1
|
Vega AA, Shah PP, Rouchka EC, Clem BF, Dean CR, Woodrum N, Tanwani P, Siskind LJ, Beverly LJ. E. coli Biomolecules Increase Glycolysis and Invasive Potential in Lung Adenocarcinoma. Cancers (Basel) 2025; 17:380. [PMID: 39941749 PMCID: PMC11815989 DOI: 10.3390/cancers17030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction: Recent studies have discovered that lung cancer subtypes possess distinct microbiome profiles within their tumor microenvironment. Additionally, the tumor-associated microbiome exhibits altered bacterial pathways, suggesting that certain bacterial families are more capable of facilitating tumor progression than others. We hypothesize that there exists a crosstalk between lung adenocarcinoma (LUAD) cells and bacterial cells. Methods and Materials: RNA sequencing (RNA-seq) was performed on LUAD cell lines to explore the paracrine signaling effects of bacterial biomolecules. Based on our RNA-seq data, we investigated glycolysis by measuring glucose uptake and lactate production, invasive potential through invasion assays, and epithelial-to-mesenchymal transition (EMT) markers. Since lipopolysaccharides (LPS), abundant on the cell walls of Gram-negative bacteria, can activate toll-like receptor 4 (TLR4), we inhibited TLR4 with C34 to assess its relationship with the observed phenotypic changes. To identify the bacterial biomolecules responsible for these changes, we treated the media with RNAse enzyme, charcoal or dialyzed away molecules larger than 3 kDa. Results and Discussion: RNA-seq revealed 948 genes upregulated in the presence of E. coli biomolecules. Among these, we observed increased expression of Hexokinase II (HKII), JUN proto-oncogene, and Snail Family Transcriptional Repressor 1. We verified the elevation of glycolytic enzymes through Western blot and saw elevation of 2-deoxyglucose uptake and lactate production in LUAD cell lines incubated in E. coli biomolecules. In addition to E. coli elevating glycolysis in LUAD cell lines, E. coli exposure enhanced invasive potential as demonstrated by Boyden chamber assays. Notably, inhibition of TLR4 did not reduce the impact of E. coli biomolecules on glycolysis or the invasive potential of LUAD. Modulating the E. coli-supplemented media with RNAse enzyme or dextran-coated charcoal or using a spin column to remove biomolecules smaller than 3 kDa resulted in changes in HKII and Claudin protein expression. These findings suggest a direct relationship between E. coli and LUAD, wherein several cancer hallmarks are upregulated. Future studies should further investigate these bacterial biomolecules and their role in the tumor microenvironment to fully understand the impact of microbial shifts on cancer progression.
Collapse
Affiliation(s)
- Alexis A. Vega
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA (E.C.R.); (B.F.C.)
| | - Parag P. Shah
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Eric C. Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA (E.C.R.); (B.F.C.)
- KY INBRE Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Brian F. Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202, USA (E.C.R.); (B.F.C.)
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Calista R. Dean
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Natassja Woodrum
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Preeti Tanwani
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Leah J. Siskind
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| | - Levi J. Beverly
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (P.P.S.); (C.R.D.); (N.W.); (P.T.); (L.J.S.)
| |
Collapse
|
2
|
Hernandez-Hernandez O, Sabater C, Calvete-Torre I, Doyagüez EG, Muñoz-Labrador AM, Julio-Gonzalez C, de Las Rivas B, Muñoz R, Ruiz L, Margolles A, Mancheño JM, Moreno FJ. Tailoring the natural rare sugars D-tagatose and L-sorbose to produce novel functional carbohydrates. NPJ Sci Food 2024; 8:74. [PMID: 39366963 PMCID: PMC11452612 DOI: 10.1038/s41538-024-00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024] Open
Abstract
This multidisciplinary study details the biosynthesis of novel non-digestible oligosaccharides derived from rare sugars, achieved through transfructosylation of D-tagatose and L-sorbose by levansucrase from Bacillus subtilis CECT 39 (SacB). The characterization of these carbohydrates using NMR and molecular docking was instrumental in elucidating the catalytic mechanism and substrate preference of SacB. Tagatose-based oligosaccharides were higher in abundance than L-sorbose-based oligosaccharides, with the most representative structures being: β-D-Fru-(2→6)-β-D-Fru-(2→1)-D-Tag and β-D-Fru-(2→1)-D-Tag. In vitro studies demonstrated the resistance of tagatose-based oligosaccharides to intestinal digestion and their prebiotic properties, providing insights into their structure-function relationship. β-D-Fru-(2→1)-D-Tag was the most resistant structure to small-intestinal digestion after three hours (99.8% remained unaltered). This disaccharide and the commercial FOS clustered in similar branches, indicating comparable modulatory properties on human fecal microbiota, and exerted a higher bifidogenic effect than unmodified tagatose. The bioconversion of selected rare sugars into β-fructosylated species with a higher degree of polymerization emerges as an efficient strategy to enhance the bioavailability of these carbohydrates and promote their interaction with the gut microbiota. These findings open up new opportunities for tailoring natural rare sugars, like D-tagatose and L-sorbose, to produce novel biosynthesized carbohydrates with functional and structural properties desirable for use as emerging prebiotics and low-calorie sweeteners.
Collapse
Affiliation(s)
| | - Carlos Sabater
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Inés Calvete-Torre
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Ana M Muñoz-Labrador
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Cristina Julio-Gonzalez
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain
| | - Blanca de Las Rivas
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rosario Muñoz
- Institute of Food Science, Technology and Nutrition, ICTAN (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Lorena Ruiz
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - Abelardo Margolles
- Dairy Research Institute of Asturias (IPLA-CSIC), Paseo Río Linares s/n, 3300, Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), Avenida Hospital Universitario s/n, 33011, Oviedo, Asturias, Spain
| | - José M Mancheño
- Institute of Physical Chemistry 'Blas Cabrera' (IQF-CSIC), Serrano 119, 28006, Madrid, Spain
| | - F Javier Moreno
- Institute of Food Science Research, CIAL (CSIC-UAM), Nicolas Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
3
|
Luo Y, Zhang G, Hu C, Huang L, Wang D, Chen Z, Wang Y. The Role of Natural Products from Herbal Medicine in TLR4 Signaling for Colorectal Cancer Treatment. Molecules 2024; 29:2727. [PMID: 38930793 PMCID: PMC11206024 DOI: 10.3390/molecules29122727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/04/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The toll-like receptor 4 (TLR4) signaling pathway constitutes an intricate network of protein interactions primarily involved in inflammation and cancer. This pathway triggers intracellular signaling cascades, modulating transcription factors that regulate gene expression related to immunity and malignancy. Previous studies showed that colon cancer patients with low TLR4 expression exhibit extended survival times and the TLR4 signaling pathway holds a significant role in CRC pathogenesis. In recent years, traditional Chinese medicines (TCMs) have garnered substantial attention as an alternative therapeutic modality for CRC, primarily due to their multifaceted composition and ability to target multiple pathways. Emerging evidence indicates that specific TCM products, such as andrographolide, rosmarinic acid, baicalin, etc., have the potential to impede CRC development through the TLR4 signaling pathway. Here, we review the role and biochemical processes of the TLR4 signaling pathway in CRC, and natural products from TCMs affecting the TLR4 pathway. This review sheds light on potential treatment strategies utilizing natural TLR4 inhibitors for CRC, which contributes to the advancement of research and accelerates their clinical integration into CRC treatment.
Collapse
Affiliation(s)
- Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Guochen Zhang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| | - Zhejie Chen
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.L.); (G.Z.); (L.H.); (D.W.)
| |
Collapse
|
4
|
Sun J, Zhao Z, Lu J, An W, Zhang Y, Li W, Yang L. The Tumor Microenvironment Mediates the HIF-1α/PD-L1 Pathway to Promote Immune Escape in Colorectal Cancer. Int J Mol Sci 2024; 25:3735. [PMID: 38612546 PMCID: PMC11011450 DOI: 10.3390/ijms25073735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The unsatisfactory efficacy of immunotherapy for colorectal cancer (CRC) remains a major challenge for clinicians and patients. The tumor microenvironment may promote CRC progression by upregulating the expression of hypoxia-inducing factor (HIF) and PD-L1. Therefore, this study explored the expression and correlation of HIF-1α and PD-L1 in the CRC microenvironment. The expression and correlation of HIF-1α and PD-L1 in CRC were analyzed using bioinformatics and Western blotting (WB). The hypoxia and inflammation of the CRC microenvironment were established in the CT26 cell line. CT26 cells were stimulated with two hypoxia mimics, CoCl2 and DFO, which were used to induce the hypoxic environment. Western blotting was used to assess the expression and correlation of HIF-1α and PD-L1 in the hypoxic environment.LPS stimulated CT26 cells to induce the inflammatory environment. WB and bioinformatics were used to assess the expression and correlation of TLR4, HIF-1α, and PD-L1 in the inflammatory environment. Furthermore, the impact of curcumin on the inflammatory environment established by LPS-stimulated CT26 cells was demonstrated through MTT, Transwell, molecular docking, network pharmacology and Western blotting assays. In this study, we found that the HIF-1α/PD-L1 pathway was activated in the hypoxic and inflammatory environment and promoted immune escape in CRC. Meanwhile, curcumin suppressed tumor immune escape by inhibiting the TLR4/HIF-1α/PD-L1 pathway in the inflammatory environment of CRC. These results suggest that combination therapy based on the HIF-1α/PD-L1 pathway can be a promising therapeutic option and that curcumin can be used as a potent immunomodulatory agent in clinical practice.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Zhengtian Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Jiaqi Lu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Wen An
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Yiming Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Wei Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China; (J.S.); (Z.Z.); (J.L.); (W.A.); (Y.Z.); (W.L.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| |
Collapse
|
5
|
Fan J, Zhu J, Zhu H, Zhang Y, Xu H. Potential therapeutic target for polysaccharide inhibition of colon cancer progression. Front Med (Lausanne) 2024; 10:1325491. [PMID: 38264044 PMCID: PMC10804854 DOI: 10.3389/fmed.2023.1325491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024] Open
Abstract
In recent years, colon cancer has become one of the most common malignant tumors worldwide, posing a great threat to human health. Studies have shown that natural polysaccharides have rich biological activities and medicinal value, such as anti-inflammatory, anti-cancer, anti-oxidation, and immune-enhancing effects, especially with potential anti-colon cancer mechanisms. Natural polysaccharides can not only protect and enhance the homeostasis of the intestinal environment but also exert a direct inhibition effect on cancer cells, making it a promising strategy for treating colon cancer. Preliminary clinical experiments have demonstrated that oral administration of low and high doses of citrus pectin polysaccharides can reduce tumor volume in mice by 38% (p < 0.02) and 70% (p < 0.001), respectively. These results are encouraging. However, there are relatively few clinical studies on the effectiveness of polysaccharide therapy for colon cancer, and ensuring the effective bioavailability of polysaccharides in the body remains a challenge. In this article, we elucidate the impact of the physicochemical factors of polysaccharides on their anticancer effects and then reveal the anti-tumor effects and mechanisms of natural polysaccharides on colon cancer. Finally, we emphasize the challenges of using polysaccharides in the treatment of colon cancer and discuss future applications.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - He Zhu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Yinmeng Zhang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Liu Q, Song B, Tong S, Yang Q, Zhao H, Guo J, Tian X, Chang R, Wu J. Research Progress on the Anticancer Activity of Plant Polysaccharides. Recent Pat Anticancer Drug Discov 2024; 19:573-598. [PMID: 37724671 DOI: 10.2174/1574892819666230915103434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/21/2023]
Abstract
Tumor is a serious threat to human health, with extremely high morbidity and mortality rates. However, tumor treatment is challenging, and the development of antitumor drugs has always been a significant research focus. Plant polysaccharides are known to possess various biological activities. They have many pharmacological properties such as immunomodulation, antitumor, antiviral, antioxidative, antithrombotic, and antiradiation effects, reduction of blood pressure and blood sugar levels, and protection from liver injury. Among these effects, the antitumor effect of plant polysaccharides has been widely studied. Plant polysaccharides can inhibit tumor proliferation and growth by inhibiting tumor cell invasion and metastasis, inducing cell apoptosis, affecting the cell cycle, and regulating the tumor microenvironment. They also have the characteristics of safety, high efficiency, and low toxicity, which can alleviate, to a certain extent, the adverse reactions caused by traditional tumor treatment methods such as surgery, radiotherapy, and chemotherapy. Therefore, this paper systematically summarizes the direct antitumor effects of plant polysaccharides, their regulatory effects on the tumor microenvironment, and intervening many common high-incidence tumors in other ways. It also provides data support for the administration of plant polysaccharides in modern tumor drug therapy, enabling the identification of new targets and development of new drugs for tumor therapy.
Collapse
Affiliation(s)
- Qiaoyan Liu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Bo Song
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Sen Tong
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qiuqiong Yang
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Jia Guo
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xuexia Tian
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Renjie Chang
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Junzi Wu
- School of Basic Medical, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
7
|
Kumari N, Kumar M, Radha, Rais N, Puri S, Sharma K, Natta S, Dhumal S, Damale RD, Kumar S, Senapathy M, Deshmukh SV, Anitha T, Prabhu T, Shenbagavalli S, Balamurugan V, Lorenzo JM, Kennedy JF. Exploring apple pectic polysaccharides: Extraction, characterization, and biological activities - A comprehensive review. Int J Biol Macromol 2024; 255:128011. [PMID: 37951444 DOI: 10.1016/j.ijbiomac.2023.128011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2023] [Revised: 10/06/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Apple (Malus domestica) is a popular and ancient fruit of the Myrtaceae family. Apple fruit is well-known for its great nutritional and phytochemical content consisted of beneficial compounds such as polyphenols, polysaccharides, sterols, and organic acids. Polysaccharides extracted from different parts of the apple fruit, including the peel, pomace, or the whole fruit, have been extensively studied. Researchers have investigated the structural characteristics of these polysaccharides, such as molecular weight, type of monosaccharide unit, type of linkage and its position and arrangement. Besides this, functional properties and physicochemical and of apple polysaccharides have also been studied, along with the effects of extraction procedures, storage, and processing on cell wall polysaccharides. Various extraction techniques, including hot water extraction, enzymatic extraction, and solvent-assisted extraction, have been studied. From the findings, it was evident that apple polysaccharides are mainly composed of (1 → 3), (1 → 6): α-β-glycosidic linkage. Moreover, the apple polysaccharides were demonstrated to exhibit antioxidant, hepatoprotective, anti-cancer, hypoilipidemic, and enzyme inhibitory properties in vitro and in vivo. The potential applications of apple polysaccharides in the food, cosmetic, pharmaceutical, nutraceutical industries have also been explored in the present review. Overall, the research on apple polysaccharides highlights their significant potential as a source of biologically active compounds with various health benefits and practical applications.
Collapse
Affiliation(s)
- Neeraj Kumari
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer, Rajasthan 305004, India
| | - Sunil Puri
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Kanika Sharma
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Suman Natta
- ICAR-National Research Centre for Orchids, Pakyong 737106, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Rahul D Damale
- ICAR-National Research Centre on Pomegranate, Solapur 413255, India
| | - Sunil Kumar
- Indian Institute of Farming Systems Research, Modipuram 250110, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Sheetal Vishal Deshmukh
- Bharati Vidyapeeth (Deemed to be University), Yashwantrao Mohite Institute of Management, Karad, India
| | - T Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - T Prabhu
- Department of Spices and Plantation Crops, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - S Shenbagavalli
- Department of Natural Resource and Management, Horticultural College and Research Institute, Tamil Nadu Agricultural University, Periyakulam 625604, India
| | - V Balamurugan
- Department of Agricultural Economics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Avd. Galicia n° 4, San Cibrao das Viñas, 32900 Ourense, Spain
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, Kyrewood House, Tenbury Wells, Worcs WR15 8FF, UK
| |
Collapse
|
8
|
Ma M, Zeng G, Tan B, Zhao G, Su Q, Zhang W, Song Y, Liang J, Xu B, Wang Z, Chen J, Hou M, Yang C, Yun J, Huang Y, Lin Y, Chen D, Han Y, DeMorrow S, Liang L, Lai J, Huang L. DAGLβ is the principal synthesizing enzyme of 2-AG and promotes aggressive phenotype of intrahepatic cholangiocarcinoma via AP-1/DAGLβ/miR4516 feedforward circuitry. Am J Physiol Gastrointest Liver Physiol 2023; 325:G213-G229. [PMID: 37366545 PMCID: PMC10435072 DOI: 10.1152/ajpgi.00243.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/14/2022] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
The endocannabinoid system (ECS) is dysregulated in various liver diseases. Previously, we had shown that the major endocannabinoid 2-arachidonoyl glycerol (2-AG) promoted tumorigenesis of intrahepatic cholangiocarcinoma (ICC). However, biosynthesis regulation and clinical significance of 2-AG remain elusive. In the present study, we quantified 2-AG by gas chromatography/mass spectrometry (GC/MS) and showed that 2-AG was enriched in patients with ICC samples as well as in thioacetamide-induced orthotopic rat ICC model. Moreover, we found that diacylglycerol lipase β (DAGLβ) was the principal synthesizing enzyme of 2-AG that significantly upregulated in ICC. DAGLβ promoted tumorigenesis and metastasis of ICC in vitro and in vivo and positively correlated with clinical stage and poor survival in patients with ICC. Functional studies showed that activator protein-1 (AP-1; heterodimers of c-Jun and FRA1) directly bound to the promoter and regulated transcription of DAGLβ, which can be enhanced by lipopolysaccharide (LPS). miR-4516 was identified as the tumor-suppressing miRNA of ICC that can be significantly suppressed by LPS, 2-AG, or ectopic DAGLβ overexpression. FRA1 and STAT3 were targets of miR-4516 and overexpression of miRNA-4516 significantly suppressed expression of FRA1, SATA3, and DAGLβ. Expression of miRNA-4516 was negatively correlated with FRA1, SATA3, and DAGLβ in patients with ICC samples. Our findings identify DAGLβ as the principal synthesizing enzyme of 2-AG in ICC. DAGLβ promotes oncogenesis and metastasis of ICC and is transcriptionally regulated by a novel AP-1/DAGLβ/miR4516 feedforward circuitry.NEW & NOTEWORTHY Dysregulated endocannabinoid system (ECS) had been confirmed in various liver diseases. However, regulation and function of 2-arachidonoyl glycerol (2-AG) and diacylglycerol lipase β (DAGLβ) in intrahepatic cholangiocarcinoma (ICC) remain to be elucidated. Here, we demonstrated that 2-AG was enriched in ICC, and DAGLβ was the principal synthesizing enzyme of 2-AG in ICC. DAGLβ promotes tumorigenesis and metastasis in ICC via a novel activator protein-1 (AP-1)/DAGLβ/miR4516 feedforward circuitry.
Collapse
Affiliation(s)
- Mingjian Ma
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guangyan Zeng
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Bingyan Tan
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Guangyin Zhao
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qiao Su
- Laboratory Animal Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenhui Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yan Song
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiahua Liang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Borui Xu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Zicheng Wang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiancong Chen
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Mengjun Hou
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Chuntao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yuhua Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Yansong Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Demeng Chen
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, United States
| | - Sharon DeMorrow
- Research Division, Central Texas Veterans Health Care System, Temple, Texas, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, United States
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, Texas, United States
| | - Lijian Liang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jiaming Lai
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Li Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
- Center of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Wu ZY, Chen JL, Li H, Su K, Han YW. Different types of fruit intake and colorectal cancer risk: A meta-analysis of observational studies. World J Gastroenterol 2023; 29:2679-2700. [PMID: 37213399 PMCID: PMC10198059 DOI: 10.3748/wjg.v29.i17.2679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/19/2022] [Revised: 02/24/2023] [Accepted: 03/20/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Multiple studies investigating the relationship between intake of different types of fruit and colorectal cancer (CRC) risk have yielded inconsistent results.
AIM To perform a meta-analysis of existing studies to assess the association between the intake of different kinds of fruit and the incidence of CRC.
METHODS We searched online literature databases including PubMed, Embase, WOS, and Cochrane Library for relevant articles available up to August 2022. With data extracted from observational studies, odds ratios (ORs) with 95% confidence intervals (CIs) were assessed using random-effects models. A funnel plot and Egger’s test were used to determine publication bias. Furthermore, subgroup analysis and dose-response analysis were performed. All analyses were conducted using R (version 4.1.3).
RESULTS Twenty-four eligible studies involving 1068158 participants were included in this review. The meta-analysis showed that compared to a low intake, a higher intake of citrus, apples, watermelon, and kiwi reduced the risk of CRC by 9% [OR (95%CI) = 0.91 (0.85-0.97)], 25% [OR (95%CI) = 0.75 (0.66-0.85)], 26% [OR (95%CI) = 0.74 (0.58-0.94)], 13% [OR (95%CI) = 0.87 (0.78-0.96)], respectively. No significant association was observed between the intake of other types of fruit and the risk of CRC. In the dose-response analysis, a nonlinear association was found [R (95%CI) = -0.0031 (-0.0047 to -0.0014)] between citrus intake and CRC risk (P < 0.001), with the risk minimized around 120 g/d (OR = 0.85), while no significant dose-response correlation was observed after continued increase in intake.
CONCLUSION We found that a higher intake of citrus, apples, watermelon, and kiwi was negatively associated with the risk of CRC, while the intake of other types of fruits were not significantly associated with CRC. Citrus intake showed a non-linear dose-response relationship with the risk of CRC. This meta-analysis provides further evidence that a higher intake of specific types of fruit is effective in preventing the occurrence of CRC.
Collapse
Affiliation(s)
- Zhen-Ying Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Jia-Li Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Han Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Ke Su
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Yun-Wei Han
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| |
Collapse
|
10
|
Li Q, von Ehrlich-Treuenstätt V, Schardey J, Wirth U, Zimmermann P, Andrassy J, Bazhin AV, Werner J, Kühn F. Gut Barrier Dysfunction and Bacterial Lipopolysaccharides in Colorectal Cancer. J Gastrointest Surg 2023:10.1007/s11605-023-05654-4. [PMID: 36973501 PMCID: PMC10366024 DOI: 10.1007/s11605-023-05654-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/17/2022] [Accepted: 02/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND Inflammation is known to be an essential driver of various types of cancer. An increasing number of studies have suggested that the occurrence and development of colorectal cancer (CRC) are linked to the inflammatory microenvironment of the intestine. This assumption is further supported by the fact that patients with inflammatory bowel disease (IBD) are more likely to develop CRC. Multiple studies in mice and humans have shown that preoperative systemic inflammatory response is predictive of cancer recurrence after potentially curative resection. Lipopolysaccharides (LPS) are membrane surface markers of gram-negative bacteria, which induce gut barrier dysfunction and inflammation and might be significantly involved in the occurrence and development of CRC. METHODS A selective literature search was conducted in Medline and PubMed, using the terms "Colorectal Cancer", "Gut Barrier", "Lipopolysaccharides", and "Inflammation". RESULTS Disruption of intestinal homeostasis, including gut barrier dysfunction, is linked to increased LPS levels and is a critical factor for chronic inflammation. LPS can activate the diverse nuclear factor-κB (NF-κB) pathway via Toll-like receptors 4 (TLR4) to promote the inflammatory response, which aggravates gut barrier dysfunction and encourages CRC development. An intact gut barrier prevents antigens and bacteria from crossing the intestinal endothelial layer and entering circulation. In contrast, a damaged gut barrier triggers inflammatory responses and increases susceptibility to CRC. Thus, targeting LPS and the gut barrier might be a promising novel therapeutic approach for additional treatment of CRC. CONCLUSION Gut barrier dysfuction and bacterial LPS seem to play an important role in the pathogenesis and disease progression of colorectal cancer and therefore require further investigation.
Collapse
Affiliation(s)
- Qiang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Viktor von Ehrlich-Treuenstätt
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Josefine Schardey
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Petra Zimmermann
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, 81377, Munich, Germany
| | - Florian Kühn
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Marchioninistr. 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, 81377, Munich, Germany.
- Bavarian Cancer Research Center (BZKF), Partner Site Munich, 81377, Munich, Germany.
| |
Collapse
|
11
|
Shi S, Liu Y, Wang Z, Jin X, Yan W, Guo X, Lin B, Wang H, Li B, Zheng J, Wei Y. Fusobacterium nucleatum induces colon anastomosis leak by activating epithelial cells to express MMP9. Front Microbiol 2022; 13:1031882. [PMID: 36590433 PMCID: PMC9794562 DOI: 10.3389/fmicb.2022.1031882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in anastomotic techniques and perioperative care, the incidence of anastomotic leak (AL) has not substantially decreased over time. Although it is known that AL etiology is multifactorial and the mechanisms involved remain unclear, there is accumulating evidence pointing at AL related to gut microbiota. Method We firstly performed a clinical study to analyze the gut microbiota between colorectal cancer patients who developed AL and those who did not (nAL) using 16S-rRNA sequencing and quantitative real-time PCR to identify AL risk bacterial taxa. Then we built a rat anastomosis model and performed a bacteria transplantation to ensure the cause-effect relationship. The anastomotic healing score was used to evaluate the healing of anastomosis. In addition, we assessed the adhesion ability of bacteria by staining with fluorescein isothiocyanate and attachment assay. The expression of matrix metalloproteinase 9 (MMP9) was detected by western blot, and the activity was detected by gelatin zymography. Results We found that the abundance and positive rate of Fusobacterium nucleatum (Fn) were higher in the AL patients. Exposure of the rat's colon anastomosis to Fn contributes to the loss of submucosa collagen I and III, leading to AL's pathogenesis. Fn can attach to the gut epithelial cells and stimulate intestinal MMP9 expression in vitro and in vivo. We further confirmed that these effects of Fn depended on the E-cadherin/β-catenin signaling pathway. Conclusion This work demonstrates that Fn attaches and then stimulates the expression of epithelial cells MMP9 by the E-cadherin/β-catenin signaling pathway. These effects contribute to collagen break down in the intestinal tissue, finally leading to AL.
Collapse
Affiliation(s)
- Shang Shi
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China,Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Yang Liu
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China
| | - Zhiyue Wang
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangren Jin
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoran Wang
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bowen Li
- Oncology and Laparoscopy Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Zheng
- Imaging Center, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China,Ningbo Clinical Medical Research Center of Imaging Medicine, Ningbo, China,Jianjun Zheng,
| | - Yunwei Wei
- Pancreatic and Gastrointestinal Surgery Division, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China,Ningbo Clinical Research Center for Digestive System Tumors, Ningbo, China,*Correspondence: Yunwei Wei,
| |
Collapse
|
12
|
Zeng Y, Dai X, Chen Q, Liu Y, Gifty ZB, Sun W, Tang Z. Effect of Dietary Pomelo Peel Powder on Growth Performance, Diarrhea, Immune Function, Antioxidant Function, Ileum Morphology, and Colonic Microflora of Weaned Piglets. Animals (Basel) 2022; 12:ani12223216. [PMID: 36428442 PMCID: PMC9687033 DOI: 10.3390/ani12223216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
This trial evaluated how dietary-accommodated pomelo peel powder (PPP) affected average daily feed intake (ADFI) and average daily gain (ADG), diarrhea, antioxidation, and colonic microbial in weaned piglets. Thirty piglets weaned at 28 d were divided into three groups: a basal diet (CON); a CON containing 75 mg/kg chlortetracycline (CTC); and a CON containing 8 g/kg (PPP). This trial had a period of 28 days. Piglets supplemented with PPP had higher ADFI and ADG than piglets in CTC and CON (p < 0.05). The diarrhea rate in PPP and CTC was lower than in CON in the 3rd and 4th weeks (p < 0.05). Serum superoxide dismutase and glutathione peroxidase enzyme activities, and total antioxidant capacity in PPP were higher than those in CON (p < 0.05). Serum interleukin (IL)-4, insulin-like growth factor-I, immunoglobulin (Ig)A, and IgG concentrations in the PPP and CTC groups were higher than those in the CON group (p < 0.05). Serum IL-1β, IL-8, IL-17, and interferon (IFN)-γ concentrations and the cecal pH in PPP were lower than those in CON (p < 0.05). Serum IL-1β, IFN-γ, and IgA concentrations of piglets in PPP were lower than in CTC (p < 0.05). The villus height and villus height/crypt depth of the ileum of piglets in PPP and CTC were higher than those in CON (p < 0.05), but there was no difference between PPP and CTC (p > 0.05). The Firmicutes and Cyanobacteria relative abundances in PPP and CTC (p < 0.05) were lower than those in CON, whereas the Bacteroidetes relative abundances in PPP and CTC were higher than those in CON. The Prevotellaceae relative abundance in CTC was higher than in CON (p < 0.05), whereas the Lactobacillaceae relative abundance in CTC was lower than in CON (p < 0.05). The Ruminococcaceae relative abundance in PPP was higher than in CON (p < 0.05), whereas the Veillonellaceae relative abundance in PPP was lower than in CON (p < 0.05). PPP can improve ADFI and ADG, relieve diarrhea, and enhance the colonic microflora of weaned piglets. Therefore, PPP is expected to replace CTC as a feed additive to alleviate weaning stress and ensure normal growth and development of piglets.
Collapse
Affiliation(s)
- Yan Zeng
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Xinrui Dai
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Qingju Chen
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Yubo Liu
- Hunan Institute of Microbiology, Changsha 410009, China
| | - Ziema Bumbie Gifty
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Weizhong Sun
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
| | - Zhiru Tang
- Hunan Institute of Microbiology, Changsha 410009, China
- Laboratory of Bio-Feed and Animal Nutrition, Southwest University, Chongqing 400715, China
- Correspondence: ; Tel.: +86-1399-6192-900
| |
Collapse
|
13
|
Emran TB, Islam F, Mitra S, Paul S, Nath N, Khan Z, Das R, Chandran D, Sharma R, Lima CMG, Awadh AAA, Almazni IA, Alhasaniah AH, Guiné RPF. Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential. Molecules 2022; 27:7405. [PMID: 36364232 PMCID: PMC9657392 DOI: 10.3390/molecules27217405] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/30/2023] Open
Abstract
Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Shyamjit Paul
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nikhil Nath
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Zidan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, Tamil Nadu, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | | | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Ibrahim Abdullah Almazni
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Abdulaziz Hassan Alhasaniah
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran 61441, Saudi Arabia
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Department of Food Industry, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
14
|
Maksymowicz J, Palko-Łabuz A, Sobieszczańska B, Chmielarz M, Ferens-Sieczkowska M, Skonieczna M, Wikiera A, Wesołowska O, Środa-Pomianek K. The Use of Endo-Cellulase and Endo-Xylanase for the Extraction of Apple Pectins as Factors Modifying Their Anticancer Properties and Affecting Their Synergy with the Active Form of Irinotecan. Pharmaceuticals (Basel) 2022; 15:732. [PMID: 35745651 PMCID: PMC9229824 DOI: 10.3390/ph15060732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
Pectin constitutes an essential component of dietary fiber. Modified pectins from various sources possess potent anticancer and immunomodulatory activities. In this study, two pectins isolated from apple pomace by Trichoderma enzyme treatment, PX (with endo-xylanase) and PCX (with both endo-cellulase and endo-xylanase), were studied in colon cancer cell lines (HCT 116, Caco-2, and HT-29). Both pectins reduced colon cancer cell viability, induced apoptosis, and increased intracellular amounts of reactive oxygen species. Additionally, synergy between pectin and an active form of irinotecan, SN-38, in all aspects mentioned above, was discovered. This drug is a common component of cytotoxic combinations recommended as treatment for colon cancer patients. PX and PCX demonstrated significant anti-inflammatory activity in lipopolysaccharide-stimulated cells. Interaction of apple pectins with galectin-3 and Toll-like Receptor 4 (TLR4) was suggested to be responsible for their anticancer and anti-inflammatory effect. Since PCX was more active than PX in almost all experiments, the role of the enzyme used to obtain the pectin for its biological activity was discussed. It was concluded that co-operation between both enzymes was needed to obtain the molecule of the most beneficial properties. The low molecular mass of PCX together with a high proportion of rhamnogalacturonan I (RG I) regions seemed to be crucial for its superior activity.
Collapse
Affiliation(s)
- Jerzy Maksymowicz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (A.P.-Ł.); (M.C.)
| | - Anna Palko-Łabuz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (A.P.-Ł.); (M.C.)
| | | | - Mateusz Chmielarz
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (A.P.-Ł.); (M.C.)
- Department of Microbiology, Wroclaw Medical University, 50-367 Wrocław, Poland;
| | | | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland;
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Agnieszka Wikiera
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture in Krakow, 31-120 Krakow, Poland;
| | - Olga Wesołowska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (A.P.-Ł.); (M.C.)
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland; (J.M.); (A.P.-Ł.); (M.C.)
| |
Collapse
|
15
|
Panyathep A, Punturee K, Chewonarin T. Gamma-Oryzanol-Rich Fraction from Purple Rice Extract Attenuates Lipopolysaccharide-Stimulated Inflammatory Responses, Migration and VEGFA Production in SW480 Cells via Modulation of TLR4 and NF-κB Pathways. Nutr Cancer 2021; 74:2254-2264. [PMID: 34766845 DOI: 10.1080/01635581.2021.2002921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
Abstract
Inflammatory response facilitating colorectal cancer (CRC) progression is a serious event following operative infection, which can occur in CRC patients. This event is mainly mediated by bacterial lipopolysaccharide (LPS), via a toll like receptor 4 (TLR4) and NF-κB. Hexane soluble fraction (HSF) from purple rice extract (PRE) has been identified as a γ-oryzanol (OR)-rich fraction. Recently, HSF possessed inhibitory effect of LPS-stimulated metastasis of human colon cancer SW480 cells, however the related mechanism was unknown. Thus, this study aimed to investigate the effect of HSF on inflammatory response-associated cancer progression of LPS-stimulated SW480 cells. The various inflammatory mediators, vascular endothelial growth factor-A (VEGFA) and related pathways were evaluated by Western blot and ELISA. Furthermore, cell migration was also determined by migration assays. Of all, HSF seemed to be stronger than OR to attenuate the responsiveness of LPS on various inflammatory mediators, which was related to an obvious reduction of cancer cell migration as well as indistinct disruption on VEGFA production in SW480 cells, via downregulation of TLR4 and NF-κB. Therefore, OR-rich fraction from PRE, against the subsequent inflammatory response and CRC progression following surgery, which could be combined with conventional treatments to increase the survival rate.
Collapse
Affiliation(s)
- Atita Panyathep
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Khanittha Punturee
- Cancer Research Unit of Associated Medical Sciences (AMS-CRU), Faculties of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
16
|
Newly Obtained Apple Pectin as an Adjunct to Irinotecan Therapy of Colorectal Cancer Reducing E. coli Adherence and β-Glucuronidase Activity. Cancers (Basel) 2021; 13:cancers13122952. [PMID: 34204704 PMCID: PMC8231545 DOI: 10.3390/cancers13122952] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second cause of cancer death worldwide. The composition and enzymatic activity of colonic microbiota can significantly affect the effectiveness of CRC chemotherapy. Irinotecan is a drug widely used to treat colon cancer. However, the transformation of a drug-glucuronide (SN-38G) back to its active form (SN-38) by bacterial β-glucuronidase (GUS) constitutes the primary reason for the observed intestinal toxicity of irinotecan. It was demonstrated that novel enzymatically extracted apple pectin (PC) might be a promising candidate for an adjunct to irinotecan therapy. PC itself reduced the viability of HCT 116 and Caco-2 colorectal cancer cells, induced apoptosis, and increased intracellular reactive oxygen species production. Moreover, PC enhanced the cytotoxic and proapoptotic effect of irinotecan (at concentrations below its IC50), i.e., synergistic effect was recorded. Additionally, PC exhibited potent anti-inflammatory properties and prevented adhesion of prototype adherent-invasive E. coli (AIEC) LF82 strain and laboratory K-12C600 strain to colon cancer cells. PC was also identified to be an effective inhibitor of bacterial GUS activity. Altogether, novel apple pectin was identified as a promising candidate for a supplement to irinotecan therapy that might alleviate its side-effects via inhibition of bacterial GUS and thus increasing its therapeutic efficacy.
Collapse
|
17
|
Li H, Chen P, Chen L, Wang X. The Natural Flavonoid Naringenin Inhibits the Cell Growth of Wilms Tumor in Children by Suppressing TLR4/NF-κB Signaling. Anticancer Agents Med Chem 2021; 21:1120-1126. [PMID: 32819237 DOI: 10.2174/1871520620999200818155814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nuclear Factor-kappa B (NF-κB) is usually activated in Wilms Tumor (WT) cells and plays a critical role in WT development. OBJECTIVE The study's purpose was to screen for a NF-κB inhibitor from the natural product library and explore its effects on WT development. METHODS Luciferase assay was employed to assess the effects of natural chemicals on NF-κB activity. CCK-8 assay was conducted to assess cell growth in response to naringenin. WT xenograft model was established to analyze the effect of naringenin in vivo. Quantitative real-time PCR and Western blot were performed to examine the mRNA and protein levels of relative genes, respectively. RESULTS Naringenin displayed a significant inhibitory effect on NF-κB activation in SK-NEP-1 cells. In SKNEP- 1 and G-401 cells, naringenin inhibited p65 phosphorylation. Moreover, naringenin suppressed TNF-α- induced p65 phosphorylation in WT cells. Naringenin inhibited TLR4 expression at both mRNA and protein levels in WT cells. CCK-8 staining showed that naringenin inhibited cell growth of the two above WT cells in doseand time-dependent manner, whereas Toll-Like Receptor 4 (TLR4) overexpression partially reversed the above phenomena. Besides, naringenin suppressed WT tumor growth in a dose- and time-dependent manner in vivo. Western blot found that naringenin inhibited TLR4 expression and p65 phosphorylation in WT xenograft tumors. CONCLUSION Naringenin inhibits WT development via suppressing TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Pediatric Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Peng Chen
- Department of Anesthesiology, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Lei Chen
- Department of Pediatric Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou 061000, Hebei, China
| | - Xinning Wang
- Department of Pediatric Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou 061000, Hebei, China
| |
Collapse
|
18
|
Brusatol reverses lipopolysaccharide-induced epithelial-mesenchymal transformation and induces apoptosis through PI3K/Akt/NF-кB pathway in human gastric cancer SGC-7901 cells. Anticancer Drugs 2020; 32:394-404. [PMID: 33229902 DOI: 10.1097/cad.0000000000001022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Abstract
Brusatol is a butyrolactone compound isolated from traditional Chinese medicine Brucea javanica. It has been reported to possess strong cytotoxicity against various cancer cells, thus showing its potential as an anticancer drug. Besides, lipopolysaccharide (LPS) plays a central role in the tumor microenvironment, while epithelial-mesenchymal transformation (EMT), a biological process by which epithelial cells are transformed into mesenchymal phenotypic cells through specific procedures, participates in chronic inflammation and tumor metastasis. This study aimed to investigate the inhibition of LPS-induced tumor cell invasion and metastasis and the molecular mechanism of apoptosis induced by brusatol in human gastric cancer SGC-7901 cells. Cell viability, cell migration and invasion ability, inflammatory factor release, and protein expression were detected using methyl thiazolyl tetrazolium assays, transwell assays, ELISA kit, and Western blot analysis, respectively. The change of EMT marker protein vimentin was assessed using immunofluorescence, while the apoptosis rate was measured using flow cytometry. In summary, brusatol inhibited LPS-induced EMT via the deactivation of the PI3K/Akt/NF-кB signaling pathway. This provides a useful new theoretical basis for the treatment of gastric cancer in the future.
Collapse
|
19
|
Affiliation(s)
- Manoj Kumar Sarangi
- Department of Pharmacy, Sardar Bhagwan Singh Postgraduate Institute of Biomedical Sciences and Research, Dehradun, India
- Bijupatnaik University of Technology, Rourkela, India
| | - M. E. Bhanoji Rao
- Department of Pharmacy, Roland Institute of Pharmaceutical Sciences, Berhampur, India
- Department of Pharmacy, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Howrah, India
| | - Versha Parcha
- Department of Pharmacy, Sardar Bhagwan Singh Postgraduate Institute of Biomedical Sciences and Research, Dehradun, India
- Department of Applied Chemistry, Dolphin (PG) Institute of Biomedical and Natural Sciences, Dehradun, India
| |
Collapse
|
20
|
Mohan K, Muralisankar T, Uthayakumar V, Chandirasekar R, Revathi N, Ramu Ganesan A, Velmurugan K, Sathishkumar P, Jayakumar R, Seedevi P. Trends in the extraction, purification, characterisation and biological activities of polysaccharides from tropical and sub-tropical fruits - A comprehensive review. Carbohydr Polym 2020; 238:116185. [PMID: 32299552 DOI: 10.1016/j.carbpol.2020.116185] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2019] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 01/04/2023]
Abstract
Tropical and sub-tropical fruits are tremendous sources of polysaccharides (PSs), which are of great interest in the human welfare system as natural medicines, food and cosmetics. This review paper aims to highlight the recent trends in extraction (conventional and non-conventional), purification and analytic techniques of fruit polysaccharides (FPSs). The chemical structure and biological activities, such as immunomodulatory, anti-cancer, anti-oxidant, anti-inflammatory, anti-viral, anti-coagulant and anti-diabetic effects, of PSs extracted from 53 various fruits were compared and discussed. With this wide coverage, a total of 172 scientific articles were reviewed and discussed. This comprehensive survey from previous studies suggests that the FPSs are non-toxic and highly biocompatible. In addition, this review highlights that FPSs might be excellent functional foods as well as effective therapeutic drugs. Finally, the future research advances of FPSs are also described. The content of this review will promote human wellness-based food product development in the future.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India.
| | - Thirunavukkarasu Muralisankar
- Aquatic Ecology Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | | | | | - Nagarajan Revathi
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, 638 316, India
| | - Abirami Ramu Ganesan
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, 5529, Fiji
| | - Kalamani Velmurugan
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Rajarajeswaran Jayakumar
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Palaniappan Seedevi
- Department of Environmental Science, Periyar University, Salem, Tamil Nadu, 636011, India
| |
Collapse
|
21
|
Li Y, Wang S, Sun Y, Xu W, Zheng H, Wang Y, Tang Y, Gao X, Song C, Long Y, Liu J, Liu L, Mei Q. Apple polysaccharide protects ICR mice against colitis associated colorectal cancer through the regulation of microbial dysbiosis. Carbohydr Polym 2019; 230:115726. [PMID: 31887919 DOI: 10.1016/j.carbpol.2019.115726] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022]
Abstract
The study tried to investigate whether apple polysaccharide (AP) could prevent colitis associated colorectal cancer (CACC) through the regulation of intestinal microbiota disorders. 10 % AP (w/v) was administrated to ICR mice by gavage for 15 wk. It was found that AP treatment protected against CACC in mice effectively. The level of Lactobacillus in the intestine of AOM/DSS-treated mice was significantly decreased and that of Fusobacterium increased; while AP could reverse this trend and increase the intestinal microbiota diversity. The number of T cells and macrophages in the colon tissue of mice in AOM/DSS group elevated; while AP could reduce the number of these cells significantly. AP suppressed nuclear aggregation of β-catenin, inhibited the activation of Wnt pathway in colon tissues. These data suggest that AP prevented ICR mice from CACC at least in part through regulating intestinal flora disorder and Wnt pathway.
Collapse
Affiliation(s)
- Yuhua Li
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medial University, Luzhou, 646000 Sichuan, PR China; Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005 Guangdong, PR China
| | - Sheng Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai, 200437, PR China
| | - Yang Sun
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an, 710032 Shaanxi, PR China
| | - Wenqi Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai, 200437, PR China
| | - Hongnan Zheng
- Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005 Guangdong, PR China
| | - Yan Wang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai, 200437, PR China
| | - Yuan Tang
- Department of Pharmacy, the First Naval Force Hospital of Southern Theatre Command, Zhanjiang, 524005 Guangdong, PR China
| | - Xiaowei Gao
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medial University, Luzhou, 646000 Sichuan, PR China
| | - Can Song
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medial University, Luzhou, 646000 Sichuan, PR China
| | - Yin Long
- Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 Shaanxi, PR China
| | - Jiayun Liu
- Xijing Hospital, the Fourth Military Medical University, Xi'an, 710032 Shaanxi, PR China
| | - Li Liu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, 200437, PR China; Shanghai Professional and Technical Service Center for Biological Material Drug-ability Evaluation, Shanghai, 200437, PR China.
| | - Qibing Mei
- Department of Microbial and Biochemical Pharmacy, School of Pharmacy, Southwest Medial University, Luzhou, 646000 Sichuan, PR China.
| |
Collapse
|
22
|
Modified apple polysaccharide regulates microbial dysbiosis to suppress high-fat diet-induced obesity in C57BL/6J mice. Eur J Nutr 2019; 59:2025-2037. [PMID: 31312904 DOI: 10.1007/s00394-019-02051-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2019] [Accepted: 07/05/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Obesity, substantially increasing the risk of diseases such as metabolic diseases, becomes a major health challenge. In this study, we, therefore, investigated the effect of modified apple polysaccharide (MAP) on obesity. METHODS Twelve male C57BL/6J mice were given a 45% high-fat diet (HFD) for 12 weeks to replicate an obesity model and six mice were given normal diet as control. Then, 1 g/kg MAP was administrated to six mice by gavage for 15 days. Illumina Miseq PE300 sequencing platform was used to analyze the microbial diversity of fecal samples. Flow cytometry was employed to investigate the effects of MAP on immune cells in adipose tissue. Bacterial culture and qPCR were used to assess the effects of MAP on the growth of whole fecal bacteria and representative microbiota in vitro. RESULTS MAP could alleviate HFD-induced obesity and decrease body weight of mice effectively. The results of α diversity showed that Shannon index in HFD group was significantly lower than that in control group; Shannon index in MAP group was higher than that in HFD group. The results of β diversity showed that the microbiota of MAP group was more similar to that of control group. HFD increased the number of T cells and macrophages in adipocytes; while MAP decreased the number of T cells and macrophages. MAP could promote the growth of fecal bacteria, and demonstrated a facilitated effect on the proliferation of Bacteroidetes, Bacteroides, Lactobacillus, and an inhibitory effect on Fusobacterium. CONCLUSIONS MAP could reduce HFD-induced obesity of mice effectively. The possible mechanisms are that MAP restored HFD-induced intestinal microbiota disorder, downregulated the number of T cells and macrophages in adipose tissue.
Collapse
|
23
|
do Prado SBR, Castro-Alves VC, Ferreira GF, Fabi JP. Ingestion of Non-digestible Carbohydrates From Plant-Source Foods and Decreased Risk of Colorectal Cancer: A Review on the Biological Effects and the Mechanisms of Action. Front Nutr 2019; 6:72. [PMID: 31157230 PMCID: PMC6529955 DOI: 10.3389/fnut.2019.00072] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
The hypothesis that links the increase in the intake of plant-source foods to a decrease in colorectal cancer (CRC) risk has almost 50 years. Nowadays, systematic reviews and meta-analysis of case-control and cohort studies confirmed the association between dietary patterns and CRC risk, in which the non-digestible carbohydrates (NDC) from plant-source foods are known to play beneficial effects. However, the mechanisms behind the physicochemical properties and biological effects induced by NDC on the decrease of CRC development and progression remain not fully understood. NDC from plant-source foods consist mainly of complex carbohydrates from plant cell wall including pectin and hemicellulose, which vary among foods in structure and in composition, therefore in both physicochemical properties and biological effects. In the present review, we highlighted the mechanisms and described the recent findings showing how these complex NDC from plant-source foods are related to a decrease in CRC risk through induction of both physicochemical effects in the gastrointestinal tract, fermentation-related effects, and direct effects resulting from the interaction between NDC and cellular components including toll-like receptors and galectin-3. Studies support that the definition of the structure-function relationship-especially regarding the fermentation-related effects of NDC, as well as the direct effects of these complex carbohydrates in cells-is crucial for understanding the possible NDC anticancer effects. The dietary recommendations for the intake of NDC are usually quantitative, describing a defined amount of intake per day. However, as NDC from plant-source foods can exert effects that vary widely according to the NDC structure, the dietary recommendations for the intake of NDC plant-source foods are expected to change from a quantitative to a qualitative perspective in the next few years, as occurred for lipid recommendations. Thus, further studies are necessary to define whether specific and well-characterized NDC from plant-source foods induce beneficial effects related to a decrease in CRC risk, thereby improving nutritional recommendations of healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Samira Bernardino Ramos do Prado
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Victor Costa Castro-Alves
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
| | - Gabrielle Fernandez Ferreira
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - João Paulo Fabi
- Department of Food Science and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Food Research Center (FoRC), CEPID-FAPESP (Research, Innovation and Dissemination Centers, São Paulo Research Foundation), São Paulo, Brazil
- Food and Nutrition Research Center (NAPAN), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Lerma-García MJ, Nicoletti M, Simó-Alfonso EF, Righetti PG, Fasoli E. Proteomic fingerprinting of apple fruit, juice, and cider via combinatorial peptide ligand libraries and MS analysis. Electrophoresis 2018; 40:266-271. [DOI: 10.1002/elps.201800320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Maria Nicoletti
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | | | - Pier Giorgio Righetti
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| | - Elisa Fasoli
- Department of Chemistry; Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; Milan Italy
| |
Collapse
|
25
|
Wang N, Meng X, Liu Y, Chen Y, Liang Q. LPS promote Osteosarcoma invasion and migration through TLR4/HOTAIR. Gene 2018; 680:1-8. [PMID: 30240881 DOI: 10.1016/j.gene.2018.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Osteosarcoma is one of common malignant tumors worldwide in the metaphysis of teenagers. The role of lncRNAs in Osteosarcoma has become an emerging area of research. MATERIALS AND METHODS Cell migration and invasion were analyzed in Osteosarcoma cell following knockdown or overexpression by transfection with small interfering RNA (siRNA) or treated with LPS. Western blotting and Real-time RT-PCR methods were used to analyze the effects of LPS on EMT. RESULTS We discovered that LPS could regulate cell migration and invasion and promote EMT. At the same time, LPS could regulate the expression of TLR4 and HOTAIR. In addition, knockdown of the expression of TLR4 partially reverses the promotion of cell invasion induced by LPS. CONCLUSIONS Our results indicated that LPS coordinate the Osteosarcoma through TLR4/HOTAIR.
Collapse
Affiliation(s)
- Ning Wang
- Department of Orthopaedics, the First Affiliated Hospital of China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China; Department of Orthopaedics, Center Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China
| | - Xiaona Meng
- Department of Biochemistry and Molecular Biol, College of Basic Medical Science, China Medical University, Shenyang 110122, China.
| | - Yongyi Liu
- Department of Orthopaedics, the First Affiliated Hospital of China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yong Chen
- Department of Orthopaedics, Center Hospital Affiliated to Shenyang Medical College, Shenyang 110024, China
| | - Qingwei Liang
- Department of Orthopaedics, the First Affiliated Hospital of China Medical University, Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
26
|
Wu KH, Ho CT, Chen ZF, Chen LC, Whang-Peng J, Lin TN, Ho YS. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal 2018. [DOI: 10.1016/j.jfda.2017.03.009 pmid: 29389559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023] Open
|
27
|
Baharara J, Amini E, Musavi M. Anti-Vasculogenic Activity of a Polysaccharide Derived from Brittle Star via Inhibition of VEGF, Paxillin and MMP-9. IRANIAN JOURNAL OF BIOTECHNOLOGY 2017; 15:179-185. [PMID: 29845067 DOI: 10.15171/ijb.1208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2015] [Revised: 05/28/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
Background: Bioactive compounds such as terpenoids, chondroitin sulfate, and polysaccharides with added value can be found in prestine marine creatures. These compounds often do have highly valuable therapeutic applications such as being antioxidant, antitumorogenic, anti-inflammatory and anti-angiogenic. For the latter, varieties of angiogenesis factors can suppress this issue within the bodily tissues. Objectives: The anti-angiogenic and anti-metastatic capacity of a polysaccharide derived from brittle star was investigated. Material and Methods: The anti-proliferative effect of derived polysaccharide on umbilical vein endothelial cells (HUVEC) was measured using MTT (dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assay. The anti-angiogenic effect of the isolated polysaccharide was examined by Chorioallantoic membrane (CAM) assay. The transcriptional expression of VEGF (Vascular Endothelial Growth Factor) was evaluated by Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). The anti-metastatic activity was investigated via scratch-wound healing assay. The levels of Paxillin and Matrix Metalloproteinase-9 (MMP-9) expression were analyzed by RT-PCR. Statistical analysis and mean comparisons (p< 0.05) were carried out by SPSS 16. Results: Our results elucidated that the brittle star isolated polysaccharide exerted a dose dependent cytotoxic effect on the HUVEC endothelial cells. The CAM assay exhibited potent anti-angiogenic activity in vivo. The RT-PCR analysis showed that the extracted polysaccharide (40, 60 µg.mL-1) down-regulated the VEGF expression. Further, the diminished attachment of endothelial cells demonstrated that the anti-invasiveness of the derived polysaccharide (25, 50 µg.mL-1) was administrated via down-regulation of paxillin and MMP-9 mRNA expression. Conclusions: Taken together, these results indicated that the polysaccharide extracted from brittle star was able to decrease the viability of the HUVEC cells, to suppress angiogenesis, and possibly act as a natural anti-angiogenic and anti-metastatic marine organic compound against angiogenesis related pathologies.
Collapse
Affiliation(s)
- Javad Baharara
- Department of Biology, Research Center For Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad, 9183897194, Iran
| | - Elaheh Amini
- Department of Cellular & Molecular Biology, Faculty of Biology, Kharazmi University, Tehran, 14911-15719, Iran
| | - Marziyeh Musavi
- Department Faculty of Biological Science, Mashhad Branch, Islamic Azad University, Mashhad, 9183897194, Iran
| |
Collapse
|
28
|
Wang S, Li Q, Zang Y, Zhao Y, Liu N, Wang Y, Xu X, Liu L, Mei Q. Apple Polysaccharide inhibits microbial dysbiosis and chronic inflammation and modulates gut permeability in HFD-fed rats. Int J Biol Macromol 2017; 99:282-292. [DOI: 10.1016/j.ijbiomac.2017.02.074] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 12/26/2022]
|
29
|
Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats. Biomed Pharmacother 2017; 92:384-393. [PMID: 28554134 DOI: 10.1016/j.biopha.2017.05.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy that targets cellular signaling pathway represents an alternative therapy for the treatment of colon cancer (CRC). The present study was therefore aimed to investigate the probable interaction of Lactobacillus rhamnosus ATCC 7469 exopolysaccharides (EPS) with low level ionizing γ radiation (γ-R) exposure against dimethylhydrazine (DMH)- induced colorectal carcinogenesis in rats. Colon cancer was induced with 20mg DMH/kg BW. Rats received daily by gastric gavage 100mg EPS/Kg BW concomitant with 1Gy γ-R over two months. Colonic oxidative and inflammatory stresses were assessed. The change in the expression of p-p38 MAPK, p-STAT3, β-catenin, NF-kB, COX-2 and iNOS was evaluated by western blotting and q-PCR. It was found that DMH treatment significantly induced colon oxidative injury accompanied by inflammatory disturbance along with increased protein expression of the targeted signaling factors p-p38 MAPK, p-STAT3 and β-catenin. The mRNA gene expression of NF-kB, COX-2 and iNOS was significantly higher in DMH-treated animals. It's worthy to note that colon tissues with DMH treatment showed significant dysplasia and anaplasia of the glandular mucosal lining epithelium with loses of goblet cells formation, pleomorphism in the cells and hyperchromachia in nuclei. Interestingly, EPS treatment with γ-R exposure showed statistically significant amelioration of the oxidative and inflammatory biomarkers with modulated signaling molecular factors accompanied by improved histological structure against DMH-induced CRC. In conclusion, our findings showed that Lactobacillus rhamnosus ATCC 7469 EPS with low level γ-R in synergistic interaction are efficacious control against CRC progression throughout the modulation of key signaling growth factors associated with inflammation via antioxidant mediated anti-inflammatory and anti-proliferative activities.
Collapse
|
30
|
Wu KH, Ho CT, Chen ZF, Chen LC, Whang-Peng J, Lin TN, Ho YS. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter. J Food Drug Anal 2017; 26:221-231. [PMID: 29389559 PMCID: PMC9332637 DOI: 10.1016/j.jfda.2017.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/06/2017] [Revised: 03/23/2017] [Accepted: 03/29/2017] [Indexed: 01/09/2023] Open
Abstract
Human triple-negative breast cancer (TNBC) is the most aggressive and poorly understood subclass of breast cancer. Glucose transporters (GLUTs) are required for glucose uptake in malignant cancer cells and are ideal targets for cancer therapy. To determine whether the inhibition of GLUTs could be used in TNBC cell therapy, the apple polyphenol phloretin (Ph) was used as a specific antagonist of GLUT2 protein function in human TNBC cells. Interestingly, we found that Ph (10–150 μM, for 24 h) inhibited cell growth and arrested the cell cycle in MDA-MB-231 cells in a p53 mutant-dependent manner, which was confirmed by pre-treatment of the cells with a p53-specific dominant-negative expression vector. We also found that Ph treatment (10–150 μM, for 24 h) significantly decreased the migratory activity of the MDA-MB-231 cells through the inhibition of paxillin/FAK, Src, and alpha smooth muscle actin (α-sMA) and through the activation of E-cadherin. Furthermore, the anti-tumorigenic effect of Ph (10, 50 mg/kg or DMSO twice a week for six weeks) was demonstrated in vivo using BALB/c nude mice bearing MDA-MB-231 tumor xenografts. A decrease in N-cadherin, vimentin and an increase in p53, p21 and E-cadherin were detected in the tumor tissues. In conclusion, inhibition of GLUT2 by the apple polyphenol Ph could potentially suppress TNBC tumor cell growth and metastasis.
Collapse
Affiliation(s)
- Kuan-Hsun Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhao-Feng Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Ching Chen
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan; Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Jacqueline Whang-Peng
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Teng-Nan Lin
- Institute of Biomedical Sciences, Academia Sinica, Taiwan.
| | - Yuan-Soon Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan; School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
31
|
Emerging concepts in the nutraceutical and functional properties of pectin-A Review. Carbohydr Polym 2017; 168:227-239. [PMID: 28457445 DOI: 10.1016/j.carbpol.2017.03.058] [Citation(s) in RCA: 224] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2016] [Revised: 02/21/2017] [Accepted: 03/17/2017] [Indexed: 01/30/2023]
Abstract
Pectin is a structural heteropolysaccharide found ubiquitously in terrestrial plants. It finds diverse food applications such as that of a gelling agent, stabilizer, and fat replacer. In the pharmaceutical arena, pectin exhibits a number of functions, from decreasing blood fat to combating various types of cancers. This review shows the shift of pectin from its conventional roles to its progressive applications. Insights into the advances in the production of pectin, the role it plays as a nutraceutical, possible prebiotic potential and a delivery vehicle for probiotics, and food applications are highlighted. Bioactive and functional properties of pectin are discussed and how the structural built up defines them, is emphasized. As a biopolymer, the applications of pectin in active packaging are also mentioned.
Collapse
|
32
|
An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids. J Food Drug Anal 2016; 25:119-124. [PMID: 28911529 PMCID: PMC9333417 DOI: 10.1016/j.jfda.2016.10.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 12/23/2022] Open
Abstract
The purpose of this review is to update and discuss key findings from in vitro and in vivo studies on apple and its biocompounds, with a special focus on its anticancer role. Several studies have proposed that apple and its extracts exhibit a variety of biological functions that may contribute to health benefits including beneficial effects against chronic heart and vascular disorders, respiratory and pulmonary dysfunction, diabetes, obesity, and cancer. In this review, we summarize the molecular mechanism(s) of various components in apple, as established in previous studies that indicated their growth-inhibitory effects in various cancer cell types. Moreover, an attempt is made to delineate the direction of future studies that could lead to the development of apple components as a potent chemo-preventive/chemotherapeutic agent against cancer.
Collapse
|
33
|
Lin ST, Tu SH, Yang PS, Hsu SP, Lee WH, Ho CT, Wu CH, Lai YH, Chen MY, Chen LC. Apple Polyphenol Phloretin Inhibits Colorectal Cancer Cell Growth via Inhibition of the Type 2 Glucose Transporter and Activation of p53-Mediated Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6826-6837. [PMID: 27538679 DOI: 10.1021/acs.jafc.6b02861] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/06/2023]
Abstract
Glucose transporters (GLUTs) are required for glucose uptake in malignant cells, and they can be used as molecular targets for cancer therapy. An RT-PCR analysis was performed to investigate the mRNA levels of 14 subtypes of GLUTs in human colorectal cancer (COLO 205 and HT-29) and normal (FHC) cells. RT-PCR (n = 27) was used to assess the differences in paired tissue samples (tumor vs normal) isolated from colorectal cancer patients. GLUT2 was detected in all tested cells. The average GLUT2 mRNA level in 12 of 27 (44.4%) cases was 2.4-fold higher in tumor compared to normal tissues (*, p = 0.027). Higher GLUT2 mRNA expression was preferentially detected in advanced-stage tumors (stage 0 vs 3 = 16.38-fold, 95% CI = 9.22-26.54-fold; *, p = 0.029). The apple polyphenol phloretin (Ph) and siRNA methods were used to inhibit GLUT2 protein expression. Ph (0-100 μM, for 24 h) induced COLO 205 cell growth cycle arrest in a p53-dependent manner, which was confirmed by pretreatment of the cells with a p53-specific dominant negative expression vector. Hepatocyte nuclear factor 6 (HNF6), which was previously reported to be a transcription factor that activates GLUT2 and p53, was also induced by Ph (0-100 μM, for 24 h). The antitumor effect of Ph (25 mg/kg or DMSO twice a week for 6 weeks) was demonstrated in vivo using BALB/c nude mice bearing COLO 205 tumor xenografts. In conclusion, targeting GLUT2 could potentially suppress colorectal tumor cell invasiveness.
Collapse
Affiliation(s)
- Sheng-Tsai Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital , New Taipei City, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Shih-Hsin Tu
- TMU Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Breast Medical Center, Taipei Medical University Hospital , Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, Mackay Memorial Hospital , Taipei, Taiwan
- Department of Medicine, Mackay Medical College , New Taipei City, Taiwan
- Nursing and Management, Mackay Junior College of Medicine , Taipei, Taiwan
| | - Sung-Po Hsu
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Graduate Institue of Medical Sciences, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital , Jhonghe City, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University , New Brunswick, New Jersey 08901, United States
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
- Department of Surgery, En Chu Kong Hospital , New Taipei City 237, Taiwan
| | - Yu-Hsin Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital , New Taipei City, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Ming-Yao Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital , New Taipei City, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
| | - Li-Ching Chen
- TMU Taipei Cancer Center, Taipei Medical University , Taipei, Taiwan
- Breast Medical Center, Taipei Medical University Hospital , Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University , Taipei, Taiwan
| |
Collapse
|
34
|
Delphi L, Sepehri H, Khorramizadeh MR, Mansoori F. Pectic-Oligoshaccharides from Apples Induce Apoptosis and Cell Cycle Arrest in MDA-MB-231 Cells, a Model of Human Breast Cancer. Asian Pac J Cancer Prev 2016. [PMID: 26225664 DOI: 10.7314/apjcp.2015.16.13.5265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effects of plant products on cancer cells has become a field of major importance. Many substancesmay induce apoptosis in anti-cancer treatment. Pectins, a family of complex polysaccharides, and their degradation products may for exasmple exert apoptotic effects in cancer cells. Apples and citrus fruits are the main sources of pectin which can be applied for anti-cancer research. The present study concerned an intact form of pectic-oligoshaccharide named pectic acid (poly galactronic acid). MATERIALS AND METHODS Inhibition of cell proliferation assays (MTT), light microscopy, fluorescence microscopy (acridin orange/ethidium bromide), DNA fragmentation tests, cell cycle analysis, annexin PI and Western blotting methods were applied to evaluate apoptosis. RESULTS The results indicated that pectic acid inhibited cell growth and reduced cell attachment after 24h incubation. This did not appear to be due to necrosis, since morphological features of apoptosis were detected with AO/EB staining and cell cycling was blocked in the sub-G1 phase. Annexin/PI and DNA fragmentation findings indicated that apoptosis frequency increased after 24h incubation with pectic acid. In addition, the data showed pectic acid induced caspase-dependent apoptosis. CONCLUSIONS These data indicate that apple pectic acid without any modification could trigger apoptosis in MDA-MB-231 human breast cancer cells and has potential to improve cancer treatment as a natural product.
Collapse
Affiliation(s)
- Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran E-mail :
| | | | | | | |
Collapse
|
35
|
Zhang X, Qi C, Guo Y, Zhou W, Zhang Y. Toll-like receptor 4-related immunostimulatory polysaccharides: Primary structure, activity relationships, and possible interaction models. Carbohydr Polym 2016; 149:186-206. [PMID: 27261743 DOI: 10.1016/j.carbpol.2016.04.097] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 12/20/2022]
Abstract
Toll-like receptor (TLR) 4 is an important polysaccharide receptor; however, the relationships between the structures and biological activities of TLR4 and polysaccharides remain unknown. Many recent findings have revealed the primary structure of TLR4/MD-2-related polysaccharides, and several three-dimensional structure models of polysaccharide-binding proteins have been reported; and these models provide insights into the mechanisms through which polysaccharides interact with TLR4. In this review, we first discuss the origins of polysaccharides related to TLR4, including polysaccharides from higher plants, fungi, bacteria, algae, and animals. We then briefly describe the glucosidic bond types of TLR4-related heteroglycans and homoglycans and describe the typical molecular weights of TLR4-related polysaccharides. The primary structures and activity relationships of polysaccharides with TLR4/MD-2 are also discussed. Finally, based on the existing interaction models of LPS with TLR4/MD-2 and linear polysaccharides with proteins, we provide insights into the possible interaction models of polysaccharide ligands with TLR4/MD-2. To our knowledge, this review is the first to summarize the primary structures and activity relationships of TLR4-related polysaccharides and the possible mechanisms of interaction for TLR4 and TLR4-related polysaccharides.
Collapse
Affiliation(s)
- Xiaorui Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Chunhui Qi
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Yan Guo
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| | - Yongxiang Zhang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China.
| |
Collapse
|
36
|
|
37
|
Li YH, Niu YB, Sun Y, Zhang F, Liu CX, Fan L, Mei QB. Role of phytochemicals in colorectal cancer prevention. World J Gastroenterol 2015; 21:9262-9272. [PMID: 26309353 PMCID: PMC4541379 DOI: 10.3748/wjg.v21.i31.9262] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2015] [Revised: 05/09/2015] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Although the incidence of colorectal cancer (CRC) has been declining in recent decades, it remains a major public health issue as a leading cause of cancer mortality and morbidity worldwide. Prevention is one milestone for this disease. Extensive study has demonstrated that a diet containing fruits, vegetables, and spices has the potential to prevent CRC. The specific constituents in the dietary foods which are responsible for preventing CRC and the possible mechanisms have also been investigated extensively. Various phytochemicals have been identified in fruits, vegetables, and spices which exhibit chemopreventive potential. In this review article, chemopreventive effects of phytochemicals including curcumin, polysaccharides (apple polysaccharides and mushroom glucans), saponins (Paris saponins, ginsenosides and soy saponins), resveratrol, and quercetin on CRC and the mechanisms are discussed. This review proposes the need for more clinical evidence for the effects of phytochemicals against CRC in large trials. The conclusion of the review is that these phytochemicals might be therapeutic candidates in the campaign against CRC.
Collapse
|
38
|
|
39
|
Zeng YW, Du J, Pu XY, Yang JZ, Yang T, Yang SM, Yang XM. Coevolution between Human's Anticancer Activities and Functional Foods from Crop Origin Center in the World. Asian Pac J Cancer Prev 2015; 16:2119-28. [DOI: 10.7314/apjcp.2015.16.6.2119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022] Open
|
40
|
Inaba H, Amano A, Lamont RJ, Murakami Y. Involvement of protease-activated receptor 4 in over-expression of matrix metalloproteinase 9 induced by Porphyromonas gingivalis. Med Microbiol Immunol 2015; 204:605-12. [DOI: 10.1007/s00430-015-0389-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/19/2014] [Accepted: 02/02/2015] [Indexed: 12/14/2022]
|
41
|
Liu X, Pei C, Yan S, Liu G, Liu G, Chen W, Cui Y, Liu Y. NADPH oxidase 1-dependent ROS is crucial for TLR4 signaling to promote tumor metastasis of non-small cell lung cancer. Tumour Biol 2015; 36:1493-502. [PMID: 25592377 DOI: 10.1007/s13277-014-2639-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 01/03/2023] Open
Abstract
Recent evidence demonstrated an enhanced metastasis of non-small cell lung cancer (NSCLC) cells induced by lipopolysaccharide (LPS) stimulation, which reflected an important role of inflammation in tumor progression. However, the underlying mechanisms still remain unclear. Here, we evaluated the potential role of reactive oxygen species (ROS) in Toll-like receptor 4 (TLR4) signaling enhanced NSCLC metastasis. NSCLC cells were isolated from clinical surgical tissues. We found that LPS stimulation of NSCLC cells facilitates their metastasis that was accompanied by increased ROS production and could be abrogated by ROS inhibition. NADPH oxidase was essential for TLR4 signaling-enhanced NSCLC metastasis. Elevated NADPH oxidase 1 (NOX1) expression by LPS stimulation was observed. Blockade of NOX1 with ML171 alleviated enhanced NSCLC metastasis by TLR4 signaling. Enforced NOX1 expression promoted TLR4 signaling-enhanced NSCLC metastasis, while decreased NOX1 expression inhibited TLR4 signaling-enhanced NSCLC metastasis. Further, NOX1 could regulate the expression of CXCR4 and matrix metallopeptidase 9 (MMP9) in NSCLC cells. NOX1 expression in tumor tissues was correlated with TLR4 expression and clinical stages in NSCLC patients. Finally, inhibition of NOX1/ROS prevented enhanced lung tumor burdens of NSCLC by LPS-induced acute lung infection. Our findings demonstrated a crucial role of NOX1-dependent ROS for TLR4 signaling to enhance the metastasis of NSCLC, which could further the understanding of NSCLC pathogenesis and helpful for developing novel therapeutics for NSCLC.
Collapse
Affiliation(s)
- Xiyu Liu
- Department of Chest Surgery, The First Bethune Hospital, Jilin University, 71 Xinminda Street, Changchun City, 130021, Jilin, China
| | | | | | | | | | | | | | | |
Collapse
|