxicology, USA; Neuroscience Graduate Program, USA
| | | | | | | | | | | | - Jai S Rudra
- Department of Pharmacology & Toxicology, USA
| | - Thomas A Green
- Department of Pharmacology & Toxicology, USA; Center for Addiction Research, USA
| | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, USA; Center for Addiction Research, USA; Center for Biomedical Engineering, USA; Mitchell Center for Neurodegenerative Diseases, USA.
| |
Collapse
|
15
|
Tanno M, Kuno A, Ishikawa S, Miki T, Kouzu H, Yano T, Murase H, Tobisawa T, Ogasawara M, Horio Y, Miura T. Translocation of glycogen synthase kinase-3β (GSK-3β), a trigger of permeability transition, is kinase activity-dependent and mediated by interaction with voltage-dependent anion channel 2 (VDAC2). J Biol Chem 2014; 289:29285-96. [PMID: 25187518 DOI: 10.1074/jbc.m114.563924] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a major positive regulator of the mitochondrial permeability transition pore (mPTP), a principle trigger of cell death, under the condition of oxidative stress. However, the mechanism by which cytosolic GSK-3β translocates to mitochondria, promoting mPTP opening, remains unclear. Here we addressed this issue by analyses of the effect of site-directed mutations in GSK-3β on mitochondrial translocation and protein/protein interactions upon oxidative stress. H9c2 cardiomyoblasts were transfected with GFP-tagged GSK-3β (WT), a mutant GSK-3β insensitive to inhibitory phosphorylation (S9A), or kinase-deficient GSK-3β (K85R). Time lapse observation revealed that WT and S9A translocated from the cytosol to the mitochondria more promptly than did K85R after exposure to oxidative stress. H2O2 increased the density of nine spots on two-dimensional gel electrophoresis of anti-GSK-3β-immunoprecipitates by more than 3-fold. MALDI-TOF/MS analysis revealed that one of the spots contained voltage-dependent anion channel 2 (VDAC2). Knockdown of VDAC2, but not VDAC1 or VDAC3, by siRNA attenuated both the mitochondrial translocation of GSK-3β and mPTP opening under stress conditions. The mitochondrial translocation of GSK-3β was attenuated also when Lys-15, but not Arg-4 or Arg-6, in the N-terminal domain of GSK-3β was replaced with alanine. The oxidative stress-induced mitochondrial translocation of GSK-3β was associated with an increase in cell death, which was suppressed by lithium chloride (LiCl), a GSK-3β inhibitor. These results demonstrate that GSK-3β translocates from the cytosol to mitochondria in a kinase activity- and VDAC2-dependent manner in which an N-terminal domain of GSK-3β may function as a mitochondrial targeting sequence.
Collapse
Affiliation(s)
- Masaya Tanno
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Atsushi Kuno
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and Pharmacology, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo 060-8543, Japan
| | - Satoko Ishikawa
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Takayuki Miki
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Hidemichi Kouzu
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Toshiyuki Yano
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Hiromichi Murase
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Toshiyuki Tobisawa
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Makoto Ogasawara
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| | - Yoshiyuki Horio
- Pharmacology, Sapporo Medical University School of Medicine, S1 W16, Chuo-ku, Sapporo 060-8543, Japan
| | - Tetsuji Miura
- From the Departments of Cardiovascular, Renal, and Metabolic Medicine and
| |
Collapse
|
16
|
Hull M, Lee E, Lee T, Anand N, LaLone V, Parameswaran N. Lithium chloride induces TNFα in mouse macrophages via MEK-ERK-dependent pathway. J Cell Biochem 2014; 115:71-80. [PMID: 23904208 DOI: 10.1002/jcb.24634] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/19/2013] [Indexed: 12/12/2022]
Abstract
Lithium (Li) is one of the currently prescribed drugs for bipolar disorders (BPDs) and has many neuro-regulatory and immune-modulating properties. Because many neuro-pathological diseases including BPDs have been associated with some level of inflammation, Li's effect on inflammation may have some crucial consequences. Even though Li has been shown to have pro- and anti-inflammatory activities in different cell models, mechanisms involved in these effects are not well understood. Moreover, Li's effect on inflammation in the presence of activators of Toll-like receptors (TLRs), especially TLR-2 (that activates MyD88-dependent pathway) and TLR-3 (that activates TRIF-dependent pathway) is not known. Here we tested the role of Li in the presence and absence of TLR2, and TLR3 on MAPK and NFκB pathways and the consequent production of tumor necrosis factor-α (TNFα) in Raw264.7 macrophages. Our results indicate that Li enhances TNFα production both in the absence and presence of TLR stimulation. Interestingly, Li differentially modulates MAPK and NFκB pathways in the absence and presence of TLR2/3 ligands. Our results further indicate that the effect of Li on TNFα occurs at the post-transcriptional level. Together, these studies demonstrate that Li induces TNFα production in macrophages and that it modulates signaling at different levels depending on the presence or absence of TLR2/3 stimulation.
Collapse
Affiliation(s)
- Megan Hull
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| | - Eunhee Lee
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| | - Taehyung Lee
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| | - Nandita Anand
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| | - Vernon LaLone
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
Tanaka K, Shimizu T, Yanagita T, Nemoto T, Nakamura K, Taniuchi K, Dimitriadis F, Yokotani K, Saito M. Brain RVD-haemopressin, a haemoglobin-derived peptide, inhibits bombesin-induced central activation of adrenomedullary outflow in the rat. Br J Pharmacol 2014; 171:202-13. [PMID: 24138638 DOI: 10.1111/bph.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/17/2013] [Accepted: 09/21/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Haemopressin and RVD-haemopressin, derived from the haemoglobin α-chain, are bioactive peptides found in brain and are ligands for cannabinoid CB1 receptors. Activation of brain CB1 receptors inhibited the secretion of adrenal catecholamines (noradrenaline and adrenaline) induced by i.c.v. bombesin in the rat. Here, we investigated the effects of two haemoglobin-derived peptides on this bombesin-induced response EXPERIMENTAL APPROACH Anaesthetised male Wistar rats were pretreated with either haemoglobin-derived peptide, given i.c.v., 30 min before i.c.v. bombesin and plasma catecholamines were subsequently measured electrochemically after HPLC. Direct effects of bombesin on secretion of adrenal catecholamines were examined using bovine adrenal chromaffin cells. Furthermore, activation of haemoglobin α-positive spinally projecting neurons in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of central adrenomedullary outflow) after i.c.v. bombesin was assessed by immunohistochemical techniques. KEY RESULTS Bombesin given i.c.v. dose-dependently elevated plasma catecholamines whereas incubation with bombesin had no effect on spontaneous and nicotine-induced secretion of catecholamines from chromaffin cells. The bombesin-induced increase in catecholamines was inhibited by pretreatment with i.c.v. RVD-haemopressin (CB1 receptor agonist) but not after pretreatment with haemopressin (CB1 receptor inverse agonist). Bombesin activated haemoglobin α-positive spinally projecting neurons in the PVN. CONCLUSIONS AND IMPLICATIONS The haemoglobin-derived peptide RVD-haemopressin in the brain plays an inhibitory role in bombesin-induced activation of central adrenomedullary outflow via brain CB1 receptors in the rat. These findings provide basic information for the therapeutic use of haemoglobin-derived peptides in the modulation of central adrenomedullary outflow.
Collapse
Affiliation(s)
- Kenjiro Tanaka
- Department of Pharmacology, Kochi University School of Medicine, Nankoku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mattei C, Molgó J, Benoit E. Involvement of both sodium influx and potassium efflux in ciguatoxin-induced nodal swelling of frog myelinated axons. Neuropharmacology 2014; 85:417-26. [PMID: 24950451 DOI: 10.1016/j.neuropharm.2014.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/09/2014] [Accepted: 06/02/2014] [Indexed: 01/22/2023]
Abstract
Ciguatoxins, mainly produced by benthic dinoflagellate Gambierdiscus species, are responsible for a complex human poisoning known as ciguatera. Previous pharmacological studies revealed that these toxins activate voltage-gated Na+ channels. In frog nodes of Ranvier, ciguatoxins induce spontaneous and repetitive action potentials (APs) and increase axonal volume that may explain alterations of nerve functioning in intoxicated humans. The present study aimed determining the ionic mechanisms involved in Pacific ciguatoxin-1B (P-CTX-1B)-induced membrane hyperexcitability and subsequent volume increase in frog nodes of Ranvier, using electrophysiology and confocal microscopy. The results reveal that P-CTX-1B action is not dependent on external Cl- ions since it was not affected by substituting Cl- by methylsulfate ions. In contrast, substitution of external Na+ by Li+ ions suppressed spontaneous APs and prevented nodal swelling. This suggests that P-CTX-1B-modified Na+ channels are not selective to Li+ ions and/or are blocked by these ions, and that Na+ influx through Na+ channels opened during spontaneous APs is required for axonal swelling. The fact that the K+ channel blocker tetraethylammonium modified, but did not suppress, spontaneous APs and greatly reduced nodal swelling induced by P-CTX-1B indicates that K+ efflux might also be involved. This is supported by the fact that P-CTX-1B, when tested in the presence of both tetraethylammonium and the K+ ionophore valinomycin, produced the characteristic nodal swelling. It is concluded that, during the action of P-CTX-1B, water movements responsible for axonal swelling depend on both Na+ influx and K+ efflux. These results pave the way for further studies regarding ciguatera treatment.
Collapse
Affiliation(s)
- César Mattei
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, 91198 Gif-sur-Yvette cedex, France; Laboratoire Biologie Neurovasculaire et Mitochondriale Intégrée, UMR CNRS 6214 INSERM 1083, Université d'Angers, 49045 Angers cedex 01, France.
| | - Jordi Molgó
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, 91198 Gif-sur-Yvette cedex, France
| | - Evelyne Benoit
- CNRS, Institut de Neurobiologie Alfred Fessard - FRC2118, Laboratoire de Neurobiologie et Développement - UPR3294, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
19
|
Dual regulation of G proteins and the G-protein-activated K+ channels by lithium. Proc Natl Acad Sci U S A 2014; 111:5018-23. [PMID: 24639496 DOI: 10.1073/pnas.1316425111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lithium (Li(+)) is widely used to treat bipolar disorder (BPD). Cellular targets of Li(+), such as glycogen synthase kinase 3β (GSK3β) and G proteins, have long been implicated in BPD etiology; however, recent genetic studies link BPD to other proteins, particularly ion channels. Li(+) affects neuronal excitability, but the underlying mechanisms and the relevance to putative BPD targets are unknown. We discovered a dual regulation of G protein-gated K(+) (GIRK) channels by Li(+), and identified the underlying molecular mechanisms. In hippocampal neurons, therapeutic doses of Li(+) (1-2 mM) increased GIRK basal current (Ibasal) but attenuated neurotransmitter-evoked GIRK currents (Ievoked) mediated by Gi/o-coupled G-protein-coupled receptors (GPCRs). Molecular mechanisms of these regulations were studied with heterologously expressed GIRK1/2. In excised membrane patches, Li(+) increased Ibasal but reduced GPCR-induced GIRK currents. Both regulations were membrane-delimited and G protein-dependent, requiring both Gα and Gβγ subunits. Li(+) did not impair direct activation of GIRK channels by Gβγ, suggesting that inhibition of Ievoked results from an action of Li(+) on Gα, probably through inhibition of GTP-GDP exchange. In direct binding studies, Li(+) promoted GPCR-independent dissociation of Gαi(GDP) from Gβγ by a Mg(2+)-independent mechanism. This previously unknown Li(+) action on G proteins explains the second effect of Li(+), the enhancement of GIRK's Ibasal. The dual effect of Li(+) on GIRK may profoundly regulate the inhibitory effects of neurotransmitters acting via GIRK channels. Our findings link between Li(+), neuronal excitability, and both cellular and genetic targets of BPD: GPCRs, G proteins, and ion channels.
Collapse
|
20
|
Wang L, Zhang L, Zhao X, Zhang M, Zhao W, Gao C. Lithium attenuates IFN-β production and antiviral response via inhibition of TANK-binding kinase 1 kinase activity. THE JOURNAL OF IMMUNOLOGY 2013; 191:4392-8. [PMID: 24043902 DOI: 10.4049/jimmunol.1203142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lithium salt is a widely used glycogen synthase kinase-3β inhibitor and effective drug for the treatment of psychiatric diseases. However, the effects of lithium in innate immune responses, especially in cellular antiviral responses, are unknown. In this study, we show that lithium chloride attenuates LPS-, polyinosinic-polycytidylic acid-, and Sendai virus-induced IFN-β production and IFN regulatory factor 3 activation in macrophages in a glycogen synthase kinase-3β-independent manner. The ability of the lithium to inhibit IFN-β production was confirmed in vivo, as mice treated with lithium chloride exhibited decreased levels of IFN-β upon Sendai virus infection. In vitro kinase assay demonstrates that lithium suppresses TANK-binding kinase 1 kinase activity. Consistently, lithium significantly enhanced the replication of vesicular stomatitis virus in vitro and in vivo. Severe infiltration of monocytes and tissue damage were observed in the lungs of control mice, compared with lithium-treated mice after virus infection. Our findings suggest lithium as an inhibitor of TANK-binding kinase 1 and potential target for the intervention of diseases with uncontrolled IFN-β production. Furthermore, lithium attenuates host defense to virus infection and may cause severely adverse effects in clinical applications.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Immunology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | | | | | | | | | | |
Collapse
|
21
|
Nemoto T, Yanagita T, Maruta T, Sugita C, Satoh S, Kanai T, Wada A, Murakami M. Endothelin-1-induced down-regulation of NaV1.7 expression in adrenal chromaffin cells: attenuation of catecholamine secretion and tau dephosphorylation. FEBS Lett 2013; 587:898-905. [PMID: 23434582 DOI: 10.1016/j.febslet.2013.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
Abstract
Endothelin-1 and voltage-dependent sodium channels are involved in control and suppression of neuropathological factors, which contribute to sculpting the neuronal network. We previously demonstrated that veratridine-induced NaV1.7 sodium channel activation caused intracellular calcium elevation, catecholamine secretion and tau dephosphorylation in adrenal chromaffin cells. The aim of this study was to examine whether endothelin-1 could modulate NaV1.7. Our results indicated that endothelin-1 decreased the protein level of NaV1.7 and the veratridine-induced increase in intracellular calcium. In addition, it also abolished the veratridine-induced dephosphorylation of tau and the phosphorylation of glycogen synthase kinase-3β and extracellular signal-regulated kinase. These findings suggest that the endothelin-1-induced down-regulation of NaV1.7 diminishes NaV1.7-related catecholamine secretion and dephosphorylation of tau.
Collapse
Affiliation(s)
- Takayuki Nemoto
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wildburger NC, Laezza F. Control of neuronal ion channel function by glycogen synthase kinase-3: new prospective for an old kinase. Front Mol Neurosci 2012; 5:80. [PMID: 22811658 PMCID: PMC3397315 DOI: 10.3389/fnmol.2012.00080] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK-3) is an evolutionarily conserved multifaceted ubiquitous enzyme. In the central nervous system (CNS), GSK-3 acts through an intricate network of intracellular signaling pathways culminating in a highly divergent cascade of phosphorylations that control neuronal function during development and adulthood. Accumulated evidence indicates that altered levels of GSK-3 correlate with maladaptive plasticity of neuronal circuitries in psychiatric disorders, addictive behaviors, and neurodegenerative diseases, and pharmacological interventions known to limit GSK-3 can counteract some of these deficits. Thus, targeting the GSK-3 cascade for therapeutic interventions against this broad spectrum of brain diseases has raised a tremendous interest. Yet, the multitude of GSK-3 downstream effectors poses a substantial challenge in the development of selective and potent medications that could efficiently block or modulate the activity of this enzyme. Although the full range of GSK-3 molecular targets are far from resolved, exciting new evidence indicates that ion channels regulating excitability, neurotransmitter release, and synaptic transmission, which ultimately contribute to the mechanisms underling brain plasticity and higher level cognitive and emotional processing, are new promising targets of this enzyme. Here, we will revise this new emerging role of GSK-3 in controling the activity of voltage-gated Na(+), K(+), Ca(2+) channels and ligand-gated glutamate receptors with the goal of highlighting new relevant endpoints of the neuronal GSK-3 cascade that could provide a platform for a better understanding of the mechanisms underlying the dysfunction of this kinase in the CNS and serve as a guidance for medication development against the broad range of GSK-3-linked human diseases.
Collapse
Affiliation(s)
- Norelle C. Wildburger
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
- Neuroscience Graduate Program, University of Texas Medical BranchGalveston, TX, USA
- Sealy Center for Cancer Cell Biology, University of Texas Medical BranchGalveston, TX, USA
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical BranchGalveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical BranchGalveston, TX, USA
- Center for Addiction Research, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
23
|
Lithium attenuates methamphetamine-induced hyperlocomotion and behavioral sensitization via modulation of prefrontal monoamine release. Neuropharmacology 2012; 62:1634-9. [DOI: 10.1016/j.neuropharm.2011.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/06/2011] [Accepted: 10/01/2011] [Indexed: 11/22/2022]
|
24
|
Wix-Ramos R, Eblen-Zajjur A. Time course of acute neuroprotective effects of lithium carbonate evaluated by brain impedanciometry in the global ischemia model. Can J Physiol Pharmacol 2011; 89:753-8. [PMID: 21919827 DOI: 10.1139/y11-073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that chronic treatment with lithium gives cytoprotection from ischemia and neurodegeneration. Despite the clinical relevance, the potential effects of acute lithium treatment just before and during early stages of ischemia are not well known. Brain impedance was measured in an experimental global ischemia model, to determine these potential effects and their time course,as measured in minutes. Thiobarbital anesthetized (60 mg·kg(-1), intraperitoneal injection) male Sprague-Dawley rats were infused intravenously (i.v.) with isovolumetric amounts of ringer (n = 10 rats) or lithium (Li(2)CO(3); 10; 30; 100 mg·kg(-1); n = 6 rats per dose tested). Cortico-subcortical impedance was recorded before (20 min) and after (20 min) the infusion, and during global cerebral ischemia (20 min) induced by cardiopulmonary arrest due to the administration of D-tubocurarine. Lithium did not change tissue impedance in normoxid animals. In the ringer-infused group, global cerebral ischemia first (9 min) shows a fast voltage decay rate (-7.08%·min(-1)), followed by a slow one (-0.94%·min(-1)) for the last 11 min of the recording. Lithium, at any dose tested, induced a strong reduction in voltage decay for both fast (-3.7%·min(-1)) and slow (-5.2%·min(-1)) phases, although the reduction was more intense in the first phase (>58%, Mann-Whitney Z = 2.02; P < 0.043). The reduction was more effective at 10 mg (Li₂CO₃)·kg(-1) than at 30 or 100 mg·kg(-1). The time course of brain edema was defined by curve fitting for ringer- (time constant λ = 512.9 s) or lithium-infused animals (λ = 302.0 s). These results suggest that acute lithium infusion 20 min prior to global ischemia, strongly reduces cerebral impedance by reducing the decay rate and the duration of the fast decay phase, and increasing time constant decay during ischemia.
Collapse
Affiliation(s)
- R Wix-Ramos
- Laboratorio de Neurofisiología, Departamento de Ciencias Fisiológicas, Facultad de Ciencias de la Salud, Universidad de Carabobo, P.O. Box 3798, El Trigal, Valencia, Venezuela
| | | |
Collapse
|
25
|
Yanagita T, Satoh S, Uezono Y, Matsuo K, Nemoto T, Maruta T, Yoshikawa N, Iwakiri T, Minami K, Murakami M. Transcriptional up-regulation of cell surface Na V 1.7 sodium channels by insulin-like growth factor-1 via inhibition of glycogen synthase kinase-3β in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion. Neuropharmacology 2011; 61:1265-74. [PMID: 21816165 DOI: 10.1016/j.neuropharm.2011.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/14/2011] [Accepted: 07/20/2011] [Indexed: 12/19/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) plays important roles in the regulation of neuronal development. The electrical activity of Na(+) channels is crucial for the regulation of synaptic formation and maintenance/repair of neuronal circuits. Here, we examined the effects of chronic IGF-1 treatment on cell surface expression and function of Na(+) channels. In cultured bovine adrenal chromaffin cells expressing Na(V)1.7 isoform of voltage-dependent Na(+) channels, chronic IGF-1 treatment increased cell surface [(3)H]saxitoxin binding by 31%, without altering the Kd value. In cells treated with IGF-1, veratridine-induced (22)Na(+) influx, and subsequent (45)Ca(2+) influx and catecholamine secretion were augmented by 35%, 33%, 31%, respectively. Pharmacological properties of Na(+) channels characterized by neurotoxins were similar between nontreated and IGF-1-treated cells. IGF-1-induced up-regulation of [(3)H]saxitoxin binding was prevented by phosphatydil inositol-3 kinase inhibitors (LY204002 or wortmannin), or Akt inhibitor (Akt inhibitor IV). Glycogen synthase kinase-3 (GSK-3) inhibitors (LiCl, valproic acid, SB216763 or SB415286) also increased cell surface [(3)H]saxitoxin binding by ∼ 33%, whereas simultaneous treatment of IGF-1 with GSK-3 inhibitors did not produce additive increasing effect on [(3)H]saxitoxin binding. IGF-1 (100 nM) increased Ser(437)-phosphorylated Akt and Ser(9)-phosphorylated GSK-3β, and inhibited GSK-3β activity. Treatment with IGF-1, LiCl or SB216763 increased protein level of Na(+) channel α-subunit; it was prevented by cycloheximide. Either treatment increased α-subunit mRNA level by ∼ 48% and accelerated α-subunit gene transcription by ∼ 30% without altering α-subunit mRNA stability. Thus, inhibition of GSK-3β caused by IGF-1 up-regulates cell surface expression of functional Na(+) channels via acceleration of α-subunit gene transcription.
Collapse
Affiliation(s)
- Toshihiko Yanagita
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, 5200 Kihara Kiyotake, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ruberto G, Vassos E, Lewis CM, Tatarelli R, Girardi P, Collier D, Frangou S. The cognitive impact of the ANK3 risk variant for bipolar disorder: initial evidence of selectivity to signal detection during sustained attention. PLoS One 2011; 6:e16671. [PMID: 21304963 PMCID: PMC3031622 DOI: 10.1371/journal.pone.0016671] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/06/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Abnormalities in cognition have been reported in patients with Bipolar Disorder (BD) and their first degree relatives, suggesting that susceptibility genes for BD may impact on cognitive processes. Recent genome-wide genetic studies have reported a strong association with BD in a single nucleotide polymorphism (SNP) (rs10994336) within ANK3, which codes for Ankyrin 3. This protein is involved in facilitating the propagation of action potentials by regulating the assembly of sodium gated ion channels. Since ANK3 influences the efficiency of transmission of neuronal impulses, allelic variation in this gene may have widespread cognitive effects. Preclinical data suggest that this may principally apply to sequential signal detection, a core process of sustained attention. METHODOLOGY/PRINCIPAL FINDINGS One hundred and eighty-nine individuals of white British descent were genotyped for the ANK3 rs10994336 polymorphism and received diagnostic interviews and comprehensive neurocognitive assessment of their general intellectual ability, memory, decision making, response inhibition and sustained attention. Participants comprised euthymic BD patients (n = 47), their unaffected first-degree relatives (n = 75) and healthy controls (n = 67). The risk allele T was associated with reduced sensitivity in target detection (p = 0.0004) and increased errors of commission (p = 0.0018) during sustained attention regardless of diagnosis. We found no effect of the ANK3 genotype on general intellectual ability, memory, decision making and response inhibition. CONCLUSIONS/SIGNIFICANCE Our results suggest that allelic variation in ANK3 impacts cognitive processes associated with signal detection and this mechanism may relate to risk for BD. However, our results require independent replication and confirmation that ANK3 (rs10994336) is a direct functional variant.
Collapse
Affiliation(s)
- Gaia Ruberto
- Section of Neurobiology of Psychosis, Institute of Psychiatry, King's College London, London, United Kingdom
- Department of Psychiatry, Sant'Andrea Hospital, Second Medical School, La Sapienza University, Rome, Italy
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom
- Division of Genetics and Molecular Medicine, King's College London School of Medicine, London, United Kingdom
| | - Roberto Tatarelli
- Department of Psychiatry, Sant'Andrea Hospital, Second Medical School, La Sapienza University, Rome, Italy
| | - Paolo Girardi
- Department of Psychiatry, Sant'Andrea Hospital, Second Medical School, La Sapienza University, Rome, Italy
| | - David Collier
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London, United Kingdom
| | - Sophia Frangou
- Section of Neurobiology of Psychosis, Institute of Psychiatry, King's College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Gao Y, Lei Z, Lu C, Roisen FJ, El-Mallakh RS. Effect of ionic stress on apoptosis and the expression of TRPM2 in human olfactory neuroepithelial-derived progenitors. World J Biol Psychiatry 2010; 11:972-84. [PMID: 20799912 DOI: 10.3109/15622975.2010.507784] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVES Disturbed ion homeostasis and apoptosis have been implicated in the pathophysiology of bipolar disorder (BD). TRPM2, a nonselective cation channel, is involved in apoptosis and is possibly linked with BD. In this study, monensin, a sodium ionophore, was used to model the increase [Na(+)](in) and [Ca(2+)](in) seen in BD patients. METHODS Human olfactory neuroepithelial-derived progenitors (ONP), which possess neuronal markers, were utilized to investigate the effects of monensin on apoptosis and the response of TRPM2, and the effects of lithium on the cellular response to monensin. Monensin treatment for 6 h activated caspase-3, -7 and poly(ADP-ribose) polymerase (PARP), inducing apoptosis. RESULTS [Na(+)](in) increased to twice the basal level and reached steady state after 2 h of 10(-6) M monensin treatment, while [Ca(2+)](in) rose after 6 h of the treatment. Monensin treatment for 24 h decreased expression of the long form of TRPM2, and increased expression of the short form. Lithium (1 mM) pretreatment reduced the [Na(+)](in) and [Ca(2+)](in) elevation caused by monensin, down-regulated the levels of caspase-3, -7 and PARP, and reduced expression of TRPM2. CONCLUSIONS Our findings suggest that the elevation of [Na(+)](in) and [Ca(2+)](in) induced ONP apoptosis and altered the expression of TRPM2. Lithium pretreatment attenuated the apoptosis induced by ionic stress.
Collapse
Affiliation(s)
- Yonglin Gao
- Department of Psychiatry and Behavioral Sciences, University of Louisville, School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
28
|
Lithium inhibits cell volume regulation by acting on chloride channels and modifies ultrastructures of the cell membrane in nasopharyngeal carcinoma cells. Eur J Pharmacol 2010; 641:88-95. [DOI: 10.1016/j.ejphar.2010.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 04/10/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022]
|
29
|
Ghasemi M, Shafaroodi H, Nazarbeiki S, Meskar H, Heydarpour P, Ghasemi A, Talab SS, Ziai P, Bahremand A, Dehpour AR. Voltage-dependent calcium channel and NMDA receptor antagonists augment anticonvulsant effects of lithium chloride on pentylenetetrazole-induced clonic seizures in mice. Epilepsy Behav 2010; 18:171-8. [PMID: 20605531 DOI: 10.1016/j.yebeh.2010.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/29/2010] [Accepted: 04/02/2010] [Indexed: 01/18/2023]
Abstract
Although lithium is still a mainstay in the treatment of bipolar disorder, its underlying mechanisms of action have not been completely elucidated. Several studies have shown that lithium can also modulate seizure susceptibility in a variety of models. In the present study, using a model of clonic seizures induced with pentylenetetrazole (PTZ) in male Swiss mice, we investigated whether there is any interaction between lithium and either calcium channel blockers (CCBs: nifedipine, verapamil, and diltiazem) or N-methyl-D-aspartate (NMDA) receptor antagonists (ketamine and MK-801) in modulating seizure threshold. Acute lithium administration (5-100mg/kg, ip) significantly (P<0.01) increased seizure threshold. CCBs and NMDA receptor antagonists also exerted dose-dependent anticonvulsant effects on PTZ-induced seizures. Noneffective doses of CCBs (5mg/kg, ip), when combined with a noneffective dose of lithium (5mg/kg, ip), exerted significant anticonvulsant effects. Moreover, co-administration of a noneffective dose of either MK-801 (0.05mg/kg, ip) or ketamine (5mg/kg, ip) with a noneffective dose of lithium (5mg/kg, ip) significantly increased seizure threshold. Our findings demonstrate that lithium increases the clonic seizure threshold induced by PTZ in mice and interacts with either CCBs or NMDA receptor antagonists in exerting this effect, suggesting a role for Ca(2+) signaling in the anticonvulsant effects of lithium in the PTZ model of clonic seizures in mice.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box 13145-784, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yanagita T, Maruta T, Nemoto T, Uezono Y, Matsuo K, Satoh S, Yoshikawa N, Kanai T, Kobayashi H, Wada A. Chronic lithium treatment up-regulates cell surface NaV1.7 sodium channels via inhibition of glycogen synthase kinase-3 in adrenal chromaffin cells: Enhancement of Na+ influx, Ca2+ influx and catecholamine secretion after lithium withdrawal. Neuropharmacology 2009; 57:311-21. [DOI: 10.1016/j.neuropharm.2009.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 05/01/2009] [Accepted: 05/20/2009] [Indexed: 02/08/2023]
|
31
|
García-Martínez JM, Chocarro-Calvo A, Moya CM, García-Jiménez C. WNT/beta-catenin increases the production of incretins by entero-endocrine cells. Diabetologia 2009; 52:1913-24. [PMID: 19582394 DOI: 10.1007/s00125-009-1429-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 05/21/2009] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Glucose-dependent insulinotropic peptide (GIP) plays a pivotal role in the regulation of glucose homeostasis. Rates of diet-induced obesity, insulin resistance and type 2 diabetes are decreased when GIP signalling is disturbed in mice, suggesting that GIP plays a role in the onset of type 2 diabetes. WNT signalling is linked to type 2 diabetes and induces synthesis of the other incretin, glucagon-like peptide 1 (GLP-1). GLP-1 analogues improve treatment of type 2 diabetes patients in whom GLP-1 signalling is intact and have captured clinical attention. GIP levels are altered at the onset of type 2 diabetes and later on, while GIP signalling is impaired. Thus, GIP is not a candidate for treatment but might be an important target from a prevention perspective. Hypothesising that hypersecretion of GIP links altered WNT signalling to the onset of type 2 diabetes, we sought to determine whether WNT signalling induces GIP production by entero-endocrine cells. METHODS RT-PCR and chromatin immunoprecipitation (ChIP) were used to study Gip gene induction. Gip promoter elements mediating WNT/lithium induction were identified (electrophoretic mobility shift assay, co-transfection of deletion mutants, ChIP). RESULTS Lithium or WNT/beta-catenin signalling enhanced GIP production by entero-endocrine cells through a conserved site in the proximal Gip promoter. Lithium favours lymphoid enhancer factor-1/beta-catenin binding to Gip promoter and diminishes ChIP through T cell factor-4 and histone deacetylase 1. CONCLUSIONS/INTERPRETATION Lithium and WNT are incretin inducers in general. This work provides a novel link between WNT signalling, obesity and diabetes.
Collapse
Affiliation(s)
- J M García-Martínez
- Dptal I. Despacho 020, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, 28922, Alcorcon, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Mohammad Jafferany
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, University of Washington School of Medicine, Children's Hospital and Regional Medical Center, Seattle, Washington 98105, USA.
| |
Collapse
|
33
|
Zugno AI, Valvassori SS, Scherer EBS, Mattos C, Matté C, Ferreira CL, Rezin GT, Wyse ATS, Quevedo J, Streck EL. Na+,K+-ATPase activity in an animal model of mania. J Neural Transm (Vienna) 2009; 116:431-6. [DOI: 10.1007/s00702-009-0198-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 02/06/2009] [Indexed: 12/24/2022]
|