1
|
Feng S, Lin J, Zhang X, Hong X, Xu W, Wen Y, She F. Role of AlgC and GalU in the Intrinsic Antibiotic Resistance of Helicobacter pylori. Infect Drug Resist 2023; 16:1839-1847. [PMID: 37016632 PMCID: PMC10066898 DOI: 10.2147/idr.s403046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Purpose Helicobacter pylori is associated with the development of gastrointestinal diseases. However, its eradication is challenged by an increased rate of drug resistance. AlgC and GalU are important for the synthesis of UDP-glucose, which is a substrate for the synthesis of lipopolysaccharide (LPS) in H. pylori. In this study, we investigated the role of UDP-glucose in the intrinsic drug resistance in H. pylori. Methods Gene knockout strains or complementation strains, including ΔalgC, ΔgalU, ΔgalE, Δhp0045, ΔalgC/algC* and ΔgalU/galU* were constructed in Hp26695; and ΔalgC and ΔgalU were also constructed in two clinical drug-resistant strains, Hp008 and Hp135. The minimum inhibitory concentrations (MIC) of H. pylori to amoxicillin (AMO), tetracycline (TET), clarithromycin (CLA), metronidazole (MNZ), levofloxacin (LEV), and rifampicin (RIF) were measured using MIC Test Strips. Silver staining was performed to examine the role of AlgC and GalU in LPS synthesis. Ethidium bromide (EB) accumulation assay was performed to assess the outer membrane permeability of H. pylori strains. Results Knockout of algC and galU in H. pylori resulted in increased drug sensitivity to AMO, MNZ, CLA, LEV, and RIF; whereas knockout of hp0045 and galE, which are involved in GDP-fucose and UDP-galactose synthesis, respectively, did not significantly alter the drug sensitivity of H. pylori. Knockout of algC and galU in clinically drug-resistant strains resulted in significantly increased drug sensitivity to all the antibiotics, except MNZ. The lipid A-core structure was altered in ΔalgC and ΔgalU when their EB accumulation was higher than that in the wild type and complementation strains. Conclusion UDP-glucose may play an important role in increasing drug resistance to AMO, MNZ, CLA, LEV, TET, and RIF by maintaining the lipid A-core structure and decreasing membrane permeability. AlgC and GalU may serve as potential drug targets for decreasing antibiotic resistance in clinical isolates.
Collapse
Affiliation(s)
- Shunhang Feng
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jiansheng Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xin Hong
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Wanyin Xu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, School for Basic Medical Sciences, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
2
|
Cereijo AE, Kuhn ML, Hernández MA, Ballicora MA, Iglesias AA, Alvarez HM, Asencion Diez MD. Study of duplicated galU genes in Rhodococcus jostii and a putative new metabolic node for glucosamine-1P in rhodococci. Biochim Biophys Acta Gen Subj 2020; 1865:129727. [PMID: 32890704 DOI: 10.1016/j.bbagen.2020.129727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/26/2020] [Revised: 08/11/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
BACKGOUND Studying enzymes that determine glucose-1P fate in carbohydrate metabolism is important to better understand microorganisms as biotechnological tools. One example ripe for discovery is the UDP-glucose pyrophosphorylase enzyme from Rhodococcus spp. In the R. jostii genome, this gene is duplicated, whereas R. fascians contains only one copy. METHODS We report the molecular cloning of galU genes from R. jostii and R. fascians to produce recombinant proteins RjoGalU1, RjoGalU2, and RfaGalU. Substrate saturation curves were conducted, kinetic parameters were obtained and the catalytic efficiency (kcat/Km) was used to analyze enzyme promiscuity. We also investigated the response of R. jostii GlmU pyrophosphorylase activity with different sugar-1Ps, which may compete for substrates with RjoGalU2. RESULTS All enzymes were active as pyrophosphorylases and exhibited substrate promiscuity toward sugar-1Ps. Remarkably, RjoGalU2 exhibited one order of magnitude higher activity with glucosamine-1P than glucose-1P, the canonical substrate. Glucosamine-1P activity was also significant in RfaGalU. The efficient use of the phospho-amino-sugar suggests the feasibility of the reaction to occur in vivo. Also, RjoGalU2 and RfaGalU represent enzymatic tools for the production of (amino)glucosyl precursors for the putative synthesis of novel molecules. CONCLUSIONS Results support the hypothesis that partitioning of glucosamine-1P includes an uncharacterized metabolic node in Rhodococcus spp., which could be important for producing diverse alternatives for carbohydrate metabolism in biotechnological applications. GENERAL SIGNIFICANCE Results presented here provide a model to study evolutionary enzyme promiscuity, which could be used as a tool to expand an organism's metabolic repertoire by incorporating non-canonical substrates into novel metabolic pathways.
Collapse
Affiliation(s)
- A E Cereijo
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - M L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, 1600 Holloway Ave., San Francisco, CA, United States
| | - M A Hernández
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina
| | - M A Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 W. Sheridan Rd., Chicago, IL 60660, United States
| | - A A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina
| | - H M Alvarez
- Instituto de Biociencias de la Patagonia (INBIOP), Universidad Nacional de la Patagonia San Juan Bosco y CONICET, Km 4-Ciudad Universitaria 9000, Comodoro Rivadavia, Chubut, Argentina.
| | - M D Asencion Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, CCT-Santa Fe, Colectora Ruta Nac 168 km 0, 3000 Santa Fe, Argentina.
| |
Collapse
|
3
|
Kumpf A, Kowalczykiewicz D, Szymańska K, Mehnert M, Bento I, Łochowicz A, Pollender A, Jarzȩbski A, Tischler D. Immobilization of the Highly Active UDP-Glucose Pyrophosphorylase From Thermocrispum agreste Provides a Highly Efficient Biocatalyst for the Production of UDP-Glucose. Front Bioeng Biotechnol 2020; 8:740. [PMID: 32714915 PMCID: PMC7343719 DOI: 10.3389/fbioe.2020.00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2020] [Accepted: 06/10/2020] [Indexed: 11/21/2022] Open
Abstract
Biocatalysis that produces economically interesting compounds can be carried out by using free enzymes or microbial cells. However, often the cell metabolism does not allow the overproduction or secretion of activated sugars and thus downstream processing of these sugars is complicated. Here enzyme immobilization comes into focus in order to stabilize the enzyme as well as to make the overall process economically feasible. Besides a robust immobilization method, a highly active and stable enzyme is needed to efficiently produce the product of choice. Herein, we report on the identification, gene expression, biochemical characterization as well as immobilization of the uridine-5′-diphosphate-glucose (UDP-glucose) pyrophosphorylase originating from the thermostable soil actinobacterium Thermocrispum agreste DSM 44070 (TaGalU). The enzyme immobilization was performed on organically modified mesostructured cellular foams (MCF) via epoxy and amino group to provide a stable and active biocatalyst. The soluble and highly active TaGalU revealed a Vmax of 1698 U mg–1 (uridine-5′-triphosphate, UTP) and a Km of 0.15 mM (UTP). The optimum reaction temperature was determined to be 50°C. TaGalU was stable at this temperature for up to 30 min with a maximum loss of activity of 65%. Interestingly, immobilized TaGalU was stable at 50°C for at least 120 min without a significant loss of activity, which makes this enzyme an interesting biocatalyst for the production of UDP-glucose.
Collapse
Affiliation(s)
- Antje Kumpf
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany.,Department of Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany.,EMBL Hamburg, Hamburg, Germany
| | - Daria Kowalczykiewicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, Gliwice, Poland
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, Poland
| | - Maria Mehnert
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Aleksandra Łochowicz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Gliwice, Poland
| | - André Pollender
- Institute of Biosciences, Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Andrzej Jarzȩbski
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, Poland.,Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, Poland
| | - Dirk Tischler
- Department of Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
4
|
Kumpf A, Partzsch A, Pollender A, Bento I, Tischler D. Two Homologous Enzymes of the GalU Family in Rhodococcus opacus 1CP- RoGalU1 and RoGalU2. Int J Mol Sci 2019; 20:ijms20225809. [PMID: 31752319 PMCID: PMC6888414 DOI: 10.3390/ijms20225809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023] Open
Abstract
Uridine-5’-diphosphate (UDP)-glucose is reported as one of the most versatile building blocks within the metabolism of pro- and eukaryotes. The activated sugar moiety is formed by the enzyme UDP-glucose pyrophosphorylase (GalU). Two homologous enzymes (designated as RoGalU1 and RoGalU2) are encoded by most Rhodococcus strains, known for their capability to degrade numerous compounds, but also to synthesize natural products such as trehalose comprising biosurfactants. To evaluate their functionality respective genes of a trehalose biosurfactant producing model organism—Rhodococcus opacus 1CP—were cloned and expressed, proteins produced (yield up to 47 mg per L broth) and initially biochemically characterized. In the case of RoGalU2, the Vmax was determined to be 177 U mg−1 (uridine-5’-triphosphate (UTP)) and Km to be 0.51 mM (UTP), respectively. Like other GalUs this enzyme seems to be rather specific for the substrates UTP and glucose 1-phosphate, as it accepts only dTTP and galactose 1-phoshate in addition, but both with solely 2% residual activity. In comparison to other bacterial GalU enzymes the RoGalU2 was found to be somewhat higher in activity (factor 1.8) even at elevated temperatures. However, RoGalU1 was not obtained in an active form thus it remains enigmatic if this enzyme participates in metabolism.
Collapse
Affiliation(s)
- Antje Kumpf
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| | - Anett Partzsch
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - André Pollender
- Environmental Microbiology, Institute of Biosciences, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany; (A.P.); (A.P.)
| | - Isabel Bento
- EMBL Hamburg, Notkestr. 85, 22607 Hamburg, Germany;
| | - Dirk Tischler
- Microbial Biotechnology, Faculty of Biology & Biotechnology, Ruhr University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
- Correspondence: (A.K.); (D.T.); Tel.: +49-234-32-22082 (A.K.); +49-234-32-22656 (D.T.)
| |
Collapse
|
5
|
Li H, Li J, Jiao X, Li K, Sun Y, Zhou W, Shen Y, Qian J, Chang A, Wang J, Zhu H. Characterization of the biosynthetic pathway of nucleotide sugar precursor UDP-glucose during sphingan WL gum production in Sphingomonas sp. WG. J Biotechnol 2019; 302:1-9. [PMID: 31199955 DOI: 10.1016/j.jbiotec.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2018] [Revised: 04/24/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
To elucidate the possible biosynthetic pathway of a precursor UDP-glucose of the sphingan WL gum produced by Sphingomonas sp. WG, two enzymes phosphoglucomutase (PGM) and UDP-glucose pyrophosphorylase (UGPase) were bioinformatically analysed, expressed in Escherichia coli BL21 (DE3) and characterized. PGM was in the phosphoglucomutase/phosphomannomutase subclass and UGPase was predicted to be a UDP-glucose pyrophosphatase in a tetrameric structure. Both enzymes were expressed in soluble form, purified to near homogeneity with high activity at 1159 and 796 U/mg, exhibited folding with reasonable secondary structures, and existed as monomer and tetramer, respectively. The optimal pH and temperature of PGM were 9.0 and 50 °C, respectively, and this protein was stable at pH 8.0 and at temperatures ranging from 40 to 50 °C. The optimal pH and temperature of UGPase were 9.0 and 45 °C, respectively, and the protein was stable at pH 8.0 and at temperatures ranging from 30 to 55 °C. A small-scale one-pot biosynthesis of UDP-glucose by combining PGM and UGPase using glucose-6-phosphate and UTP as substrates was also performed, and formation of UDP-glucose was observed by HPLC detection, which confirmed the biosynthetic pathway of UDP-glucose in vitro. PGM and UGPase will be ideal targets for the metabolic engineering to improve WL gum yields in industrial production.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Jing Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Xue Jiao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Kehui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Yajie Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Wanlong Zhou
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jin Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Aiping Chang
- College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China.
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, People's Republic of China; College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, People's Republic of China.
| |
Collapse
|
6
|
Abstract
The cell wall of Mycobacterium tuberculosis is unique in that it differs significantly from those of both Gram-negative and Gram-positive bacteria. The thick, carbohydrate- and lipid-rich cell wall with distinct lipoglycans enables mycobacteria to survive under hostile conditions such as shortage of nutrients and antimicrobial exposure. The key features of this highly complex cell wall are the mycolyl-arabinogalactan-peptidoglycan (mAGP)-based and phosphatidyl-myo-inositol-based macromolecular structures, with the latter possessing potent immunomodulatory properties. These structures are crucial for the growth, viability, and virulence of M. tuberculosis and therefore are often the targets of effective chemotherapeutic agents against tuberculosis. Over the past decade, sophisticated genomic and molecular tools have advanced our understanding of the primary structure and biosynthesis of these macromolecules. The availability of the full genome sequences of various mycobacterial species, including M. tuberculosis, Mycobacterium marinum, and Mycobacterium bovis BCG, have greatly facilitated the identification of large numbers of drug targets and antigens specific to tuberculosis. Techniques to manipulate mycobacteria have also improved extensively; the conditional expression-specialized transduction essentiality test (CESTET) is currently used to determine the essentiality of individual genes. Finally, various biosynthetic assays using either purified proteins or synthetic cell wall acceptors have been developed to study enzyme function. This article focuses on the recent advances in determining the structural details and biosynthesis of arabinogalactan, lipoarabinomannan, and related glycoconjugates.
Collapse
|
7
|
Asención Diez MD, Demonte AM, Syson K, Arias DG, Gorelik A, Guerrero SA, Bornemann S, Iglesias AA. Allosteric regulation of the partitioning of glucose-1-phosphate between glycogen and trehalose biosynthesis in Mycobacterium tuberculosis. Biochim Biophys Acta Gen Subj 2014; 1850:13-21. [PMID: 25277548 PMCID: PMC4331664 DOI: 10.1016/j.bbagen.2014.09.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/16/2014] [Revised: 09/20/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022]
Abstract
Background Mycobacterium tuberculosis is a pathogenic prokaryote adapted to survive in hostile environments. In this organism and other Gram-positive actinobacteria, the metabolic pathways of glycogen and trehalose are interconnected. Results In this work we show the production, purification and characterization of recombinant enzymes involved in the partitioning of glucose-1-phosphate between glycogen and trehalose in M. tuberculosis H37Rv, namely: ADP-glucose pyrophosphorylase, glycogen synthase, UDP-glucose pyrophosphorylase and trehalose-6-phosphate synthase. The substrate specificity, kinetic parameters and allosteric regulation of each enzyme were determined. ADP-glucose pyrophosphorylase was highly specific for ADP-glucose while trehalose-6-phosphate synthase used not only ADP-glucose but also UDP-glucose, albeit to a lesser extent. ADP-glucose pyrophosphorylase was allosterically activated primarily by phosphoenolpyruvate and glucose-6-phosphate, while the activity of trehalose-6-phosphate synthase was increased up to 2-fold by fructose-6-phosphate. None of the other two enzymes tested exhibited allosteric regulation. Conclusions Results give information about how the glucose-1-phosphate/ADP-glucose node is controlled after kinetic and regulatory properties of key enzymes for mycobacteria metabolism. General significance This work increases our understanding of oligo and polysaccharides metabolism in M. tuberculosis and reinforces the importance of the interconnection between glycogen and trehalose biosynthesis in this human pathogen. Nucleotide-glucose synthesis in Mycobacterium tuberculosis was analyzed. The characterization of four enzymes involved in glucose-1P partitioning is reported. Mycobacterial ADP-glucose pyrophosphorylase is allosterically regulated. Trehalose-6P synthase exhibits higher catalytic efficiency for ADP-glucose. Trehalose-6P synthase is activated by fructose-6P.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Ana M Demonte
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Karl Syson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Diego G Arias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Andrii Gorelik
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Sergio A Guerrero
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina
| | - Stephen Bornemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje El Pozo, S3000ZAA Santa Fe, Argentina.
| |
Collapse
|
8
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
9
|
Toccafondi M, Cianci M, Benini S. Expression, purification, crystallization and preliminary X-ray analysis of glucose-1-phosphate uridylyltransferase (GalU) from Erwinia amylovora. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:1249-51. [PMID: 25195902 DOI: 10.1107/s2053230x14016458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Received: 06/17/2014] [Accepted: 07/15/2014] [Indexed: 11/10/2022]
Abstract
Glucose-1-phosphate uridylyltransferase from Erwinia amylovora CFPB1430 was expressed as a His-tag fusion protein in Escherichia coli. After tag removal, the purified protein was crystallized from 100 mM Tris pH 8.5, 2 M ammonium sulfate, 5% ethylene glycol. Diffraction data sets were collected to a maximum resolution of 2.46 Å using synchrotron radiation. The crystals belonged to the hexagonal space group P62, with unit-cell parameters a = 80.67, b = 80.67, c = 169.18. The structure was solved by molecular replacement using the structure of the E. coli enzyme as a search model.
Collapse
Affiliation(s)
- Mirco Toccafondi
- Laboratory of Bioorganic Chemistry and Bio-Crystallography (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| | | | - Stefano Benini
- Laboratory of Bioorganic Chemistry and Bio-Crystallography (B2Cl), Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, 39100 Bolzano, Italy
| |
Collapse
|
10
|
CugP is a novel ubiquitous non-GalU-type bacterial UDP-glucose pyrophosphorylase found in cyanobacteria. J Bacteriol 2014; 196:2348-54. [PMID: 24727225 DOI: 10.1128/jb.01591-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023] Open
Abstract
UDP-glucose pyrophosphorylase synthesizes UDP-glucose from UTP and glucose 1-phosphate and exists in almost all species. Most bacteria possess a GalU-type UDP-glucose pyrophosphorylase, whereas many cyanobacteria species do not. In certain cyanobacteria, UDP-glucose is used as a substrate for synthesis of exopolysaccharide cellulose in spite of the absence of GalU-type UDP-glucose pyrophosphorylase. Therefore, there should be an uncharacterized UDP-glucose pyrophosphorylase in cyanobacteria. Here, we show that all cyanobacteria possess a non-GalU-type bacterial UDP-glucose pyrophosphorylase, i.e., CugP, a novel family in the nucleotide triphosphate transferase superfamily. The expressed recombinant Synechocystis sp. strain PCC 6803 CugP had pyrophosphorylase activity that was highly specific for UTP and glucose 1-phosphate. The fact that the CugP gene cannot be deleted completely in Synechocystis sp. PCC 6803 suggests its central role as the substrate supplier for galactolipid synthesis. Galactolipids are major constituents of the photosynthetic thylakoid membrane and important for photosynthetic activity. Based on phylogenetic analysis, this CugP-type UDP-glucose pyrophosphorylase may have recently been horizontally transferred to certain noncyanobacteria.
Collapse
|
11
|
Kawano Y, Sekine M, Ihara M. Identification and characterization of UDP-glucose pyrophosphorylase in cyanobacteria Anabaena sp. PCC 7120. J Biosci Bioeng 2013; 117:531-8. [PMID: 24231376 DOI: 10.1016/j.jbiosc.2013.10.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2013] [Revised: 10/15/2013] [Accepted: 10/17/2013] [Indexed: 10/26/2022]
Abstract
Exopolysaccharides produced by photosynthetic cyanobacteria have received considerable attention in recent years for their potential applications in the production of renewable biofuels. Particularly, cyanobacterial cellulose is one of the most promising products because it is extracellularly secreted as a non-crystalline form, which can be easily harvested from the media and converted into glucose units. In cyanobacteria, the production of UDP-glucose, the cellulose precursor, is a key step in the cellulose synthesis pathway. UDP-glucose is synthesized from UTP and glucose-1-phosphate (Glc-1P) by UDP-glucose pyrophosphorylase (UGPase), but this pathway in cyanobacteria has not been well characterized. Therefore, to elucidate the overall cellulose biosynthesis pathway in cyanobacteria, we studied the putative UGPase All3274 and seven other putative NDP-sugar pyrophosphorylases (NSPases), All4645, Alr2825, Alr4491, Alr0188, Alr3400, Alr2361, and Alr3921 of Anabaena sp. PCC 7120. Assays using the purified recombinant proteins revealed that All3274 exhibited UGPase activity, All4645, Alr2825, Alr4491, Alr0188, and Alr3921 exhibited pyrophosphorylase activities on ADP-glucose, CDP-glucose, dTDP-glucose, GDP-mannose, and UDP-N-acetylglucosamine, respectively. Further characterization of All3274 revealed that the kcat for UDP-glucose formation was one or two orders lower than those of other known UGPases. The activity and dimerization tendency of All3274 increased at higher enzyme concentrations, implying catalytic activation by dimerization. However, most interestingly, All3274 dimerization was inhibited by UTP and Glc-1P, but not by UDP-glucose. This study presents the first in vitro characterization of a cyanobacterial UGPase, and provides insights into biotechnological attempts to utilize the photosynthetic production of cellulose from cyanobacteria.
Collapse
Affiliation(s)
- Yusuke Kawano
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4511, Japan; Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Midori Sekine
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4511, Japan
| | - Masaki Ihara
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano 399-4511, Japan; JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
12
|
Decker D, Meng M, Gornicka A, Hofer A, Wilczynska M, Kleczkowski LA. Substrate kinetics and substrate effects on the quaternary structure of barley UDP-glucose pyrophosphorylase. PHYTOCHEMISTRY 2012; 79:39-45. [PMID: 22552276 DOI: 10.1016/j.phytochem.2012.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/08/2012] [Revised: 03/27/2012] [Accepted: 04/03/2012] [Indexed: 05/08/2023]
Abstract
UDP-Glc pyrophosphorylase (UGPase) is an essential enzyme responsible for production of UDP-Glc, which is used in hundreds of glycosylation reactions involving addition of Glc to a variety of compounds. In this study, barley UGPase was characterized with respect to effects of its substrates on activity and quaternary structure of the protein. Its K(m) values with Glc-1-P and UTP were 0.33 and 0.25 mM, respectively. Besides using Glc-1-P as a substrate, the enzyme had also considerable activity with Gal-1-P; however, the K(m) for Gal-1-P was very high (>10 mM), rendering this reaction unlikely under physiological conditions. UGPase had a relatively broad pH optimum of 6.5-8.5, regardless of the direction of reaction. The enzyme equilibrium constant was 0.4, suggesting slight preference for the Glc-1-P synthesis direction of the reaction. The quaternary structure of the enzyme, studied by Gas-phase Electrophoretic Mobility Macromolecule Analysis (GEMMA), was affected by addition of either single or both substrates in either direction of the reaction, resulting in a shift from UGPase dimers toward monomers, the active form of the enzyme. The substrate-induced changes in quaternary structure of the enzyme may have a regulatory role to assure maximal activity. Kinetics and factors affecting the oligomerization status of UGPase are discussed.
Collapse
Affiliation(s)
- Daniel Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90187 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
13
|
Characterization of recombinant UDP- and ADP-glucose pyrophosphorylases and glycogen synthase to elucidate glucose-1-phosphate partitioning into oligo- and polysaccharides in Streptomyces coelicolor. J Bacteriol 2011; 194:1485-93. [PMID: 22210767 DOI: 10.1128/jb.06377-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor exhibits a major secondary metabolism, deriving important amounts of glucose to synthesize pigmented antibiotics. Understanding the pathways occurring in the bacterium with respect to synthesis of oligo- and polysaccharides is of relevance to determine a plausible scenario for the partitioning of glucose-1-phosphate into different metabolic fates. We report the molecular cloning of the genes coding for UDP- and ADP-glucose pyrophosphorylases as well as for glycogen synthase from genomic DNA of S. coelicolor A3(2). Each gene was heterologously expressed in Escherichia coli cells to produce and purify to electrophoretic homogeneity the respective enzymes. UDP-glucose pyrophosphorylase (UDP-Glc PPase) was characterized as a dimer exhibiting a relatively high V(max) in catalyzing UDP-glucose synthesis (270 units/mg) and with respect to dTDP-glucose (94 units/mg). ADP-glucose pyrophosphorylase (ADP-Glc PPase) was found to be tetrameric in structure and specific in utilizing ATP as a substrate, reaching similar activities in the directions of ADP-glucose synthesis or pyrophosphorolysis (V(max) of 0.15 and 0.27 units/mg, respectively). Glycogen synthase was arranged as a dimer and exhibited specificity in the use of ADP-glucose to elongate α-1,4-glucan chains in the polysaccharide. ADP-Glc PPase was the only of the three enzymes exhibiting sensitivity to allosteric regulation by different metabolites. Mannose-6-phosphate, phosphoenolpyruvate, fructose-6-phosphate, and glucose-6-phosphate behaved as major activators, whereas NADPH was a main inhibitor of ADP-Glc PPase. The results support a metabolic picture where glycogen synthesis occurs via ADP-glucose in S. coelicolor, with the pathway being strictly regulated in connection with other routes involved with oligo- and polysaccharides, as well as with antibiotic synthesis in the bacterium.
Collapse
|
14
|
Abstract
Plant pyrophosphorylases that are capable of producing UDP-sugars, key precursors for glycosylation reactions, include UDP-glucose pyrophosphorylases (A- and B-type), UDP-sugar pyrophosphorylase and UDP-N-acetylglucosamine pyrophosphorylase. Although not sharing significant homology at the amino acid sequence level, the proteins share a common structural blueprint. Their structures are characterized by the presence of the Rossmann fold in the central (catalytic) domain linked to enzyme-specific N-terminal and C-terminal domains, which may play regulatory functions. Molecular mobility between these domains plays an important role in substrate binding and catalysis. Evolutionary relationships and the role of (de)oligomerization as a regulatory mechanism are discussed.
Collapse
|
15
|
Ma Z, Fan HJ, Lu CP. Molecular cloning and analysis of the UDP-Glucose Pyrophosphorylase in Streptococcus equi subsp. zooepidemicus. Mol Biol Rep 2010; 38:2751-60. [PMID: 21104023 DOI: 10.1007/s11033-010-0420-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2010] [Accepted: 11/08/2010] [Indexed: 11/30/2022]
Abstract
UDP-Glucose Pyrophosphorylase (EC 2.7.7.9, UGPase) plays an important role in Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) cell envelope Hyaluronic acid (HA) biosynthesis and it is also recognized as a virulence determinant in several bacterial species. HA is valuable biopolymer used in the pharmaceutical and cosmetic industry. In addition, encapsulation by HA is considered an important virulence factor in other streptococci. Research UGPase will contribute to the vaccine development of S. zooepidemicus and the production of HA. In this study, The UGPase gene fragment (789 bp) obtained from previous research was amplified using PCR, and located by Genome walking technology (Genebank No.GQ423507). The UGPase was expressed, purified and identified using UGPase antibody. The enzyme kinetic parameters were determined, the temperature and pH of the highest activity for the cloned UGPase were 37°C, pH 7.5. The Km and Kcat value against UTP and G-1-P was 8.5 μM, 69.05 s(-1) and 36.41 μM, 48.81 s(-1), respectively. The homology-modeling was operated. Overexpression of the UGPase in S. zooepidemicus, its virulence was slightly affected, and HA yield reduced. Real-time PCR was carried out to determine the UGPase expression levels of both SEZp and SEZugp in different grow period, the level is high in logarithmic phase and low in Decline phase.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Tongwei Road No. 1, Nanjing, 210095, People's Republic of China
| | | | | |
Collapse
|
16
|
Mariño K, Güther MLS, Wernimont AK, Amani M, Hui R, Ferguson MAJ. Identification, subcellular localization, biochemical properties, and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase. Glycobiology 2010; 20:1619-30. [PMID: 20724435 PMCID: PMC3270307 DOI: 10.1093/glycob/cwq115] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
The protozoan parasite Trypanosoma brucei is the causative agent of the cattle disease Nagana and human African sleeping sickness. Glycoproteins play key roles in the parasite’s survival and infectivity, and the de novo biosyntheses of the sugar nucleotides UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine, and GDP-fucose have been shown to be essential for their growth. The only route to UDP-Gal in T.brucei is through the epimerization of UDP-glucose (UDP-Glc) by UDP-Glc 4′-epimerase. UDP-Glc is also the glucosyl donor for the unfolded glycoprotein glucosyltransferase (UGGT) involved in glycoprotein quality control in the endoplasmic reticulum and is the presumed donor for the synthesis of base J (β-d-glucosylhydroxymethyluracil), a rare deoxynucleotide found in telomere-proximal DNA in the bloodstream form of T.brucei. Considering that UDP-Glc plays such a central role in carbohydrate metabolism, we decided to characterize UDP-Glc biosynthesis in T.brucei. We identified and characterized the parasite UDP-glucose pyrophosphorylase (TbUGP), responsible for the formation of UDP-Glc from glucose-1-phosphate and UTP, and localized the enzyme to the peroxisome-like glycosome organelles of the parasite. Recombinant TbUGP was shown to be enzymatically active and specific for glucose-1-phosphate. The high-resolution crystal structure was also solved, providing a framework for the design of potential inhibitors against the parasite enzyme.
Collapse
Affiliation(s)
- Karina Mariño
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
17
|
Meng M, Fitzek E, Gajowniczek A, Wilczynska M, Kleczkowski LA. Domain-specific determinants of catalysis/substrate binding and the oligomerization status of barley UDP-glucose pyrophosphorylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1734-42. [PMID: 19683599 DOI: 10.1016/j.bbapap.2009.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/17/2009] [Revised: 08/01/2009] [Accepted: 08/05/2009] [Indexed: 11/26/2022]
Abstract
UDP-glucose (UDPG) pyrophosphorylase (UGPase) produces UDPG for sucrose and polysaccharide synthesis and glycosylation reactions. In this study, several barley UGPase mutants were produced, either single amino acid mutants or involving deletions of N- and C-terminal domains (Ncut and Ccut mutants, respectively) and of active site region ("NB loop"). The Del-NB mutant yielded no activity, whereas Ncut deletions and most of Ccut mutants, including short deletions at the so called "I-loop" region of C-terminal domain, as well as a single K260A mutant resulted in very low activity. For wt and the mutants, kinetics with UDPG were linear on reciprocal plots, whereas PPi at concentrations above 1 mM exerted strong substrate inhibition. Both K260A and most of the Ccut mutants had very high Km with PPi (up to 33 mM), whereas Ncut deletions had greatly increased Km with UDPG (up to 57 mM). Surprisingly, an 8 amino acid deletion from end of the C-terminus resulted in an enzyme (Ccut-8 mutant) with 44% higher activity when compared to wt, but with similar Km values. Whereas Ccut-8 existed solely as a monomer, other deletion mutants had a more oligomerized status, e.g. Ncut mutants existing primarily as dimers. Overall, the data confirmed the essential role of NB loop in catalysis, but also pointed out to the role of both N- and C-termini for activity, substrate binding and oligomerization. The importance of oligomerization status for enzymatic activity of UGPase is discussed.
Collapse
Affiliation(s)
- Meng Meng
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|