1
|
Celis-Giraldo C, Suárez CF, Agudelo W, Ibarrola N, Degano R, Díaz J, Manzano-Román R, Patarroyo MA. Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules. BIOLOGY 2024; 13:832. [PMID: 39452141 PMCID: PMC11505383 DOI: 10.3390/biology13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
- PhD Programme in Tropical Health and Development, Doctoral School “Studii Salamantini”, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos F. Suárez
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - William Agudelo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Rosa Degano
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Jaime Díaz
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel A. Patarroyo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
2
|
Rocha LGDN, Guimarães PAS, Carvalho MGR, Ruiz JC. Tumor Neoepitope-Based Vaccines: A Scoping Review on Current Predictive Computational Strategies. Vaccines (Basel) 2024; 12:836. [PMID: 39203962 PMCID: PMC11360805 DOI: 10.3390/vaccines12080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/03/2024] Open
Abstract
Therapeutic cancer vaccines have been considered in recent decades as important immunotherapeutic strategies capable of leading to tumor regression. In the development of these vaccines, the identification of neoepitopes plays a critical role, and different computational methods have been proposed and employed to direct and accelerate this process. In this context, this review identified and systematically analyzed the most recent studies published in the literature on the computational prediction of epitopes for the development of therapeutic vaccines, outlining critical steps, along with the associated program's strengths and limitations. A scoping review was conducted following the PRISMA extension (PRISMA-ScR). Searches were performed in databases (Scopus, PubMed, Web of Science, Science Direct) using the keywords: neoepitope, epitope, vaccine, prediction, algorithm, cancer, and tumor. Forty-nine articles published from 2012 to 2024 were synthesized and analyzed. Most of the identified studies focus on the prediction of epitopes with an affinity for MHC I molecules in solid tumors, such as lung carcinoma. Predicting epitopes with class II MHC affinity has been relatively underexplored. Besides neoepitope prediction from high-throughput sequencing data, additional steps were identified, such as the prioritization of neoepitopes and validation. Mutect2 is the most used tool for variant calling, while NetMHCpan is favored for neoepitope prediction. Artificial/convolutional neural networks are the preferred methods for neoepitope prediction. For prioritizing immunogenic epitopes, the random forest algorithm is the most used for classification. The performance values related to the computational models for the prediction and prioritization of neoepitopes are high; however, a large part of the studies still use microbiome databases for training. The in vitro/in vivo validations of the predicted neoepitopes were verified in 55% of the analyzed studies. Clinical trials that led to successful tumor remission were identified, highlighting that this immunotherapeutic approach can benefit these patients. Integrating high-throughput sequencing, sophisticated bioinformatics tools, and rigorous validation methods through in vitro/in vivo assays as well as clinical trials, the tumor neoepitope-based vaccine approach holds promise for developing personalized therapeutic vaccines that target specific tumor cancers.
Collapse
Affiliation(s)
- Luiz Gustavo do Nascimento Rocha
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Paul Anderson Souza Guimarães
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Maria Gabriela Reis Carvalho
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| | - Jeronimo Conceição Ruiz
- Biologia Computacional e Sistemas (BCS), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; (L.G.d.N.R.); (P.A.S.G.)
- Grupo Informática de Biossistemas e Genômica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte 30190-002, Brazil
| |
Collapse
|
3
|
Piao X, Tang Y, Li X, Zhang W, Yang W, Xu X, Wang W, Jiang J, Xu J, Hu K, Xu M, Liu M, Sun M, Jin L. Supercoiled DNA percentage: A key in-process control of linear DNA template for mRNA drug substance manufacturing. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102223. [PMID: 38948330 PMCID: PMC11214521 DOI: 10.1016/j.omtn.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024]
Abstract
The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.
Collapse
Affiliation(s)
- Xijun Piao
- CATUG Biotechnology, Suzhou 215000, China
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Yujie Tang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Xiuzhi Li
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Weicheng Zhang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Wei Yang
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Xining Xu
- CATUG Biotechnology, Suzhou 215000, China
| | - Wenjing Wang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Jiajia Jiang
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Jun Xu
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Kunkun Hu
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Meiling Xu
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Mengjie Liu
- Wuhan CATUG Biotechnology, Wuhan 430074, China
| | - Mengfei Sun
- CATUG Biotechnology, Suzhou 215000, China
- CATUG Life Technology, Suzhou 215000, China
| | - Lin Jin
- CATUG Biotechnology, Suzhou 215000, China
- Wuhan CATUG Biotechnology, Wuhan 430074, China
- CATUG Inc, Cambridge, MA 02141, United States
- CATUG Life Technology, Suzhou 215000, China
| |
Collapse
|
4
|
Leblanc J, Boulle O, Roux E, Nicolas J, Lavenier D, Audic Y. Fully in vitro iterative construction of a 24 kb-long artificial DNA sequence to store digital information. Biotechniques 2024; 76:203-215. [PMID: 38573592 DOI: 10.2144/btn-2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
In the absence of a DNA template, the ab initio production of long double-stranded DNA molecules of predefined sequences is particularly challenging. The DNA synthesis step remains a bottleneck for many applications such as functional assessment of ancestral genes, analysis of alternative splicing or DNA-based data storage. In this report we propose a fully in vitro protocol to generate very long double-stranded DNA molecules starting from commercially available short DNA blocks in less than 3 days using Golden Gate assembly. This innovative application allowed us to streamline the process to produce a 24 kb-long DNA molecule storing part of the Declaration of the Rights of Man and of the Citizen of 1789 . The DNA molecule produced can be readily cloned into a suitable host/vector system for amplification and selection.
Collapse
Affiliation(s)
- Julien Leblanc
- University Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, Rennes, France
| | - Olivier Boulle
- University Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, Rennes, France
| | - Emeline Roux
- Institut NuMeCan, INRAE, INSERM, University Rennes, France
| | - Jacques Nicolas
- University Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, Rennes, France
| | | | - Yann Audic
- CNRS, University Rennes, Institut de Génétique et Développement de Rennes (IGDR) UMR 6290, Rennes, France
| |
Collapse
|
5
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Kramps T. Introduction to RNA Vaccines Post COVID-19. Methods Mol Biol 2024; 2786:1-22. [PMID: 38814388 DOI: 10.1007/978-1-0716-3770-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Available prophylactic vaccines help prevent many infectious diseases that burden humanity. Future vaccinology will likely extend these benefits by more effectively countering newly emerging pathogens, fighting currently intractable infections, or even generating novel treatment modalities for non-infectious diseases. Instead of applying protein antigen directly, RNA vaccines contain short-lived genetic information that guides the expression of protein antigen in the vaccinee, like infection with a recombinant viral vector. Upon decades of research, messenger RNA-lipid nanoparticle (mRNA-LNP) vaccines have proven clinical value in addressing the COVID-19 pandemic as they combine benefits of killed subunit vaccines and live-attenuated vectors, including flexible production, self-adjuvanting effects, and stimulation of humoral and cellular immunity. RNA vaccines remain subject to continued development raising high hopes for broader future application. Their mechanistic versatility promises to make them a key tool of vaccinology and immunotherapy going forward. Here, I briefly review key developments in RNA vaccines and outline the contents of this volume of Methods in Molecular Biology.
Collapse
|
7
|
Esteban I, Pastor-Quiñones C, Usero L, Aurrecoechea E, Franceschini L, Esprit A, Gelpí JL, Martínez-Jiménez F, López-Bigas N, Breckpot K, Thielemans K, Leal L, Gómez CE, Sisteré-Oró M, Meyerhans A, Esteban M, Alonso MJ, García F, Plana M. Assessment of Human SARS CoV-2-Specific T-Cell Responses Elicited In Vitro by New Computationally Designed mRNA Immunogens (COVARNA). Vaccines (Basel) 2023; 12:15. [PMID: 38250827 PMCID: PMC10820377 DOI: 10.3390/vaccines12010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine.
Collapse
Affiliation(s)
- Ignasi Esteban
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
| | - Carmen Pastor-Quiñones
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
| | - Lorena Usero
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
| | - Elena Aurrecoechea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (L.F.); (A.E.); (K.B.); (K.T.)
| | - Arthur Esprit
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (L.F.); (A.E.); (K.B.); (K.T.)
| | - Josep Lluís Gelpí
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Francisco Martínez-Jiménez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (F.M.-J.); (N.L.-B.)
| | - Núria López-Bigas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; (F.M.-J.); (N.L.-B.)
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
- Centro de Investigación Biomédica en Red en Cáncer (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (L.F.); (A.E.); (K.B.); (K.T.)
| | - Kris Thielemans
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (L.F.); (A.E.); (K.B.); (K.T.)
| | - Lorna Leal
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
- Department of Infectious Diseases, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (C.E.G.); (M.E.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Marta Sisteré-Oró
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain;
| | - Andreas Meyerhans
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain;
- Infection Biology Laboratory, Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain;
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain; (C.E.G.); (M.E.)
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Felipe García
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
- Department of Infectious Diseases, Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain
| | - Montserrat Plana
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, University of Barcelona, 08036 Barcelona, Spain; (I.E.); (C.P.-Q.); (L.U.); (E.A.); or (L.L.); (F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
8
|
Awad RM, De Vlaeminck Y, Meeus F, Ertveldt T, Zeven K, Ceuppens H, Goyvaerts C, Verdonck M, Salguero G, Raes G, Devoogdt N, Breckpot K. In vitro modelling of local gene therapy with IL-15/IL-15Rα and a PD-L1 antagonist in melanoma reveals an interplay between NK cells and CD4 + T cells. Sci Rep 2023; 13:18995. [PMID: 37923822 PMCID: PMC10624833 DOI: 10.1038/s41598-023-45948-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| | - Yannick De Vlaeminck
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Fien Meeus
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Thomas Ertveldt
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Hannelore Ceuppens
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Cleo Goyvaerts
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Magali Verdonck
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud-IDCBIS, 111611, Bogotá, Colombia
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050, Brussels, Belgium
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, 1050, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| |
Collapse
|
9
|
Youssef M, Hitti C, Puppin Chaves Fulber J, Kamen AA. Enabling mRNA Therapeutics: Current Landscape and Challenges in Manufacturing. Biomolecules 2023; 13:1497. [PMID: 37892179 PMCID: PMC10604719 DOI: 10.3390/biom13101497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advances and discoveries in the structure and role of mRNA as well as novel lipid-based delivery modalities have enabled the advancement of mRNA therapeutics into the clinical trial space. The manufacturing of these products is relatively simple and eliminates many of the challenges associated with cell culture production of viral delivery systems for gene and cell therapy applications, allowing rapid production of mRNA for personalized treatments, cancer therapies, protein replacement and gene editing. The success of mRNA vaccines during the COVID-19 pandemic highlighted the immense potential of this technology as a vaccination platform, but there are still particular challenges to establish mRNA as a widespread therapeutic tool. Immunostimulatory byproducts can pose a barrier for chronic treatments and different production scales may need to be considered for these applications. Moreover, long-term storage of mRNA products is notoriously difficult. This review provides a detailed overview of the manufacturing steps for mRNA therapeutics, including sequence design, DNA template preparation, mRNA production and formulation, while identifying the challenges remaining in the dose requirements, long-term storage and immunotolerance of the product.
Collapse
Affiliation(s)
| | | | | | - Amine A. Kamen
- Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada; (M.Y.); (C.H.); (J.P.C.F.)
| |
Collapse
|
10
|
Lybaert L, Thielemans K, Feldman SA, van der Burg SH, Bogaert C, Ott PA. Neoantigen-directed therapeutics in the clinic: where are we? Trends Cancer 2023; 9:503-519. [PMID: 37055237 PMCID: PMC10414146 DOI: 10.1016/j.trecan.2023.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/15/2023]
Abstract
In the past decade, immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy have brought immunotherapy to the forefront of cancer treatment; however, only subsets of patients benefit from current approaches. Neoantigen-driven therapeutics specifically redirect the immune system of the patient to enable or reinduce its ability to recognize and eliminate cancer cells. The tumor specificity of this strategy spares healthy and normal cells from being attacked. Consistent with this concept, initial clinical trials have demonstrated the feasibility, safety, and immunogenicity of neoantigen-directed personalized vaccines. We review neoantigen-driven therapy strategies as well as their promise and clinical successes to date.
Collapse
Affiliation(s)
| | | | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
11
|
Awad RM, Breckpot K. Novel technologies for applying immune checkpoint blockers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:1-101. [PMID: 38225100 DOI: 10.1016/bs.ircmb.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Cancer cells develop several ways to subdue the immune system among others via upregulation of inhibitory immune checkpoint (ICP) proteins. These ICPs paralyze immune effector cells and thereby enable unfettered tumor growth. Monoclonal antibodies (mAbs) that block ICPs can prevent immune exhaustion. Due to their outstanding effects, mAbs revolutionized the field of cancer immunotherapy. However, current ICP therapy regimens suffer from issues related to systemic administration of mAbs, including the onset of immune related adverse events, poor pharmacokinetics, limited tumor accessibility and immunogenicity. These drawbacks and new insights on spatiality prompted the exploration of novel administration routes for mAbs for instance peritumoral delivery. Moreover, novel ICP drug classes that are adept to novel delivery technologies were developed to circumvent the drawbacks of mAbs. We therefore review the state-of-the-art and novel delivery strategies of ICP drugs.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
12
|
de Mey W, Locy H, De Ridder K, De Schrijver P, Autaers D, Lakdimi A, Esprit A, Franceschini L, Thielemans K, Verdonck M, Breckpot K. An mRNA mix redirects dendritic cells towards an antiviral program, inducing anticancer cytotoxic stem cell and central memory CD8 + T cells. Front Immunol 2023; 14:1111523. [PMID: 36860873 PMCID: PMC9969480 DOI: 10.3389/fimmu.2023.1111523] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Dendritic cell (DC)-maturation stimuli determine the potency of these antigen-presenting cells and, therefore, the quality of the T-cell response. Here we describe that the maturation of DCs via TriMix mRNA, encoding CD40 ligand, a constitutively active variant of toll-like receptor 4 and the co-stimulatory molecule CD70, enables an antibacterial transcriptional program. Besides, we further show that the DCs are redirected into an antiviral transcriptional program when CD70 mRNA in TriMix is replaced with mRNA encoding interferon-gamma and a decoy interleukin-10 receptor alpha, forming a four-component mixture referred to as TetraMix mRNA. The resulting TetraMixDCs show a high potential to induce tumor antigen-specific T cells within bulk CD8+ T cells. Tumor-specific antigens (TSAs) are emerging and attractive targets for cancer immunotherapy. As T-cell receptors recognizing TSAs are predominantly present on naive CD8+ T cells (TN), we further addressed the activation of tumor antigen-specific T cells when CD8+ TN cells are stimulated by TriMixDCs or TetraMixDCs. In both conditions, the stimulation resulted in a shift from CD8+ TN cells into tumor antigen-specific stem cell-like memory, effector memory and central memory T cells with cytotoxic capacity. These findings suggest that TetraMix mRNA, and the antiviral maturation program it induces in DCs, triggers an antitumor immune reaction in cancer patients.
Collapse
|