1
|
van Eeghen AM, Stemkens D, Fernández-Fructuoso JR, Maruani A, Hadzsiev K, Gaasterland CMW, Klein Haneveld MJ, Vyshka K, Hugon A, van Eeghen AM, van Balkom IDC. Consensus recommendations on organization of care for individuals with Phelan-McDermid syndrome. Eur J Med Genet 2023:104747. [PMID: 37003574 DOI: 10.1016/j.ejmg.2023.104747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/05/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
The manifestations of Phelan-McDermid syndrome (PMS) are complex, warranting expert and multidisciplinary care in all life stages. In the present paper we propose consensus recommendations on the organization of care for individuals with PMS. We indicate that care should consider all life domains, which can be done within the framework of the International Classification of Functioning, Disability and Health (ICF). This framework assesses disability and functioning as the outcome of the individual's interactions with other factors. The different roles within care, such as performed by a centre of expertise, by regional health care providers and by a coordinating physician are addressed. A surveillance scheme and emergency card is provided and disciplines participating in a multidisciplinary team for PMS are described. Additionally, recommendations are provided for transition from paediatric to adult care. This care proposition may also be useful for individuals with other rare genetic neurodevelopmental disorders.
Collapse
Affiliation(s)
- A M van Eeghen
- Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands; Advisium, 's Heeren Loo, Amersfoort, Netherlands.
| | - D Stemkens
- VSOP - National Patient Alliance for Rare and Genetic Diseases, Soest, the Netherlands
| | | | - A Maruani
- Excellence Center for Autism Spectrum & Neurodevelopmental Disorders, Inovand, Child and Adolescent Psychiatry Department, Hôpital Robert Debre, APHP, Paris, France; CRMR DICR, Rare Disease Center for Intellectual Disabilities, Defiscience, France
| | - K Hadzsiev
- Department of Medical Genetics, Medical School, University of Pécs, Pécs, Hungary
| | - C M W Gaasterland
- Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - M J Klein Haneveld
- Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Klea Vyshka
- University Hospital Robert Debre, Paris, France
| | - A Hugon
- University Hospital Robert Debre, Paris, France
| | - A M van Eeghen
- Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, Netherlands; Advisium, 's Heeren Loo, Amersfoort, Netherlands
| | - I D C van Balkom
- Jonx, Department of (Youth) Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands; Rob Giel Research Centre, Department of Psychiatry, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
2
|
Walinga M, Jesse S, Alhambra N, Van Buggenhout G. Consensus recommendations on altered sensory functioning in Phelan-McDermid syndrome. Eur J Med Genet 2023; 66:104726. [PMID: 36796507 DOI: 10.1016/j.ejmg.2023.104726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Altered sensory functioning is often observed in individuals with SHANK3 related Phelan-McDermid syndrome (PMS). Compared to typically developing individuals and individuals with an autism spectrum disorder, it has been suggested that there are distinctive features of sensory functioning in PMS. More hyporeactivity symptoms and less hyperreactivity and sensory seeking behaviour are seen, particularly in the auditory domain. Hypersensitivity to touch, possible overheating or turning red easily and reduced pain response are often seen. In this paper the current literature on sensory functioning in PMS is reviewed and recommendations for caregivers, based on consensus within the European PMS consortium, are given.
Collapse
Affiliation(s)
- Margreet Walinga
- University of Groningen, University Medical Center Groningen, Dept. Genetics, Groningen, the Netherlands.
| | - Sarah Jesse
- University of Ulm, Department of Neurology, Ulm, Germany
| | | | | | | |
Collapse
|
3
|
Fayos T, Casañ M. Phelan-McDermid and general anesthesia with different hypnotics. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2022; 69:587-591. [PMID: 36257878 DOI: 10.1016/j.redare.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/23/2021] [Indexed: 06/16/2023]
Abstract
Phelan-McDermid syndrome (PMS) is a rare neurodevelopmental disease, caused by an autosomal dominant mutation due to the terminal deletion of 22q13, leading to a defect in the SHANK3 protein. We present the clinical case of a 12-year-old patient with this syndrome, who underwent three interventions that required general anesthesia. In none of them did she present intraoperative or postoperative complications.
Collapse
Affiliation(s)
- T Fayos
- Servicio de Anestesia y Reanimación, Hospital General Universitario de Castellón, Castellón, Spain.
| | - M Casañ
- Servicio de Anestesia y Reanimación, Hospital General Universitario de Castellón, Castellón, Spain
| |
Collapse
|
4
|
Wei Y, Zhang D, Zuo Y. Whole-exome sequencing reveals genetic variations in humans with differential sensitivity to sevoflurane:A prospective observational study. Biomed Pharmacother 2022; 148:112724. [PMID: 35202912 DOI: 10.1016/j.biopha.2022.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The anesthesia sensitivity is heterogeneous both in animals and humans, while the underlying molecular mechanism has not yet been determined. Here, for the first time, we conducted a prospective observational study to test whether genetic variations contribute to the differential sensitivity to sevoflurane in humans. METHODS Five hundred patients who underwent abdominal surgeries were included. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain Bispectral index (BIS) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. These patients were further divided into high sensitivity group (mean - SD, H group) and low sensitivity group (mean + SD, L group) to investigate the genetic variants related to the differential sensitivity to sevoflurane by whole-exome sequencing (WES) and genome-wide association study (GWAS) in karyocyte from peripheral blood. RESULTS The mean ETsevo of these 500 patients was 1.60% ± 0.34%. After pairing, 55 patients from H group and 59 patients from L group were selected for WES (ETsevo of H group: 1.06% ± 0.13% vs. ETsevo of L group: 2.17% ± 0.16%, P < 0.001), respectively. Finally, FAT atypical cadherin 2 (FAT2, SNP rs174272, rs174271, and rs174261), acireductone dioxygenase 1 (ADI1, SNP rs117278), NEDD4 E3 ubiquitin protein ligase (NEDD4, SNP rs70048, rs70049, and rs70056), and FAD dependent oxidoreductase domain containing 2 (FOXRED2, SNP rs144281) were found to be associated with sevoflurane sensitivity. CONCLUSIONS Genetic variations may contribute to the differential sensitivity to sevoflurane among humans.
Collapse
Affiliation(s)
- Yiyong Wei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu 610041, China.
| |
Collapse
|
5
|
Li C, Liu S, Mei Y, Wang Q, Lu X, Li H, Tao F. Differential Effects of Sevoflurane Exposure on Long-Term Fear Memory in Neonatal and Adult Rats. Mol Neurobiol 2022; 59:2799-2807. [PMID: 35201592 DOI: 10.1007/s12035-021-02629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
It remains unclear whether exposure to sevoflurane produces different effects on long-term cognitive function in developing and mature brains. In the present study, Sprague-Dawley neonatal rats at postnatal day (PND) 7 and adult rats (PND 56) were used in all experiments. We performed fear conditioning testing to examine long-term fear memory following 4-h sevoflurane exposure. We assessed hippocampal synapse ultrastructure with a transmission electron microscope. Moreover, we investigated the effect of sevoflurane exposure on the expression of postsynaptic protein 95 (PSD-95) and its binding protein kalirin-7 in the hippocampus. We observed that early exposure to sevoflurane in neonatal rats impairs hippocampus-dependent fear memory, reduces hippocampal synapse density, and dramatically decreases the expressions of PSD-95 and kalirin-7 in the hippocampus of the developing brain. However, sevoflurane exposure in adult rats has no effects on hippocampus-dependent fear memory and hippocampal synapse density, and the expressions of PSD-95 and kalirin-7 in the adult hippocampus are not significantly altered following sevoflurane treatment. Our results indicate that sevoflurane exposure produces differential effects on long-term fear memory in neonatal and adult rats and that PSD-95 signaling may be involved in the molecular mechanism for early sevoflurane exposure-caused long-term fear memory impairment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Anesthesiology and Perioperative Cognitive Function, Zhengzhou, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA
| | - Yixin Mei
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan, 450008, China.
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA.
| |
Collapse
|
6
|
Wei Y, Zhang D, Zuo Y. Metabolomics and Whole-Exome Sequencing in Patients with Differential Sensitivity to Sevoflurane: A Protocol for a Prospective Observational Trial. Front Pharmacol 2021; 12:621159. [PMID: 34790114 PMCID: PMC8591073 DOI: 10.3389/fphar.2021.621159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Introduction: Different sensitivity to volatile anesthetics in Drosophila, nematodes and mice is related to mutation of energy metabolism genes. In clinical practice, we find that the end-tidal sevoflurane concentration (ETsevo) differs among patients at the same depth of anesthesia, indicating that the sensitivity to sevoflurane varies among patients. However, the underlying mechanism remains unclear. The sensitivity of an anesthetic is associated with the postoperative outcomes of patients and the mechanism of action of volatile anesthetics. We therefore propose this protocol to determine whether differences in metabolite profile and genetic variations contribute to patients' sensitivity to volatile anesthetics. Methods and Analysis: This is a single-centre, prospective observational study. 720 patients undergoing abdominal surgery were included. General anesthesia was induced with inhaled sevoflurane, a bolus of sufentanil (0.2-0.4 μg/kg) and cis-atracurium (0.2-0.3 mg/kg). The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain a BIS (bispectral index) value between 40-60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery (steady state) was calculated for each patient. Patients were further divided into a high-sensitivity group (mean ETsevo - SD) and a low-sensitivity group (mean ETsevo + SD) to investigate the sensitivity to sevoflurane. Cases were paired from the high-sensitivity group (group H) and low-sensitivity group (group L) according to age, sex, body mass index (BMI), ASA physical status classification, vital signs, BIS, ephedrine use, sufentanildose, and cis-atracurium dose at anesthesia induction and steady state. Differences in metabolite levels, single nucleotide polymorphisms (SNPs) and protein-coding gene sequence variations between group H and group L will be determined through plasma metabolomics, whole-exome sequencing (WES), genome-wide association study (GWAS), and bioinformatics analyses. These results will be analysed to determine the reasons for the differential sensitivity to sevoflurane in humans. Ethics and Dissemination: This prospective observational study protocol has received ethical approval from the Ethical Committee of West China Hospital of Sichuan University on May 19, 2017 (Approval No. 78). Informed consent will be obtained before patient enrolment. The results will be submitted to international peer-review journals. Trial Registration Number: ChiCTR1800014327.
Collapse
Affiliation(s)
- Yiyong Wei
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.,Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Crocco M, Panciroli M, Milanaccio C, Morerio C, Verrico A, Garrè ML, Di Iorgi N, Capra V. Case Report: The Emerging Role of Ring Chromosome 22 in Phelan-McDermid Syndrome With Atypical Teratoid/Rhabdoid Tumor: The First Child Treated With Growth Hormone. Front Neurol 2021; 12:741062. [PMID: 34777208 PMCID: PMC8585933 DOI: 10.3389/fneur.2021.741062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) in the rhabdoid tumor predisposition syndromes are most often caused by germline mutations of the SMARCB1 gene located in chromosome 22q11.2. Although rarely, it can also result from the constitutional ring chromosome 22 (r22): during mitosis the ring chromosome may lead to an increased rate of somatic mutations, resulting in rhabdoid tumor predispositions when the tumor-suppressor gene SMARCB1 is involved. Individuals with r22 may present similar features as those with Phelan-McDermid syndrome (PMDS) due to 22q13.3 deletion, including the SHANK3 gene. Despite several reports on AT/RT in children with r22 and/or PMDS have been published, the role of constitutional r22 as new oncogenic mechanism for AT/RT is still under investigation. There is not a lot of data available on therapeutic and prognostic implications of r22 in AT/RT and PMDS. Herein, we present the first case of a child with constitutional r22, PMDS and AT/RT of the brain, who is a long term survivor and is been treated with growth hormone. We also describe an unexpected adverse reaction to midazolam.
Collapse
Affiliation(s)
- Marco Crocco
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy
| | - Marta Panciroli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy
| | - Claudia Milanaccio
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Cristina Morerio
- Laboratory of Human Genetics, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Antonio Verrico
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Maria Luisa Garrè
- Neuro-Oncology Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genoa, Italy.,Department of Pediatrics, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| | - Valeria Capra
- Medical Genetics Unit, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini Institute, Genoa, Italy
| |
Collapse
|
8
|
Anaesthesia and orphan disease: Phelan-McDermid syndrome. Eur J Anaesthesiol 2020; 37:730-731. [PMID: 32692085 DOI: 10.1097/eja.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Shank3 contributes to neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95. Neurosci Res 2020; 166:34-41. [PMID: 32454040 DOI: 10.1016/j.neures.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023]
Abstract
Neuropathic pain is a very complex chronic pain state, the detailed molecular mechanisms of which remain unclear. In the present study, Shank3 was found to play an important role in neuropathic pain in rats following spared nerve injury (SNI). Shank3 was upregulated in the spinal dorsal horn of rats subjected to SNI, and mechanical hypersensitivity to noxious stimuli in these rats could be alleviated by knock down of Shank3. Shank3 also interacted with hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and promoted the expression of HCN2 in central neurons of the spinal dorsal. Together with the SNI-dependent increase of HCN2, we also found that the postsynaptic protein of excitatory synapse (PSD95) was increased in rats following SNI. Taken together, our results showed that Shank3 modulated neuropathic pain by facilitating the SNI-dependent increase of HCN2 and the expression of PSD95 in spinal dorsal horn neurons. Our findings revealed new synaptic remodeling mechanisms linking Shank3 with neuropathic pain.
Collapse
|
10
|
Ding Y, Zhao J, Zhang X, Wang S, Viola KL, Chow FE, Zhang Y, Lippa C, Klein WL, Gong Y. Amyloid Beta Oligomers Target to Extracellular and Intracellular Neuronal Synaptic Proteins in Alzheimer's Disease. Front Neurol 2019; 10:1140. [PMID: 31736856 PMCID: PMC6838211 DOI: 10.3389/fneur.2019.01140] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: β-Amyloid protein (Aβ) putatively plays a seminal role in synaptic loss in Alzheimer's disease (AD). While there is no consensus regarding the synaptic-relevant species of Aβ, it is known that Aβ oligomers (AβOs) are noticeably increased in the early stages of AD, localizing at or within the synapse. In cell and animal models, AβOs have been shown to attach to synapses and instigate synapse dysfunction and deterioration. To establish the pathological mechanism of synaptic loss in AD, it will be important to identify the synaptic targets to which AβOs attach. Methods: An unbiased approach using far western ligand blots has identified three synaptic proteins to which AβOs specifically attach. These proteins (p100, p140, and p260) were subsequently enriched by detergent extraction, ultracentrifugation, and CHT-HPLC column separation, and sequenced by LC-MS/MS. P100, p140, and p260 were identified. These levels of AβOs targets in human AD and aging frontal cortexes were analyzed by quantitative proteomics and western-blot. The polyclonal antibody to AβOs was developed and used to block the toxicity of AβOs. The data were analyzed with one-way analysis of variance. Results: AβOs binding proteins p100, p140, and p260 were identified as Na/K-ATPase, synGap, and Shank3, respectively. α3-Na/K-ATPase, synGap, and Shank3 proteins showed loss in the postsynaptic density (PSD) of human AD frontal cortex. In short term experiments, oligomers of Aβ inhibited Na/K-ATPase at the synapse. Na/K-ATPase activity was restored by an antibody specific for soluble forms of Aβ. α3-Na/K-ATPase protein and synaptic β-amyloid peptides were pulled down from human AD synapses by co-immunoprecipitation. Results suggest synaptic dysfunction in early stages of AD may stem from inhibition of Na/K-ATPase activity by Aβ oligomers, while later stages could hypothetically result from disrupted synapse structure involving the PSD proteins synGap and Shank3. Conclusion: We identified three AβO binding proteins as α3-Na/K-ATPase, synGap, and Shank3. Soluble Aβ oligomers appear capable of attacking neurons via specific extracellular as well as intracellular synaptic proteins. Impact on these proteins hypothetically could lead to synaptic dysfunction and loss, and could serve as novel therapeutic targets for AD treatment by antibodies or other agents.
Collapse
Affiliation(s)
- Yu Ding
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiahui Zhao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunle Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shanshan Wang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kirsten L. Viola
- Department of Neurobiology and Neurology, Northwestern University, Evanston, IL, United States
| | - Frances E. Chow
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Yang Zhang
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Carol Lippa
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - William L. Klein
- Department of Neurobiology and Neurology, Northwestern University, Evanston, IL, United States
| | - Yuesong Gong
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Neurology, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
11
|
Behavioral Phenotyping of an Improved Mouse Model of Phelan-McDermid Syndrome with a Complete Deletion of the Shank3 Gene. eNeuro 2018; 5:eN-CFN-0046-18. [PMID: 30302388 PMCID: PMC6175061 DOI: 10.1523/eneuro.0046-18.2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/07/2018] [Accepted: 05/28/2018] [Indexed: 11/26/2022] Open
Abstract
Phelan–McDermid syndrome (PMS) is a rare genetic disorder in which one copy of the SHANK3 gene is missing or mutated, leading to a global developmental delay, intellectual disability (ID), and autism. Multiple intragenic promoters and alternatively spliced exons are responsible for the formation of numerous isoforms. Many genetically-modified mouse models of PMS have been generated but most disrupt only some of the isoforms. In contrast, the vast majority of known SHANK3 mutations found in patients involve deletions that disrupt all isoforms. Here, we report the production and thorough behavioral characterization of a new mouse model in which all Shank3 isoforms are disrupted. Domains and tasks examined in adults included measures of general health, neurological reflexes, motor abilities, sensory reactivity, social behavior, repetitive behaviors, cognition and behavioral inflexibility, and anxiety. Our mice are more severely affected than previously published models. While the deficits were typically more pronounced in homozygotes, an intermediate phenotype was observed for heterozygotes in many paradigms. As in other Shank3 mouse models, stereotypies, including increased grooming, were observed. Additionally, sensory alterations were detected in both neonatal and adult mice, and motor behavior was strongly altered, especially in the open field and rotarod locomotor tests. While social behaviors measured with the three-chambered social approach and male-female interaction tests were not strongly impacted, Shank3-deficient mice displayed a strong escape behavior and avoidance of inanimate objects in novel object recognition, repetitive novel object contact, marble burying, and nest building tasks, indicating increased novelty-induced anxiety. Similarly, increased freezing was observed during fear conditioning training and amygdala-dependent cued retrieval. Finally, deficits were observed in both initial training and reversal in the Barnes maze and in contextual fear testing, which are memory tasks involving hippocampal-prefrontal circuits. In contrast, working memory in the Y-maze spontaneous alternation test was not altered. This new mouse model of PMS, engineered to most closely represent human mutations, recapitulates core symptoms of PMS providing improvements for both construct and face validity, compared to previous models.
Collapse
|
12
|
Fodale V, Tripodi VF, Penna O, Famà F, Squadrito F, Mondello E, David A. An update on anesthetics and impact on the brain. Expert Opin Drug Saf 2017; 16:997-1008. [PMID: 28697315 DOI: 10.1080/14740338.2017.1351539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION While anesthetics are indispensable clinical tools and generally considered safe and effective, a growing concern over the potential neurotoxicity of anesthesia or specific anesthetic agents has called into question the safety of general anesthetics, especially when administered at extremes of age. Areas covered: This article reviews and updates research findings on the safety of anesthesia and anesthetics in terms of long-term neurotoxicity, with particular focus on postoperative cognitive dysfunctions, Alzheimer's disease and dementias, developing brain, post-operative depression and autism spectrum disorder. Expert opinion: Exposure to general anesthetics is potentially harmful to the human brain, and the consequent long-term cognitive deficits should be classified as an iatrogenic pathology, and considered a public health problem. The fact that in laboratory and clinical research only certain anesthetic agents and techniques, but not others, appear to be involved, raises the problem on what is the safest and the least safe anesthetic to maximize anesthesia efficiency, avoid occurrence of adverse events, and ensure patient safety. New trends in research are moving toward the theory that neuroinflammation could be the hallmark of, or could have a pivotal role in, several neurological disorders.
Collapse
Affiliation(s)
- Vincenzo Fodale
- a Department of Human Pathology of Adult and Evolutive Age , Section of Anesthesiology, University of Messina , Messina , Italy
| | - Vincenzo F Tripodi
- b Department of Cardiac Surgery, Unit of Cardioanesthesia , Metropolitan Hospital "Bianchi Melacrino Morelli" , Reggio Calabria , Italy
| | - Olivia Penna
- a Department of Human Pathology of Adult and Evolutive Age , Section of Anesthesiology, University of Messina , Messina , Italy
| | - Fausto Famà
- a Department of Human Pathology of Adult and Evolutive Age , Section of Anesthesiology, University of Messina , Messina , Italy
| | - Francesco Squadrito
- c Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Epifanio Mondello
- a Department of Human Pathology of Adult and Evolutive Age , Section of Anesthesiology, University of Messina , Messina , Italy
| | - Antonio David
- a Department of Human Pathology of Adult and Evolutive Age , Section of Anesthesiology, University of Messina , Messina , Italy
| |
Collapse
|