1
|
Mavridis T, Choratta T, Papadopoulou A, Sawafta A, Archontakis-Barakakis P, Laou E, Sakellakis M, Chalkias A. Protease-Activated Receptors (PARs): Biology and Therapeutic Potential in Perioperative Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01233-0. [PMID: 38326662 DOI: 10.1007/s12975-024-01233-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Perioperative stroke is a devastating complication that occurs during surgery or within 30 days following the surgical procedure. Its prevalence ranges from 0.08 to 10% although it is most likely an underestimation, as sedatives and narcotics can substantially mask symptomatology and clinical presentation. Understanding the underlying pathophysiology and identifying potential therapeutic targets are of paramount importance. Protease-activated receptors (PARs), a unique family of G-protein-coupled receptors, are widely expressed throughout the human body and play essential roles in various physiological and pathological processes. This review elucidates the biology and significance of PARs, outlining their diverse functions in health and disease, and their intricate involvement in cerebrovascular (patho)physiology and neuroprotection. PARs exhibit a dual role in cerebral ischemia, which underscores their potential as therapeutic targets to mitigate the devastating effects of stroke in surgical patients.
Collapse
Affiliation(s)
- Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital, Dublin, incorporating the National Children's Hospital (AMNCH), Dublin, D24 NR0A, Ireland
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, 11528, Athens, Greece
| | - Theodora Choratta
- Department of General Surgery, Metaxa Hospital, 18537, Piraeus, Greece
| | - Androniki Papadopoulou
- Department of Anesthesiology, G. Gennimatas General Hospital, 54635, Thessaloniki, Greece
| | - Assaf Sawafta
- Department of Cardiology, University Hospital of Larisa, 41110, Larisa, Greece
| | | | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, 15773, Athens, Greece
| | - Minas Sakellakis
- Department of Medicine, Jacobi Medical Center-North Central Bronx Hospital, Bronx, NY, 10467, USA
| | - Athanasios Chalkias
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-5158, USA.
- Outcomes Research Consortium, Cleveland, OH, 44195, USA.
| |
Collapse
|
2
|
Hansen FB, Esteves GV, Mogensen S, Prat-Duran J, Secher N, Løfgren B, Granfeldt A, Simonsen U. Increased cerebral endothelium-dependent vasodilation in rats in the postcardiac arrest period. J Appl Physiol (1985) 2021; 131:1311-1327. [PMID: 34435510 DOI: 10.1152/japplphysiol.00373.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiovascular lability is common after cardiac arrest. We investigated whether altered endothelial function is present in cerebral and mesenteric arteries 2 and 4 h after resuscitation. Male Sprague-Dawley rats were anesthetized, intubated, ventilated, and intravascularly catheterized whereupon rats were randomized into four groups. Following 7 min of asphyxial cardiac arrest and subsequent resuscitation, cardiac arrest and sham rats were observed for either 2 or 4 h. Neuron-specific enolase levels were measured in blood samples. Middle cerebral artery segments and small mesenteric arteries were isolated and examined in microvascular myographs. qPCR and immunofluorescence analysis were performed on cerebral arteries. In cerebral arteries, bradykinin-induced vasodilation was inhibited in the presence of either calcium-activated K+ channel blockers (UCL1684 and senicapoc) or the nitric oxide (NO) synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride (l-NAME), whereas the combination abolished bradykinin-induced vasodilation across groups. Neuron-specific enolase levels were significantly increased in cardiac arrest rats. Cerebral vasodilation was comparable between the 2-h groups, but markedly enhanced in response to bradykinin, NS309 (an opener of small and intermediate calcium-activated K+ channels), and sodium nitroprusside 4 h after cardiac arrest. Endothelial NO synthase and guanylyl cyclase subunit α-1 mRNA expression was unaltered after 2 h, but significantly decreased 4 h after resuscitation. In mesenteric arteries, the endothelium-dependent vasodilation was comparable between corresponding groups at both 2 and 4 h. Our findings show enhanced cerebral endothelium-dependent vasodilation 4 h after cardiac arrest mediated by potentiated endothelial-derived hyperpolarization and NO pathways. Altered cerebral endothelium-dependent vasodilation may contribute to disturbed cerebral perfusion after cardiac arrest.NEW & NOTEWORTHY This is the first study, to our knowledge, to demonstrate enhanced endothelium-dependent vasodilation in middle cerebral arteries in a cardiac arrest rat model. The increased endothelium-dependent vasodilation was a result of potentiated endothelium-derived hyperpolarization and endothelial nitric oxide pathways. Immunofluorescence microscopy confirmed the presence of relevant receptors and eNOS in cerebral arteries, whereas qPCR showed altered expression of genes related to guanylyl cyclase and eNOS. Altered endothelium-dependent vasoregulation may contribute to disturbed cerebral blood flow in the postcardiac arrest period.
Collapse
Affiliation(s)
- Frederik Boe Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Susie Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Niels Secher
- Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Bo Løfgren
- Research Center for Emergency Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Asger Granfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Anesthesiology and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Enhancement of bradykinin-induced relaxation by focal brain ischemia in the rat middle cerebral artery: Receptor expression upregulation and activation of multiple pathways. PLoS One 2018; 13:e0198553. [PMID: 29912902 PMCID: PMC6005516 DOI: 10.1371/journal.pone.0198553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/21/2018] [Indexed: 01/06/2023] Open
Abstract
Focal brain ischemia markedly affects cerebrovascular reactivity. So far, these changes have mainly been related to alterations in the level of smooth muscle cell function while alterations of the endothelial lining have not yet been studied in detail. We have, therefore, investigated the effects of ischemia/reperfusion injury on bradykinin (BK)-induced relaxation since BK is an important mediator of tissue inflammation and affects vascular function in an endothelium-dependent manner. Focal brain ischemia was induced in rats by endovascular filament occlusion (2h) of the middle cerebral artery (MCA). After 22h reperfusion, both MCAs were harvested and the response to BK studied in organ bath experiments. Expression of the BK receptor subtypes 1 and 2 (B1, B2) was determined by real-time semi-quantitative RT-qPCR methodology, and whole mount immunofluorescence staining was performed to show the B2 receptor protein expression. In control animals, BK did not induce significant vasomotor effects despite a functionally intact endothelium and robust expression of B2 mRNA. After ischemia/reperfusion injury, BK induced a concentration-related sustained relaxation in all arteries studied, more pronounced in the ipsilateral than in the contralateral MCA. The B2 mRNA was significantly upregulated and the B1 mRNA displayed de novo expression, again more pronounced ipsi- than contralaterally. Endothelial cells displaying B2 receptor immunofluorescence were observed scattered or clustered in previously occluded MCAs. Relaxation to BK was mediated by B2 receptor activation, abolished after endothelium denudation, and largely diminished by blocking nitric oxide (NO) release or soluble guanylyl cyclase activity. Relaxation to BK was partially inhibited by charybdotoxin (ChTx), but not apamin or iberiotoxin suggesting activation of an endothelium-dependent hyperpolarization pathway. When the NO-cGMP pathway was blocked, BK induced a transient relaxation which was suppressed by ChTx. After ischemia/reperfusion injury BK elicits endothelium-dependent relaxation which was not detectable in control MCAs. This gain of function is mediated by B2 receptor activation and involves the release of NO and activation of an endothelium-dependent hyperpolarization. It goes along with increased B2 mRNA and protein expression, leaving the functional role of the de novo B1 receptor expression still open.
Collapse
|
4
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Cerebrovascular recovery after stroke with individual and combined losartan and captopril treatment of SHRsp. Vascul Pharmacol 2017; 96-98:40-52. [DOI: 10.1016/j.vph.2017.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 11/23/2022]
|
6
|
Maruyama K, Kagota S, McGuire JJ, Wakuda H, Yoshikawa N, Nakamura K, Shinozuka K. Enhanced Nitric Oxide Synthase Activation via Protease-Activated Receptor 2 Is Involved in the Preserved Vasodilation in Aortas from Metabolic Syndrome Rats. J Vasc Res 2016; 52:232-43. [DOI: 10.1159/000442415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
|
7
|
Effect of diet-induced obesity on BKCa function in contraction and dilation of rat isolated middle cerebral artery. Vascul Pharmacol 2014; 61:10-5. [DOI: 10.1016/j.vph.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/13/2014] [Accepted: 02/16/2014] [Indexed: 01/09/2023]
|
8
|
Hughes KH, Wijekoon EP, Valcour JE, Chia EW, McGuire JJ. Effects of chronic in-vivo treatments with protease-activated receptor 2 agonist on endothelium function and blood pressures in mice. Can J Physiol Pharmacol 2013; 91:295-305. [DOI: 10.1139/cjpp-2012-0266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Short-term treatments with protease-activated receptor 2-activating peptides (PAR2-AP) induce endothelium-dependent vasodilation and decrease blood pressure. In this study, we tested the effect of chronic in-vivo treatment with PAR2-AP on the blood pressure and endothelium function of mice. Male PAR2 wild-type (WT) and par2-deficient (KO) mice received subcutaneous infusions of either saline, low (PAR2-LD), or high (PAR2-HD) doses of 2-furoyl-LIGRLO-amide for 1 or 2 weeks. In each treatment group, endothelium function was assessed in isolated arteries. Blood pressure, heart rate, and locomotor activity were recorded by radiotelemetry, and levels of tumour nercrosis factor α (TNF-α) and interkeukin 1β (IL-1β) were measured in plasma samples by ELISA. The relaxation of WT aortas and mesenteric arteries induced by PAR2-AP was decreased by PAR2-LD and PAR2-HD. In mesenteric arteries, PAR2-LD and PAR2-HD decreased the relaxation induced by acetylcholine, but not by nitroprusside; in aortas, PAR2-LD and PAR2-HD caused differential decreases in the relaxations induced by acetylcholine and nitroprusside. Only PAR2-HD lowered systolic arterial pressures in WT, when compared with all of the other groups. TNF-α and IL-1β plasma concentrations were not different among the groups. We conclude that the systolic blood pressure of unrestrained mice can be lowered by chronic in-vivo activation of PAR2; however, this effect is countered by receptor desensitization and the concomitant development of endothelium and vascular dysfunction.
Collapse
Affiliation(s)
- Keon H. Hughes
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Enoka P. Wijekoon
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - James E. Valcour
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - Elizabeth W. Chia
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| | - John J. McGuire
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, 300 Prince Philip Drive, St. John's, NL A1B 3V6, Canada
| |
Collapse
|
9
|
Kagota S, Chia E, McGuire JJ. Preserved arterial vasodilatation via endothelial protease-activated receptor-2 in obese type 2 diabetic mice. Br J Pharmacol 2012; 164:358-71. [PMID: 21426317 PMCID: PMC3174416 DOI: 10.1111/j.1476-5381.2011.01356.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE In non-obese diabetic animals, protease-activated receptor-2 (PAR2) agonists are more effective vasodilators, which is attributed to increased COX-2 and endothelial NOS (eNOS) activities. Under conditions of diabetes and obesity, the effectiveness of PAR2 agonists is unknown. We compared the vasodilator responses of small calibre mesenteric arteries from obese diabetic B6.BKS(D)-Leprdb/J (db/db) induced by PAR2-activating agonists 2-furoyl-LIGRLO-amide (2fly) and trypsin to those obtained in controls [C57BL/6J (C57)], and assessed the contributions of COX, NOS and calcium-activated potassium channels (KCa) to these responses. EXPERIMENTAL APPROACH Arteries mounted in wire myographs under isometric tension conditions were contracted submaximally by U46619 then exposed to vasodilators. mRNA and protein expression of PAR2, eNOS and soluble GC (sGC) were determined by real-time PCR and Western blots. KEY RESULTS ACh- and nitroprusside-induced relaxations were attenuated in db/db compared with C57. In contrast, 2fly- and trypsin-induced relaxations were largely retained in db/db. A NOS inhibitor partly inhibited ACh- and 2fly-induced relaxations in C57, but not those in db/db. Inhibitors of the COX-cAMP pathway (FR122044, SC560, NS398, SC58125, SQ22536, CAY10441) did not affect these relaxation responses in either strain. Charybdotoxin (BKCa, SK3.1 blocker), but not iberiotoxin (BKCa blocker), inhibited responses to the PAR2 agonists in db/db. In db/db protein levels of eNOS were higher, whereas those of sGC were lower than in C57. PAR2 mRNA expression in db/db was higher than in C57. CONCLUSIONS AND IMPLICATIONS PAR2-mediated vasodilatation is protected against the negative effects of obesity and diabetes in mice. In diabetic vascular dysfunction, preserved PAR2 vasodilatation was linked to activation of SK3.1.
Collapse
Affiliation(s)
- Satomi Kagota
- Cardiovascular Research Group, Division of BioMedical Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada.
| | | | | |
Collapse
|
10
|
Chia E, Kagota S, Wijekoon EP, McGuire JJ. Protection of protease-activated receptor 2 mediated vasodilatation against angiotensin II-induced vascular dysfunction in mice. BMC Pharmacol 2011; 11:10. [PMID: 21955547 PMCID: PMC3192660 DOI: 10.1186/1471-2210-11-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 09/28/2011] [Indexed: 12/31/2022] Open
Abstract
Background Under conditions of cardiovascular dysfunction, protease-activated receptor 2 (PAR2) agonists maintain vasodilatation activity, which has been attributed to increased cyclooxygenase-2, nitric oxide synthase and calcium-activated potassium channel (SK3.1) activities. Protease-activated receptor 2 agonist mediated vasodilatation is unknown under conditions of dysfunction caused by angiotensin II. The main purpose of our study was to determine whether PAR2-induced vasodilatation of resistance arteries was attenuated by prolonged angiotensin II treatment in mice. We compared the vasodilatation of resistance-type arteries (mesenteric) from angiotensin II-treated PAR2 wild-type mice (WT) induced by PAR2 agonist 2-furoyl-LIGRLO-amide (2fly) to the responses obtained in controls (saline treatment). We also investigated arterial vasodilatation in angiotensin II-treated PAR2 deficient (PAR2-/-) mice. Results 2fly-induced relaxations of untreated arteries from angiotensin II-treated WT were not different than saline-treated WT. Treatment of arteries with nitric oxide synthase inhibitor and SK3.1 inhibitor (L-NAME + TRAM-34) blocked 2fly in angiotensin II-treated WT. Protein and mRNA expression of cyclooxygenase-1 and -2 were increased, and cyclooxygenase activity increased the sensitivity of arteries to 2fly in only angiotensin II-treated WT. These protective vasodilatation mechanisms were selective for 2fly compared with acetylcholine- and nitroprusside-induced relaxations which were attenuated by angiotensin II; PAR2-/- were protected against this attenuation of nitroprusside. Conclusions PAR2-mediated vasodilatation of resistance type arteries is protected against the negative effects of angiotensin II-induced vascular dysfunction in mice. In conditions of endothelial dysfunction, angiotensin II induction of cyclooxygenases increases sensitivity to PAR2 agonist and the preserved vasodilatation mechanism involves activation of SK3.1.
Collapse
Affiliation(s)
- Elizabeth Chia
- Memorial University, St, John's, Newfoundland and Labrador, Canada
| | | | | | | |
Collapse
|
11
|
Captopril Treatment Temporarily Restores Cerebral Blood Flow Autoregulation in Spontaneously Hypertensive Rats After Hemorrhagic Stroke. J Cardiovasc Pharmacol 2010; 56:255-62. [DOI: 10.1097/fjc.0b013e3181e8af62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|