1
|
Zhang Y, Watson S, Ramaswamy Y, Singh G. Intravitreal therapeutic nanoparticles for age-related macular degeneration: Design principles, progress and opportunities. Adv Colloid Interface Sci 2024; 329:103200. [PMID: 38788306 DOI: 10.1016/j.cis.2024.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly. The current standard treatment for AMD involves frequent intravitreal administrations of therapeutic agents. While effective, this approach presents challenges, including patient discomfort, inconvenience, and the risk of adverse complications. Nanoparticle-based intravitreal drug delivery platforms offer a promising solution to overcome these limitations. These platforms are engineered to target the retina specifically and control drug release, which enhances drug retention, improves drug concentration and bioavailability at the retinal site, and reduces the frequency of injections. This review aims to uncover the design principles guiding the development of highly effective nanoparticle-based intravitreal drug delivery platforms for AMD treatment. By gaining a deeper understanding of the physiology of ocular barriers and the physicochemical properties of nanoparticles, we establish a basis for designing intravitreal nanoparticles to optimize drug delivery and drug retention in the retina. Furthermore, we review recent nanoparticle-based intravitreal therapeutic strategies to highlight their potential in improving AMD treatment efficiency. Lastly, we address the challenges and opportunities in this field, providing insights into the future of nanoparticle-based drug delivery to improve therapeutic outcomes for AMD patients.
Collapse
Affiliation(s)
- Yuhang Zhang
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Stephanie Watson
- Faculty of Medicine and Health, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia.
| |
Collapse
|
2
|
Kumar M, Kumar D, Kumar D, Garg Y, Chopra S, Bhatia A. Therapeutic Potential of Nanocarrier Mediated Delivery of Peptides for Wound Healing: Current Status, Challenges and Future Prospective. AAPS PharmSciTech 2024; 25:108. [PMID: 38730090 DOI: 10.1208/s12249-024-02827-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
Wound healing presents a complex physiological process that involves a sequence of events orchestrated by various cellular and molecular mechanisms. In recent years, there has been growing interest in leveraging nanomaterials and peptides to enhance wound healing outcomes. Nanocarriers offer unique properties such as high surface area-to-volume ratio, tunable physicochemical characteristics, and the ability to deliver therapeutic agents in a controlled manner. Similarly, peptides, with their diverse biological activities and low immunogenicity, hold great promise as therapeutics in wound healing applications. In this review, authors explore the potential of peptides as bioactive components in wound healing formulations, focusing on their antimicrobial, anti-inflammatory, and pro-regenerative properties. Despite the significant progress made in this field, several challenges remain, including the need for standardized characterization methods, optimization of biocompatibility and safety profiles, and translation from bench to bedside. Furthermore, developing multifunctional nanomaterial-peptide hybrid systems represents promising avenues for future research. Overall, the integration of nanomaterials made up of natural or synthetic polymers with peptide-based formulations holds tremendous therapeutic potential in advancing the field of wound healing and improving clinical outcomes for patients with acute and chronic wounds.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Dikshant Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Yogesh Garg
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
3
|
Zhou Y, Wang P, Wan F, Zhu L, Wang Z, Fan G, Wang P, Luo H, Liao S, Yang Y, Chen S, Zhang J. Further Improvement Based on Traditional Nanocapsule Preparation Methods: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3125. [PMID: 38133022 PMCID: PMC10745493 DOI: 10.3390/nano13243125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Nanocapsule preparation technology, as an emerging technology with great development prospects, has uniqueness and superiority in various industries. In this paper, the preparation technology of nanocapsules was systematically divided into three categories: physical methods, chemical methods, and physicochemical methods. The technological innovation of different methods in recent years was reviewed, and the mechanisms of nanocapsules prepared via emulsion polymerization, interface polymerization, layer-by-layer self-assembly technology, nanoprecipitation, supercritical fluid, and nano spray drying was summarized in detail. Different from previous reviews, the renewal iteration of core-shell structural materials was highlighted, and relevant illustrations of their representative and latest research results were reviewed. With the continuous progress of nanocapsule technology, especially the continuous development of new wall materials and catalysts, new preparation technology, and new production equipment, nanocapsule technology will be used more widely in medicine, food, cosmetics, pesticides, petroleum products, and many other fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shangxing Chen
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| | - Ji Zhang
- National Forestry and Grassland Bureau Woody Spice (East China) Engineering Technology Research Center, The Institute of Plant Natural Products and Forest Products Chemical Engineering, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China; (Y.Z.); (P.W.); (F.W.); (L.Z.); (Z.W.); (G.F.); (P.W.); (H.L.); (S.L.); (Y.Y.)
| |
Collapse
|
4
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
5
|
Chen M, Ma A, Sun Z, Xie B, Shi L, Chen S, Chen L, Xiong G, Wang L, Wu W. Enhancing activity of food protein-derived peptides: An overview of pretreatment, preparation, and modification methods. Compr Rev Food Sci Food Saf 2023; 22:4698-4733. [PMID: 37732471 DOI: 10.1111/1541-4337.13238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
Food protein-derived peptides have garnered considerable attention due to their potential bioactivities and functional properties. However, the limited activity poses a challenge in effective utilization aspects. To overcome this hurdle, various methods have been explored to enhance the activity of these peptides. This comprehensive review offers an extensive overview of pretreatment, preparation methods, and modification strategies employed to augment the activity of food protein-derived peptides. Additionally, it encompasses a discussion on the current status and future prospects of bioactive peptide applications. The review also addresses the standardization of mass production processes and safety considerations for bioactive peptides while examining the future challenges and opportunities associated with these compounds. This comprehensive review serves as a valuable guide for researchers in the food industry, offering insights and recommendations to optimize the production process of bioactive peptides.
Collapse
Affiliation(s)
- Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhida Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Bijun Xie
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Sheng Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lang Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Guangquan Xiong
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan, China
- Agro-product Processing Research Sub-center of Hubei Innovation Center of Agriculture Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Qiu L, Han X, Xing C, Glebe U. Polymerization-Induced Self-Assembly: An Emerging Tool for Generating Polymer-Based Biohybrid Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207457. [PMID: 36737834 DOI: 10.1002/smll.202207457] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/04/2023] [Indexed: 05/04/2023]
Abstract
The combination of biomolecules and synthetic polymers provides an easy access to utilize advantages from both the synthetic world and nature. This is not only important for the development of novel innovative materials, but also promotes the application of biomolecules in various fields including medicine, catalysis, and water treatment, etc. Due to the rapid progress in synthesis strategies for polymer nanomaterials and deepened understanding of biomolecules' structures and functions, the construction of advanced polymer-based biohybrid nanostructures (PBBNs) becomes prospective and attainable. Polymerization-induced self-assembly (PISA), as an efficient and versatile technique in obtaining polymeric nano-objects at high concentrations, has demonstrated to be an attractive alternative to existing self-assembly procedures. Those advantages induce the focus on the fabrication of PBBNs via the PISA technique. In this review, current preparation strategies are illustrated based on the PISA technique for achieving various PBBNs, including grafting-from and grafting-through methods, as well as encapsulation of biomolecules during and subsequent to the PISA process. Finally, advantages and drawbacks are discussed in the fabrication of PBBNs via the PISA technique and obstacles are identified that need to be overcome to enable commercial application.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xinyue Han
- Institute of Biophysics, School of Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Chengfen Xing
- Key Laboratory of Hebei Province for Molecular Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Ulrich Glebe
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Shafique B, Ranjha MMAN, Murtaza MA, Walayat N, Nawaz A, Khalid W, Mahmood S, Nadeem M, Manzoor MF, Ameer K, Aadil RM, Ibrahim SA. Recent Trends and Applications of Nanoencapsulated Bacteriocins against Microbes in Food Quality and Safety. Microorganisms 2022; 11:microorganisms11010085. [PMID: 36677377 PMCID: PMC9864013 DOI: 10.3390/microorganisms11010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022] Open
Abstract
Bacteriocins are ribosomal-synthesized peptides or proteins produced by bacterial strains and can inhibit pathogenic bacteria. Numerous factors influence the potential activity of bacteriocins in food matrices. For example, food additives usage, chemical composition, physical conditions of food, and sensitivity of proteolytic enzymes can constrain the application of bacteriocins as beneficial food preservatives. However, novel bacteriocin nanoencapsulation has appeared as an encouraging solution. In this review, we highlight the bacteriocins produced by Gram-negative bacteria and Gram-positive bacteria including lactic acid bacteria that have shown positive results as potential food preservatives. In addition, this review encompasses the major focus on bacteriocins encapsulation with nanotechnology to enhance the antimicrobial action of bacteriocins. Several strategies can be employed to encapsulate bacteriocins; however, the nanotechnological approach is one of the most effective strategies for avoiding limitations. Nanoparticles such as liposomes, chitosan, protein, and polysaccharides have been discussed to show their importance in the nanoencapsulation method. The nanoparticles are combined with bacteriocins to develop the nano-encapsulated bacteriocins from Gram-negative and Gram-positive bacteria including LAB. In food systems, nanoencapsulation enhances the stability and antimicrobial functionality of active peptides. This nanotechnological application provides a formulation of a broad range of antimicrobial peptides at the industry-scale level. Nano-formulated bacteriocins have been discussed along with examples to show a broader antimicrobial spectrum, increase bacteriocins' applicability, extend antimicrobial spectrum and enhance stability.
Collapse
Affiliation(s)
- Bakhtawar Shafique
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | | | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Noman Walayat
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Asad Nawaz
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Waseem Khalid
- Department of Food Science, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shahid Mahmood
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Nadeem
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528011, China
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Correspondence: (K.A.); (R.M.A.); (S.A.I.)
| |
Collapse
|
8
|
Chibh S, Suyal S, Aggarwal N, Bachhawat AK, Panda JJ. Cysteine-phenylalanine-derived self-assembled nanoparticles as glutathione-responsive drug-delivery systems in yeast. J Mater Chem B 2022; 10:8733-8743. [PMID: 36250485 DOI: 10.1039/d2tb01362b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the availability of different antifungal drugs in the market, their overall usefulness remains questionable due to the relatively high toxic profiles exerted by them in many cases. In addition, the emergence of drug resistance against these antifungal agents is a matter of concern. Thus, it becomes imperative to explore innovative drug-delivery vehicles to deliver these antifungal drugs for enhanced efficacy, mitigating unwanted side effects and tackling the surge in antifungal resistance. Considering this fact, in this piece of work, we have synthesized stimulus (glutathione)-responsive dipeptide-based self-assembled nanoparticles (NPs) to explore and establish the redox-responsive antifungal drug delivery of a relatively hydrophobic drug, terbinafine (Terb), in Saccharomyces cerevisiae (S. cerevisiae). The NPs were prepared using a relatively aqueous environment as opposed to other Terb formulations that are administered in mostly non-polar solvents and with limited biocompatibility. The NPs demonstrated an encapsulation efficiency of around 99% for Terb and resulted in complete inhibition of yeast-cell growth at a dose of 200 μg mL-1 of the drug-loaded formulation. Thus, these biocompatible and aqueous dipeptide-based redox-responsive NPs can offer a promising drug-delivery platform to provide enhanced antifungal drug delivery with heightened efficacy and biocompatibility.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Mohali, Punjab, 140306, India.
| | - Shradha Suyal
- Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Nidhi Aggarwal
- Institute of Nano Science and Technology, Mohali, Punjab, 140306, India.
| | | | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab, 140306, India.
| |
Collapse
|
9
|
Delivery LL37 by chitosan nanoparticles for enhanced antibacterial and antibiofilm efficacy. Carbohydr Polym 2022; 291:119634. [DOI: 10.1016/j.carbpol.2022.119634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/16/2022] [Indexed: 01/14/2023]
|
10
|
Beig A, Ackermann R, Wang Y, Schutzman R, Schwendeman SP. Minimizing the initial burst of octreotide acetate based long-acting microspheres by the solvent evaporation method. Int J Pharm 2022; 624:121842. [DOI: 10.1016/j.ijpharm.2022.121842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
|
11
|
Dos Santos EM, Tavares LS, Fayer L, Brandão HM, Munk M, Santos MDO. Nanoencapsulated Lippia rotundifolia antimicrobial peptide: synthesis, characterization, antimicrobial activity, and cytotoxicity evaluations. Arch Microbiol 2022; 204:184. [PMID: 35179654 DOI: 10.1007/s00203-022-02787-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/02/2022]
Abstract
Antimicrobial peptides (AMP) are promising novel antibiotics but exhibit low stability and can be toxic. The AMP encapsulation can be used to protect the drug and control its release rates. The Lr-AMP1f encapsulated into chitosan nanoparticle (NP) by ionic gelation method reached 90% efficiency. The results indicated that the hydrodynamic particle size of NPs increased from 196.1 ± 3.14 nm (free NP) to 228.1 ± 12.22 nm (nanoencapsulated Lr-AMP1f), while the atomic force microscope showed the spherical shape. The Zeta potential of the nanoencapsulated Lr-AMP1f was high (+ 35 mV). These AMP-loaded NPs exhibited stability for up to 21 days of storage. The minimum inhibitory concentration (MIC) of free Lr-AMP1f was 8 µg/mL for E. coli and S. epidermidis. However, the nanoencapsulated Lr-AMP1f produced a bacteriostatic effect against both bacteria at 8 µg/mL. The MIC of nanoencapsulated Lr-AMP1f was 16 µg/mL for E. coli and 32 for S. epidermidis. Nanoencapsulated Lr-AMP1f was nontoxic to HEK293 cells. Promisingly, chitosan NP can be used as a vehicle for the antibacterial application of new AMP (Lr-AMP1f).
Collapse
Affiliation(s)
- Elisandra M Dos Santos
- Laboratory of g Genetics and Biotechnology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Letícia S Tavares
- Laboratory of g Genetics and Biotechnology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Leonara Fayer
- Laboratory of g Genetics and Biotechnology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz de Fora, MG, 36038-330, Brazil
| | - Michele Munk
- Laboratory of g Genetics and Biotechnology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil
| | - Marcelo de O Santos
- Laboratory of g Genetics and Biotechnology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-900, Brazil. .,Department of Biology, Federal University of Juiz de Fora - José Lourenço Kelmer, Campus Universitário, São Pedro, Juiz de Fora, 36036-900, Brazil.
| |
Collapse
|
12
|
Dondulkar A, Akojwar N, Katta C, Khatri DK, Mehra NK, Singh SB, Madan J. Inhalable polymeric micro and nano-immunoadjuvants for developing therapeutic vaccines in the treatment of non-small cell lung cancer. Curr Pharm Des 2021; 28:395-409. [PMID: 34736378 DOI: 10.2174/1381612827666211104155604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of death in millions of cancer patients. Lack of diagnosis at an early stage in addition to no specific guidelines for its treatment, and a higher rate of treatment-related toxicity further deteriorate the conditions. Current therapies encompass surgery, chemotherapy, radiation therapy, and immunotherapy according to the pattern and the stage of lung cancer. Among all, with a longlasting therapeutic action, reduced side-effects, and a higher rate of survival, therapeutic cancer vaccine is a new, improved strategy for treating NSCLC. Immunoadjuvants are usually incorporated into the therapeutic vaccines to shield the antigen against environmental and physiological harsh conditions in addition to boosting the immune potential. Conventional immunoadjuvants are often associated with an inadequate cellular response, poor target specificity, and low antigen load. Recently, inhalable polymeric nano/micro immunoadjuvants have exhibited immense potential in the development of therapeutic vaccines for the treatment of NSCLC with improved mucosal immunization. The development of polymeric micro/nano immunoadjuvants brought a new era for vaccines with increased strength and efficiency. Therefore, in the present review, we explained the potential application of micro/nano immunoadjuvants for augmenting the stability and efficacy of inhalable vaccines in the treatment of NSCLC. In addition, the role of biodegradable, biocompatible, and non-toxic polymers has also been discussed with case studies.
Collapse
Affiliation(s)
- Ayusha Dondulkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Natasha Akojwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Chanti Katta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Dharmendra K Khatri
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Neelesh K Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Shashi B Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana. India
| |
Collapse
|
13
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
14
|
Rashki S, Asgarpour K, Tarrahimofrad H, Hashemipour M, Ebrahimi MS, Fathizadeh H, Khorshidi A, Khan H, Marzhoseyni Z, Salavati-Niasari M, Mirzaei H. Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym 2021; 251:117108. [DOI: 10.1016/j.carbpol.2020.117108] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/23/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022]
|
15
|
Wang F, Hao J, Li N, Xing G, Hu M, Zhang G. Integrated System for Purification and Assembly of PCV Cap Nano Vaccine Based on Targeting Peptide Ligand. Int J Nanomedicine 2020; 15:8507-8517. [PMID: 33154640 PMCID: PMC7608655 DOI: 10.2147/ijn.s274427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose The vaccine design has shifted from attenuated or inactivated whole pathogen vaccines to more pure and defined subunit vaccines. The purification of antigen proteins, especially the precise display of antigen regions, has become a key step affecting the effectiveness of subunit vaccines. Materials and Methods This work presents the application of molecular docking for a peptide ligand designed for PCV2 Cap purification and assembly in one step. Based on the PCV2 Cap protein affinity peptide (L11-DYWWQSWE), the amino terminal of PCV2 Cap was covalently coupled with the polylactic acid–glycolic acid copolymer (PLGA) carboxyl terminal through the EDC/NHS method. Results The PLGA had an average diameter of 106 nm. The average diameter increased to 122 nm after the PCV2 Cap protein conjugation, and the Zeta potential shifted from −13.7 mV to −9.6 mV, indicating that the PCV2 Cap protein stably binds to the PLGA. Compared with the free PCV2 Cap protein group, the neutralizing antibody titer was significantly increased on the 14th day after the PLGA-Cap immunization (P < 0.05). The neutralizing antibody level was extremely significant on the 28th day (P < 0.001). The CCK-8 analysis showed that PLGA-Cap had an obvious cytotoxic effect on RAW264.7 cells at the PLGA nanoparticle concentration up to 200 μg/mL but had no obvious cytotoxic effect on DC2.4 cells. Compared with the Cap protein group, the antigen-presenting cells had a stronger antigen uptake capacity and a higher fluorescence in the PLGA-Cap group. The immune effect showed that the level of the neutralizing antibody produced by this structure is much better than that of purified protein and helps improve the immune system response. Conclusion This technology provides a potential new perspective for the rapid enrichment of the antigen protein with the affinity peptide ligand.
Collapse
Affiliation(s)
- Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Junfang Hao
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.,College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan 476000, People's Republic of China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450000, People's Republic of China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Man Hu
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Gaiping Zhang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450000, People's Republic of China
| |
Collapse
|
16
|
Hernando S, Herran E, Hernandez RM, Igartua M. Nanostructured Lipid Carriers Made of Ω-3 Polyunsaturated Fatty Acids: In Vitro Evaluation of Emerging Nanocarriers to Treat Neurodegenerative Diseases. Pharmaceutics 2020; 12:pharmaceutics12100928. [PMID: 33003360 PMCID: PMC7601928 DOI: 10.3390/pharmaceutics12100928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/14/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (ND) are one of the main problems of public health systems in the 21st century. The rise of nanotechnology-based drug delivery systems (DDS) has become in an emerging approach to target and treat these disorders related to the central nervous system (CNS). Among others, the use of nanostructured lipid carriers (NLCs) has increased in the last few years. Up to today, most of the developed NLCs have been made of a mixture of solid and liquid lipids without any active role in preventing or treating diseases. In this study, we successfully developed NLCs made of a functional lipid, such as the hydroxylated derivate of docohexaenoic acid (DHAH), named DHAH-NLCs. The newly developed nanocarriers were around 100 nm in size, with a polydispersity index (PDI) value of <0.3, and they exhibited positive zeta potential due to the successful chitosan (CS) and TAT coating. DHAH-NLCs were shown to be safe in both dopaminergic and microglia primary cell cultures. Moreover, they exhibited neuroprotective effects in dopaminergic neuron cell cultures after exposition to 6-hydroxydopamine hydrochloride (6-OHDA) neurotoxin and decreased the proinflammatory cytokine levels in microglia primary cell cultures after lipopolysaccharide (LPS) stimuli. The levels of the three tested cytokines, IL-6, IL-1β and TNF-α were decreased almost to control levels after the treatment with DHAH-NLCs. Taken together, these data suggest the suitability of DHAH-NLCs to attaining enhanced and synergistic effects for the treatment of NDs.
Collapse
Affiliation(s)
- Sara Hernando
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Enara Herran
- Biokeralty Research Institute, C/Albert Einstein 25 bajo, Edificio E-3 Miñano, 01510 Álava, Spain;
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (R.M.H.); (M.I.); Tel.: +34-94501-3095 (R.M.H.); +34-94501-3007 (M.I.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (R.M.H.); (M.I.); Tel.: +34-94501-3095 (R.M.H.); +34-94501-3007 (M.I.)
| |
Collapse
|
17
|
Hao P, Wu X, Wang L, Wei S, Xu H, Huang W, Li Y, Zhang T, Zan X. One-Pot Generating Subunit Vaccine with High Encapsulating Efficiency and Fast Lysosome Escape for Potent Cellular Immune Response. Bioconjug Chem 2020; 31:1917-1927. [PMID: 32639141 DOI: 10.1021/acs.bioconjchem.0c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Utilizing nanoparticles to deliver subunit vaccine is considered to be a promising strategy to improve immune response. However, currently reported systems suffered from one or more points, for example, delicate design on molecular structures and elaborate synthesis process, low antigen and/or adjuvant encapsulation efficiency, involvement of toxic materials, and denaturing of bioactivity of antigen and/or adjuvant. To address these issues, here, for the first time, we developed a one-pot method to produce a subunit vaccine by using hexa-histidine metal assembly (HmA) to codeliver tumor-associated antigens (GP100, a peptide KTWGQYWQV) and adjuvant (CpG). The generation of subunit vaccines was detailedly characterized by various techniques, including dynamic scatter, scanning electron microscopy, transmission electron microscopy, UV-visible spectroscopy, agarose gel electrophoresis, etc. HmA displayed high efficiency on encapsulating both subunits (GP100 and CpG) under mild conditions, and the generated subunit vaccine showed a pH-dependent release profile of loaded subunits. In the cellular tests, these subunit vaccines behaved with a quick endocytosis into immune cells and a fast endo/lysosomes escape, inducing maturation of antigen presentative cells and stimulating a potent cellular immune response. These results suggested that HmA is a robust platform for fabricating subunit vaccine, with immense potential for the immunotherapy of various diseases.
Collapse
Affiliation(s)
- Pengyan Hao
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Xiaoxiao Wu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Liwen Wang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Hongyan Xu
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Wenjuan Huang
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Yana Li
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Tinghong Zhang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China.,Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, P. R. China
| |
Collapse
|
18
|
Cajigas S, Orozco J. Nanobioconjugates for Signal Amplification in Electrochemical Biosensing. Molecules 2020; 25:molecules25153542. [PMID: 32756410 PMCID: PMC7436128 DOI: 10.3390/molecules25153542] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Nanobioconjugates are hybrid materials that result from the coalescence of biomolecules and nanomaterials. They have emerged as a strategy to amplify the signal response in the biosensor field with the potential to enhance the sensitivity and detection limits of analytical assays. This critical review collects a myriad of strategies for the development of nanobioconjugates based on the conjugation of proteins, antibodies, carbohydrates, and DNA/RNA with noble metals, quantum dots, carbon- and magnetic-based nanomaterials, polymers, and complexes. It first discusses nanobioconjugates assembly and characterization to focus on the strategies to amplify a biorecognition event in biosensing, including molecular-, enzymatic-, and electroactive complex-based approaches. It provides some examples, current challenges, and future perspectives of nanobioconjugates for the amplification of signals in electrochemical biosensing.
Collapse
|
19
|
Ding XW, Li R, Geetha T, Tao YX, Babu JR. Nerve growth factor in metabolic complications and Alzheimer's disease: Physiology and therapeutic potential. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165858. [PMID: 32531260 DOI: 10.1016/j.bbadis.2020.165858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/11/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
As the population ages, obesity and metabolic complications as well as neurological disorders are becoming more prevalent, with huge economic burdens on both societies and families. New therapeutics are urgently needed. Nerve growth factor (NGF), first discovered in 1950s, is a neurotrophic factor involved in regulating cell proliferation, growth, survival, and apoptosis in both central and peripheral nervous systems. NGF and its precursor, proNGF, bind to TrkA and p75 receptors and initiate protein phosphorylation cascades, resulting in changes of cellular functions, and are associated with obesity, diabetes and its complications, and Alzheimer's disease. In this article, we summarize changes in NGF levels in metabolic and neuronal disorders, the signal transduction initiated by NGF and proNGF, the physiological and pathophysiological relevance, and therapeutic potential in treating chronic metabolic diseases and cognitive decline.
Collapse
Affiliation(s)
- Xiao-Wen Ding
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Rongzi Li
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL 36849, USA; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
20
|
Thadani NN, Yang J, Moyo B, Lee CM, Chen MY, Bao G, Suh J. Site-Specific Post-translational Surface Modification of Adeno-Associated Virus Vectors Using Leucine Zippers. ACS Synth Biol 2020; 9:461-467. [PMID: 32068391 PMCID: PMC7323921 DOI: 10.1021/acssynbio.9b00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Adeno-associated virus (AAV) is widely favored as a gene therapy vector, tested in over 200 clinical trials internationally. To improve targeted delivery a variety of genetic capsid modifications, such as insertion of targeting proteins/peptides into the capsid shell, have been explored with some success but larger insertions often have unpredictable deleterious impacts on capsid formation and gene delivery. Here, we demonstrate a modular platform for the integration of exogenous peptides and proteins onto the AAV capsid post-translationally while preserving vector functionality. We decorated the AAV capsid with leucine-zipper coiled-coil binding motifs that exhibit specific noncovalent heterodimerization. AAV capsids successfully display hexahistidine tagged-peptides using this approach, as demonstrated through nickel column affinity. This protein display platform may facilitate the incorporation of biological moieties on the AAV surface, expanding possibilities for vector enhancement and engineering.
Collapse
Affiliation(s)
- Nicole N Thadani
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Joanna Yang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Buhle Moyo
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Maria Y Chen
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
- Systems, Synthetic and Physical Biology Program, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Wang J, Zhou M, Wu T, Fang L, Liu C, Min W. Novel anti-obesity peptide (RLLPH) derived from hazelnut (Corylus heterophylla Fisch) protein hydrolysates inhibits adipogenesis in 3T3-L1 adipocytes by regulating adipogenic transcription factors and adenosine monophosphate-activated protein kinase (AMPK) activation. J Biosci Bioeng 2020; 129:259-268. [DOI: 10.1016/j.jbiosc.2019.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022]
|
22
|
Gui Z, Zhu J, Ye S, Ye J, Chen J, Ling Y, Cai X, Cao P, He Z, Hu C. Prolonged melittin release from polyelectrolyte-based nanocomplexes decreases acute toxicity and improves blood glycemic control in a mouse model of type II diabetes. Int J Pharm 2020; 577:119071. [PMID: 31991184 DOI: 10.1016/j.ijpharm.2020.119071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/11/2020] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Gating modifier toxins (GMTs) from animal venom have shown great potential in controlling blood glucose levels in type II diabetes (T2D), but their high acute toxicity and quick clearance in the body hamper their potential therapeutic use. Inspired by their highly positive charge, we have developed a nanocomplex system based on polyelectrolytes, in which strong interactions form between positively charged GMTs and negatively charged dextran sulfate (DS). Using melittin as a model GMT and adapting flash nanocomplexation (FNC) technology for complex preparation, uniform nanocomplexes (polydispersity index: ~0.1) with high melittin encapsulation efficiency (~100%), high payload capacity (~30%), and tunable release profiles were formulated. In contrast to the high acute liver toxicity and low survival rate (60% after 8 days) observed after a single intraperitoneal (i.p.) injection of 3 mg/kg free melittin, melittin-loaded nanocomplexes displayed improved safety (100% survival after 8 days) due to prolonged melittin release. In a mouse model of T2D, a single i.p. injection of nanocomplexes decreased the blood glucose level to 12 mmol/L within 12 h and maintained it within the therapeutic range (<15 mmol/L) for 48 h. In addition, body weight decreased following treatment. This GMT/DS binary system shows great promise due to its simple components, facile preparation method, and enhanced potential druggability, including a decreased dosing frequency, decreased acute toxicity, and improved pathological indicators.
Collapse
Affiliation(s)
- Zaizhi Gui
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jinchang Zhu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Song Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuanyuan Ling
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Xueting Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyu He
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
23
|
Schirmer L, Hoornaert C, Le Blon D, Eigel D, Neto C, Gumbleton M, Welzel PB, Rosser AE, Werner C, Ponsaerts P, Newland B. Heparin-based, injectable microcarriers for controlled delivery of interleukin-13 to the brain. Biomater Sci 2020; 8:4997-5004. [DOI: 10.1039/d0bm01249a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The anti-inflammatory cytokine IL-13 can be loaded and released from heparin-based cryogel biomaterials for sustained delivery to the brain.
Collapse
|
24
|
Hurley SK, Cutrone NM, Fath KR, Pajovich HT, Garcia J, Smith AM, Banerjee IA. Self-assembled phenylisoxazole-peptide hybrid assemblies and their interactions with breast and ovarian tumor cells. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1525542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sara K. Hurley
- Department of Chemistry, Fordham University, Bronx, NY, USA
| | | | - Karl R. Fath
- Department of Biology, Queens College, City University of New York, New York, NY, USA
| | | | - Jeremy Garcia
- Department of Biology, Queens College, City University of New York, New York, NY, USA
| | | | | |
Collapse
|
25
|
Streck S, Clulow AJ, Nielsen HM, Rades T, Boyd BJ, McDowell A. The distribution of cell-penetrating peptides on polymeric nanoparticles prepared using microfluidics and elucidated with small angle X-ray scattering. J Colloid Interface Sci 2019; 555:438-448. [DOI: 10.1016/j.jcis.2019.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
|
26
|
Ranjitha VR, Muddegowda U, Ravishankar Rai V. Potent activity of bioconjugated peptide and selenium nanoparticles against colorectal adenocarcinoma cells. Drug Dev Ind Pharm 2019; 45:1496-1505. [DOI: 10.1080/03639045.2019.1634090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- V. R. Ranjitha
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| | - Umashankar Muddegowda
- Department of Studies in Chemistry, Karnataka State Open University (KSOU), Mysore, India
| | - V. Ravishankar Rai
- Department of Studies in Microbiology, University of Mysore, Mysore, India
| |
Collapse
|
27
|
Wang N, Chen M, Wang T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J Control Release 2019; 303:130-150. [PMID: 31022431 PMCID: PMC7111479 DOI: 10.1016/j.jconrel.2019.04.025] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Liposomes are widely utilized as a carrier to improve therapeutic efficacy of agents thanks to their merits of high loading capacity, targeting delivery, reliable protection of agents, good biocompatibility, versatile structure modification and adjustable characteristics, such as size, surface charge, membrane flexibility and the agent loading mode. In particular, in recent years, through modification with immunopotentiators and targeting molecules, and in combination with innovative immunization devices, liposomes are rapidly developed as a multifunctional vaccine adjuvant-delivery system (VADS) that has a high capability in inducing desired immunoresponses, as they can target immune cells and even cellular organelles, engender lysosome escape, and promote Ag cross-presentation, thus enormously enhancing vaccination efficacy. Moreover, after decades of development, several products developed on liposome VADS have already been authorized for clinical immunization and are showing great advantages over conventional vaccines. This article describes in depth some critical issues relevant to the development of liposomes as a VADS, including principles underlying immunization, physicochemical properties of liposomes as the immunity-influencing factors, functional material modification to enhance immunostimulatory functions, the state-of-the-art liposome VADSs, as well as the marketed vaccines based on a liposome VADS. Therefore, this article provides a comprehensive reference to the development of novel liposome vaccines.
Collapse
Affiliation(s)
- Ning Wang
- School of Food and Bioengineering, Hefei University of Technology, 193 Tun Brook Road, Hefei, Anhui Province 230009, China
| | - Minnan Chen
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, 81 Plum Hill Road, Hefei, Anhui Province 230032, China.
| |
Collapse
|
28
|
Sharma R, Raghav R, Priyanka K, Rishi P, Sharma S, Srivastava S, Verma I. Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci Rep 2019; 9:7866. [PMID: 31133658 PMCID: PMC6536545 DOI: 10.1038/s41598-019-44256-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
The upsurge of drug resistant tuberculosis is major health threat globally. To counteract, antimicrobial peptides are being explored as possible alternatives. However, certain limitations of peptide-based drugs such as potential toxicity, high cost and relatively low stability need to be addressed to enhance their clinical applicability. Use of computer predicted short active motifs of AMPs along with nanotechnology could not only overcome the limitations of AMPs but also potentiate their antimicrobial activity. Therefore, present study was proposed to in silico identify short antimicrobial motif (Pep-H) of human neutrophil peptide-1 (HNP-1) and explore its antimycobacterial activity in free form and using nanoparticles-based delivery systems. Based on colony forming unit analysis, motif Pep-H led to killing of more than 90% M. tb in vitro at 10 μg/ml, whereas, similar activity against intracellularly growing M. tb was observed at 5 μg/ml only. Thereafter, chitosan (244 nm) and gold nanoparticles (20 nm) were prepared for Pep-H with both the formulations showing minimal effects on the viability of human monocyte derived macrophages (MDMs) and RBC integrity. The antimycobacterial activity of Pep-H against intracellular mycobacteria was enhanced in both the nanoformulations as evident by significant reduction in CFU (>90%) at 5-10 times lower concentrations than that observed for free Pep-H. Thus, Pep-H is an effective antimycobacterial motif of HNP-1 and its activity is further enhanced by chitosan and gold nanoformulations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ragini Raghav
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Kumari Priyanka
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
29
|
Wen C, Zhang J, Yao H, Zhou J, Duan Y, Zhang H, Ma H. Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 53:83-98. [PMID: 30600214 DOI: 10.1016/j.ultsonch.2018.12.036] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/05/2018] [Accepted: 12/24/2018] [Indexed: 05/27/2023]
Abstract
In recent years, there has been increasing interest in renewable and sustainable protein resource of plant origin. The reasons for this are summarized as follows: (1) green, low-cost, environmental friendly and sustainable concepts are deeply rooted in people's minds; (2) long-term use of animal protein can lead to high blood pressure, obesity, negative environmental impacts; (3) more and more vegetarians are emerged; (4) many consumers still do not accept food grade insect. Based on this situation, this paper links eco-innovative ultrasound technology to plant-derived sustainable proteins resource, and magnifies the advantages of both at the same time. Ultrasound is a novel, green and rapid developing environmental friendly technology, which is suitable for up scaling and improving the physicochemical properties of protein. This review summarizes the mechanisms, cavitation properties of ultrasonic field, consumption of energy, applications of spectroscopic techniques for evaluating plant-derived proteins conformation changes, effects of ultrasound on the structure and physicochemical properties of plant-derived renewable proteins, and application of ultrasound treatment proteins in food industry. Furthermore, future research to better utilize this green technology is suggested. In this way, it not only conforms to the concept of sustainable, high-efficiency, and environmental protection of the food protein industry, but also clarifies the relationship between protein structure and properties, which are conducive to the application of ultrasound in protein industrialization.
Collapse
Affiliation(s)
- Chaoting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jixian Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Yao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jie Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuqing Duan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haihui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
30
|
Maatuf Y, Geron M, Priel A. The Role of Toxins in the Pursuit for Novel Analgesics. Toxins (Basel) 2019; 11:toxins11020131. [PMID: 30813430 PMCID: PMC6409898 DOI: 10.3390/toxins11020131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic pain is a major medical issue which reduces the quality of life of millions and inflicts a significant burden on health authorities worldwide. Currently, management of chronic pain includes first-line pharmacological therapies that are inadequately effective, as in just a portion of patients pain relief is obtained. Furthermore, most analgesics in use produce severe or intolerable adverse effects that impose dose restrictions and reduce compliance. As the majority of analgesic agents act on the central nervous system (CNS), it is possible that blocking pain at its source by targeting nociceptors would prove more efficient with minimal CNS-related side effects. The development of such analgesics requires the identification of appropriate molecular targets and thorough understanding of their structural and functional features. To this end, plant and animal toxins can be employed as they affect ion channels with high potency and selectivity. Moreover, elucidation of the toxin-bound ion channel structure could generate pharmacophores for rational drug design while favorable safety and analgesic profiles could highlight toxins as leads or even as valuable therapeutic compounds themselves. Here, we discuss the use of plant and animal toxins in the characterization of peripherally expressed ion channels which are implicated in pain.
Collapse
Affiliation(s)
- Yossi Maatuf
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Matan Geron
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Avi Priel
- The Institute for Drug Research (IDR), School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| |
Collapse
|
31
|
Bacteriocin encapsulation for food and pharmaceutical applications: advances in the past 20 years. Biotechnol Lett 2019; 41:453-469. [PMID: 30739282 DOI: 10.1007/s10529-018-02635-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023]
Abstract
The encapsulation of bacteriocins from lactic acid bacteria has involved several methods to protect them from unfavourable environmental conditions and incompatibilities. This review encompasses different methods for the encapsulation of bacteriocins and their applications in both food and pharmaceutical fields. Based on the bibliometric analysis of publications from well-reputed journals including different available patents during the period from 1996 to 2017, 135 articles and 60 patents were collected. Continent-wise contributions to the bacteriocins encapsulation research were carried out by America (52%), Asia (29%) and Europe (19%); with the United States of America, Brazil, Thailand and Italy the countries with major contributions. Till date, different methods proposed for encapsulation have been (i) Film coatings (50%), (ii) Liposomes (23%), (iii) Nanofibers (22%) and (iv) Nanoparticles (4%). Bacteriocins encapsulation methods frequently carried out in food protection (70%); while in the pharmaceutical field, 30% of the research was conducted on multi drug resistant therapy.
Collapse
|
32
|
Streck S, Hong L, Boyd BJ, McDowell A. Microfluidics for the Production of Nanomedicines: Considerations for Polymer and Lipid-based Systems. Pharm Nanotechnol 2019; 7:423-443. [PMID: 31629401 DOI: 10.2174/2211738507666191019154815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/30/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Microfluidics is becoming increasingly of interest as a superior technique for the synthesis of nanoparticles, particularly for their use in nanomedicine. In microfluidics, small volumes of liquid reagents are rapidly mixed in a microchannel in a highly controlled manner to form nanoparticles with tunable and reproducible structure that can be tailored for drug delivery. Both polymer and lipid-based nanoparticles are utilized in nanomedicine and both are amenable to preparation by microfluidic approaches. AIM Therefore, the purpose of this review is to collect the current state of knowledge on the microfluidic preparation of polymeric and lipid nanoparticles for pharmaceutical applications, including descriptions of the main synthesis modalities. Of special interest are the mechanisms involved in nanoparticle formation and the options for surface functionalisation to enhance cellular interactions. CONCLUSION The review will conclude with the identification of key considerations for the production of polymeric and lipid nanoparticles using microfluidic approaches.
Collapse
Affiliation(s)
- Sarah Streck
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| | - Linda Hong
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Arlene McDowell
- School of Pharmacy, University of Otago, 18 Frederick Street, Dunedin 9054, New Zealand
| |
Collapse
|
33
|
Lysozyme and DNase I loaded poly (D, L lactide-co-caprolactone) nanocapsules as an oral delivery system. Sci Rep 2018; 8:13158. [PMID: 30177767 PMCID: PMC6120872 DOI: 10.1038/s41598-018-31303-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/16/2018] [Indexed: 12/17/2022] Open
Abstract
Clinical applications of oral protein therapy for the treatment of various chronic diseases are limited due to the harsh conditions encounter the proteins during their journey in the Gastrointestinal Tract. Although nanotechnology forms a platform for the development of oral protein formulations, obtaining physiochemically stable formulations able to deliver active proteins is still challenging because of harsh preparation conditions. This study proposes the use of poly (D, L-lactic-co-caprolactone)-based polymeric nanocapsules at different monomers' ratios for protein loading and oral delivery. All formulations had a spherical shape and nano-scale size, and lysozyme encapsulation efficiency reached 80% and significantly affected by monomers' ratio. Trehalose and physical state of lysozyme had a significant effect on its biological activity (P < 0.05). Less than 10% of the protein was released in simulated gastric fluid, and 73% was the highest recorded accumulative release percentage in simulated intestinal fluid (SIF) over 24 h. The higher caprolactone content, the higher encapsulation efficiency (EE) and the lower SIF release recorded. Therefore, the formulation factors were optimised and the obtained system was PEGylated wisely to attain EE 80%, 81% SIF release within 24 h, and 98% lysozyme biological activity. The optimum formulation was prepared to deliver DNase, and similar attributes were obtained.
Collapse
|
34
|
In-vitro study of the novel nanocarrier of chitosan-based nanoparticles conjugated HIV-1 P24 protein-derived peptides. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.05.137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R. Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. Chemphyschem 2018; 19:2810-2828. [DOI: 10.1002/cphc.201800388] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Paula M. Castillo
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Aila Jimenez-Ruiz
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Jose M. Carnerero
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| | - Rafael Prado-Gotor
- Physical Chemistry Department. Faculty of Chemistry; University of Seville; C/Prof. García González, s/n 41012 Sevilla Spain
| |
Collapse
|
36
|
Sousa F, Fonte P, Cruz A, Kennedy PJ, Pinto IM, Sarmento B. Polyester-Based Nanoparticles for the Encapsulation of Monoclonal Antibodies. Methods Mol Biol 2018; 1674:239-253. [PMID: 28921443 DOI: 10.1007/978-1-4939-7312-5_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aliphatic polyesters have been widely explored for biomedical applications (e.g., drug delivery systems, biomedical devices, and tissue engineering). Recently, polyesters have been used in nanoparticle formulations for the controlled release of monoclonal antibodies (mAbs) for the enhanced efficacy of antibody-based therapy. Polyester-based nanoparticles for mAb delivery provide decreased antibody dosage, increased antibody stability and protection and longer therapeutic action, ultimately translating to an increased therapeutic index. Additionally, nanoencapsulation holds the potential for the selective cellular recognition and internalization of mAbs, in the disease context when intracellular organelles and molecules (e.g., enzymes, transcription factors and oncogenic proteins) are the preferred target. We present here a detailed method to prepare mAb-loaded polyester-based nanoparticles and the various techniques to characterize the resulting nanoparticles and mAb structure. Finally, we highlight different biological approaches to assess the in vitro bioactivity of the antibody upon nanoparticle release.
Collapse
Affiliation(s)
- Flávia Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180, Porto, Portugal
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, PRD, Portugal
| | - Pedro Fonte
- UCIBIO, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Andreia Cruz
- INL, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330, Braga, Portugal
| | - Patrick J Kennedy
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal
| | - Inês Mendes Pinto
- INL, International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330, Braga, Portugal
| | - Bruno Sarmento
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-393, Porto, Portugal.
- ICBAS-Instituto Ciências Biomédicas Abel Salazar, Universidade do Porto, 4150-180, Porto, Portugal.
| |
Collapse
|
37
|
Santalices I, Gonella A, Torres D, Alonso MJ. Advances on the formulation of proteins using nanotechnologies. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Almaaytah A, Mohammed GK, Abualhaijaa A, Al-Balas Q. Development of novel ultrashort antimicrobial peptide nanoparticles with potent antimicrobial and antibiofilm activities against multidrug-resistant bacteria. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:3159-3170. [PMID: 29138537 PMCID: PMC5679673 DOI: 10.2147/dddt.s147450] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Conventional antibiotics are facing strong microbial resistance that has recently reached critical levels. This situation is leading to significantly reduced therapeutic potential of a huge proportion of antimicrobial agents currently used in clinical settings. Antimicrobial peptides (AMPs) could provide the medical community with an alternative strategy to traditional antibiotics for combating microbial resistance. However, the development of AMPs into clinically useful antibiotics is hampered by their relatively low stability, toxicity, and high manufacturing costs. In this study, a novel in-house-designed potent ultrashort AMP named RBRBR was encapsulated into chitosan-based nanoparticles (CS-NPs) based on the ionotropic gelation method. The encapsulation efficacy reported for RBRBR into CS-NPs was 51.33%, with a loading capacity of 10.17%. The release kinetics of RBRBR from the nanocarrier exhibited slow release followed by progressive linear release for 14 days. The antibacterial kinetics of RBRBR-CS-NPs was tested against four strains of Staphylococcus aureus for 4 days, and the developed RBRBR-CS-NPs exhibited a 3-log decrease in the number of colonies when compared to CS-NP and a 5-log decrease when compared to control bacteria. The encapsulated peptide NP formulation managed to limit the toxicity of the free peptide against both mammalian cells and human erythrocytes. Additionally, the peptide NPs demonstrated up to 98% inhibition of biofilm formation when tested against biofilm-forming bacteria. Loading RBRBR into CS-NPs could represent an innovative approach to develop delivery systems based on NP technology for achieving potent antimicrobial effects against multidrug-resistant and biofilm-forming bacteria, with negligible systemic toxicity and reduced synthetic costs, thereby overcoming the obstructions to clinical development of AMPs.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy
| | | | - Ahmad Abualhaijaa
- Department of Applied Biological Sciences, Faculty of Science and Arts
| | - Qosay Al-Balas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
39
|
Abstract
Monoclonal antibodies have deserved a remarkable interest for more than 40 years as a vital tool for the treatment of various diseases. Still, there is a raising interest to develop advanced monoclonal antibody delivery systems able to tailor pharmacokinetics. Bevacizumab is a humanized immunoglobulin IgG1 used in antiangiogenic therapies due to its capacity to inhibit the interaction between vascular endothelial growth factor and its receptor. However, bevacizumab-based antiangiogenic therapy is not always effective due to poor treatment compliance associated to multiples administrations and drug resistance. In this work, we show a promising strategy of encapsulating bevacizumab to protect and deliver it, in a controlled manner, increasing the time between administrations and formulation shelf-life. Nanoencapsulation of bevacizumab represents a significant advance for selective antiangiogenic therapies since extracellular, cell surface and intracellular targets can be reached. The present study shows that bevacizumab-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles does not impair its native-like structure after encapsulation and fully retain the bioactivity, making this nanosystem a new paradigm for the improvement of angiogenic therapy.
Collapse
|
40
|
Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120:68-87. [DOI: 10.1016/j.phrs.2017.03.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/23/2017] [Accepted: 03/22/2017] [Indexed: 12/30/2022]
|
41
|
Shafaei Z, Ghalandari B, Vaseghi A, Divsalar A, Haertlé T, Saboury AA, Sawyer L. β-Lactoglobulin: An efficient nanocarrier for advanced delivery systems. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1685-1692. [PMID: 28343017 DOI: 10.1016/j.nano.2017.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 01/10/2023]
Abstract
Thanks to the progress of nanotechnology there are several agent-delivery systems that can be selected to achieve rapid and specific delivery of a wide variety of biologically active agents. Consequently, the manipulation and engineering of biopolymers has become one of the most exciting subjects for those who study delivery systems on the nanoscale. In this regard, both nanoparticle formation and a carrier role have been observed in the case of the globular milk whey protein, β-lactoglobulin (β-LG), setting it apart from many other proteins. To date, many efforts adopting different approaches have created β-LG nanoparticles useful in forming delivery systems for various agents with specific targets. In this review, the potential of β-LG to play the role of an efficient and diverse carrier protein, as well as its ability to form a well-targeted nano-scale delivery system is discussed.
Collapse
Affiliation(s)
- Zahra Shafaei
- Department of Cell and Molecular Biology' Faculty of Biological Sciences' Kharazmi University, Tehran, Iran
| | - Behafarid Ghalandari
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akbar Vaseghi
- Department of Biotechnology, Faculty of Advanced Science and Technologies of Isfahan, Isfahan, Iran
| | - Adeleh Divsalar
- Department of Cell and Molecular Biology' Faculty of Biological Sciences' Kharazmi University, Tehran, Iran.
| | - Thomas Haertlé
- FIP, BIA UR1268, Institut National de la Recherche Agronomique, Nantes, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics' University of Tehran, Tehran, Iran; Center of Excellence in Biothermodynamics, University of Tehran, Tehran, Iran
| | - Lindsay Sawyer
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
42
|
Andar AU, Karan R, Pecher WT, DasSarma P, Hedrich WD, Stinchcomb AL, DasSarma S. Microneedle-Assisted Skin Permeation by Nontoxic Bioengineerable Gas Vesicle Nanoparticles. Mol Pharm 2017; 14:953-958. [PMID: 28068767 DOI: 10.1021/acs.molpharmaceut.6b00859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gas vesicle nanoparticles (GVNPs) are hollow, buoyant protein organelles produced by the extremophilic microbe Halobacterium sp. NRC-1 and are being developed as bioengineerable and biocompatible antigen and drug-delivery systems (DDS). Dynamic light scattering measurements of purified GVNP suspensions showed a mean diameter of 245 nm. In vitro diffusion studies using Yucatan miniature pig skin showed GVNP permeation to be enhanced after MN-treatment compared to untreated skin. GVNPs were found to be nontoxic to mammalian cells (human kidney and rat mycocardial myoblasts). These findings support the use of GVNPs as DDS for intradermal/transdermal permeation of protein- and peptide-based drugs.
Collapse
Affiliation(s)
- Abhay U Andar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Ram Karan
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - Wolf T Pecher
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States.,Yale Gordon College of Arts and Sciences, University of Baltimore , Baltimore, Maryland 21201, United States
| | - Priya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| | - William D Hedrich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Audra L Stinchcomb
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, School of Medicine, and Institute of Marine and Environmental Technology, University System of Maryland , Baltimore, Maryland 21202, United States
| |
Collapse
|
43
|
Sousa F, Castro P, Fonte P, Kennedy PJ, Neves-Petersen MT, Sarmento B. Nanoparticles for the delivery of therapeutic antibodies: Dogma or promising strategy? Expert Opin Drug Deliv 2016; 14:1163-1176. [PMID: 28005451 DOI: 10.1080/17425247.2017.1273345] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Over the past two decades, therapeutic antibodies have demonstrated promising results in the treatment of a wide array of diseases. However, the application of antibody-based therapy implies multiple administrations and a high cost of antibody production, resulting in costly therapy. Another disadvantage inherent to antibody-based therapy is the limited stability of antibodies and the low level of tissue penetration. The use of nanoparticles as delivery systems for antibodies allows for a reduction in antibody dosing and may represent a suitable alternative to increase antibody stability Areas covered: We discuss different nanocarriers intended for the delivery of antibodies as well as the corresponding encapsulation methods. Recent developments in antibody nanoencapsulation, particularly the possible toxicity issues that may arise from entrapment of antibodies into nanocarriers, are also assessed. In addition, this review will discuss the alterations in antibody structure and bioactivity that occur with nanoencapsulation. Expert opinion: Nanocarriers can protect antibodies from degradation, ensuring superior bioavailability. Encapsulation of therapeutic antibodies may offer some advantages, including potential targeting, reduced immunogenicity and controlled release. Furthermore, antibody nanoencapsulation may aid in the incorporation of the antibodies into the cells, if intracellular components (e.g. intracellular enzymes, oncogenic proteins, transcription factors) are to be targeted.
Collapse
Affiliation(s)
- Flávia Sousa
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,d CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , Gandra-PRD , Portugal
| | - Pedro Castro
- e CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia , Universidade Católica Portuguesa/Porto , Porto , Portugal
| | - Pedro Fonte
- f UCIBIO, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Patrick J Kennedy
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal.,g IPATIMUP - Instituto de Patologia e Imunologia Molecular Universidade do Porto , Porto , Portugal
| | | | - Bruno Sarmento
- a i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto , Porto , Portugal.,b INEB - Instituto de Engenharia Biomédica , Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto Ciências Biomédicas Abel Salazar , Universidade do Porto , Porto , Portugal
| |
Collapse
|
44
|
Zhang Z, Wang X, Zhu R, Wang Y, Li B, Ma Y, Yin Y. Synthesis and characterization of serial random and block-copolymers based on lactide and glycolide. POLYMER SCIENCE SERIES B 2016. [DOI: 10.1134/s1560090416060191] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
45
|
Sandreschi S, Piras AM, Batoni G, Chiellini F. Perspectives on polymeric nanostructures for the therapeutic application of antimicrobial peptides. Nanomedicine (Lond) 2016; 11:1729-44. [PMID: 27348155 DOI: 10.2217/nnm-2016-0057] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a class of promising anti-infective molecules but their therapeutic application is opposed by their poor bioavailability, susceptibility to protease degradation and potential toxicity. The advancement of nanoformulation technologies offers encouraging perspectives for the development of novel therapeutic strategies based on AMPs to treat antibiotic resistant microbial infections. Additionally, the use of polymers endowed per-se with antibacterial properties, stands out as an innovative approach for the development of a new generation of drug delivery systems in which an enhanced antimicrobial action could be obtained by the synergic combination of bioactive polymer matrices and drugs. Herein, the latest AMPs drug delivery research is discussed.
Collapse
Affiliation(s)
- Stefania Sandreschi
- BIOlab Research Group, Department of Chemistry & Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Anna Maria Piras
- BIOlab Research Group, Department of Chemistry & Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research & New Technology in Medicine & Surgery, University of Pisa, Via S. Zeno 35-39, 56127 Pisa, Italy
| | - Federica Chiellini
- BIOlab Research Group, Department of Chemistry & Industrial Chemistry, University of Pisa, UdR INSTM Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
46
|
He S, Mao X, Zhang T, Guo X, Ge Y, Ma C, Zhang X. Separation and nanoencapsulation of antitumor peptides from Chinese three-striped box turtle (Cuora trifasciata). J Microencapsul 2016; 33:344-54. [DOI: 10.1080/02652048.2016.1194904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
47
|
Dyawanapelly S, Koli U, Dharamdasani V, Jain R, Dandekar P. Improved mucoadhesion and cell uptake of chitosan and chitosan oligosaccharide surface-modified polymer nanoparticles for mucosal delivery of proteins. Drug Deliv Transl Res 2016; 6:365-79. [DOI: 10.1007/s13346-016-0295-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Rietscher R, Czaplewska JA, Majdanski TC, Gottschaldt M, Schubert US, Schneider M, Lehr CM. Impact of PEG and PEG- b -PAGE modified PLGA on nanoparticle formation, protein loading and release. Int J Pharm 2016; 500:187-95. [DOI: 10.1016/j.ijpharm.2016.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/02/2023]
|
49
|
Nur M, Ramchandran L, Vasiljevic T. Tragacanth as an oral peptide and protein delivery carrier: Characterization and mucoadhesion. Carbohydr Polym 2016; 143:223-30. [PMID: 27083363 DOI: 10.1016/j.carbpol.2016.01.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/20/2016] [Accepted: 01/31/2016] [Indexed: 11/18/2022]
Abstract
Biopolymers such as tragacanth, an anionic polysaccharide gum, can be alternative polymeric carrier for physiologically important peptides and proteins. Characterization of tragacanth is thus essential for providing a foundation for possible applications. Rheological studies colloidal solution of tragacanth at pH 3, 5 or 7 were carried out by means of steady shear and small amplitude oscillatory measurements. Tragacanth mucoadhesivity was also analyzed using an applicable rheological method and compared to chitosan, alginate and PVP. The particle size and zeta potential were measured by a zetasizer. Thermal properties of solutions were obtained using a differential scanning calorimetry. The solution exhibited shear-thinning characteristics. The value of the storage modulus (G') and the loss modulus (G″) increased with an increase in angular frequency (Ω). In all cases, loss modulus values were higher than storage values (G″>G') and viscous character was, therefore, dominant. Tragacanth and alginate showed a good mucoadhesion. Tragacanth upon dispersion created particles of a submicron size with a negative zeta potential (-7.98 to -11.92 mV). These properties were pH dependant resulting in acid gel formation at pH 3.5. Tragacanth has thus a potential to be used as an excipient for peptide/protein delivery.
Collapse
Affiliation(s)
- M Nur
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia; Department of Agricultural Product Technology, Faculty of Agricultural Technology, Brawijaya University, Jl. Veteran, 65145 Malang, Indonesia
| | - L Ramchandran
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia
| | - T Vasiljevic
- Advanced Food Systems Research Unit, College of Health and Biomedicine, Victoria University, PO Box 14428, Melbourne 8001, Australia.
| |
Collapse
|
50
|
Kato M. Development of analytical methods for functional analysis of intracellular protein using signal-responsive silica or organic nanoparticles. J Pharm Biomed Anal 2016; 118:292-306. [PMID: 26580827 DOI: 10.1016/j.jpba.2015.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
Abstract
Because proteins control cellular function, intracellular protein analysis is needed to gain a better understanding of life and disease. However, in situ protein analysis still faces many difficulties because proteins are heterogeneously located within the cell and the types and amount of proteins within the cell are ever changing. Recently, nanotechnology has received increasing attention and multiple protein-containing nanoparticles have been developed. Nanoparticles offer a promising tool for intracellular protein analysis because (1) they can permeate the cellular membrane after modification or changing composition, (2) the stability of various proteins is improved by encapsulation within nanoparticles, and (3) protein release and activity can be controlled. In this review, we discuss the development of analytical methods for intracellular functional protein analysis using signal-responsive silica and organic nanoparticles.
Collapse
Affiliation(s)
- Masaru Kato
- Graduate School of Pharmaceutical Sciences and GPLLI Program, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|