1
|
Wang Y, Yang C, Liu W, Zhang Y, Wang Q, Cheng H, Shi J, Yang X, Yang S, Yao X, Wang Y, Song X. Enhanced efficacy of brucine dissolving-microneedles as a targeted delivery system in rheumatoid arthritis treatment: a comprehensive pharmacokinetic-pharmacodynamic analysis. Drug Deliv Transl Res 2025; 15:523-533. [PMID: 38705909 DOI: 10.1007/s13346-024-01606-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
Our previous studies have shown the therapeutic efficacy of brucine dissolving-microneedles (Bru-DMNs) in treating rheumatoid arthritis (RA). Bru delivered via the DMNs can bypass some of the issues related to oral and systemic delivery, including extensive enzymatic activity, liver metabolism and in the case of systemic delivery via hypodermic needles, pain resulting from injections and needle stick injury. However, the underlying mechanism of Bru-DMNs against RA has not been investigated in depth at the pharmacokinetic-pharmacodynamic (PK-PD) level. In this study, a microdialysis-based method combined with ultra-performance liquid chromatography-tandem mass spectrometry was developed for the simultaneous and continuous sampling and quantitative analysis of blood and joint cavities in fully awake RA rats. The acquired data were analyzed by the PK-PD analysis method. Bru delivered via microneedles showed enhanced distribution and prolonged retention in the joint cavity compared to its administration in blood. The correlation between the effect of Bru and its concentration at the action site was indirect. In this study, we explored the mechanism of Bru-DMNs against RA and established a visualization method to express the PK-PD relationship of Bru-DMNs against RA. This study provides insights into the mechanism of action of drugs with potential side effects administered transdermally for RA treatment.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- National Engineering Research Center of Miao's Medicines, Guiyang, 550025, China
| | - Changfu Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Wen Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Yongping Zhang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Qun Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Huanhuan Cheng
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jianan Shi
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoshuang Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shenglei Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xueming Yao
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550001, China
| | - Yonglin Wang
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China.
| | - Xinli Song
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- National Engineering Research Center of Miao's Medicines, Guiyang, 550025, China.
| |
Collapse
|
2
|
Song H, Yu J, Yang Y, Zhou L, Liu X, Yu J, Huang Q, Wang S, Zhang X, Liu Y, Zhang D, Meng J, Han T, Li W, Niu X. Exploring molecular mechanism of Panlongqi Tablet (PLQT) against RA: Integrated network pharmacology, molecular docking and experiment validation. Int Immunopharmacol 2025; 144:113639. [PMID: 39616851 DOI: 10.1016/j.intimp.2024.113639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND AND PURPOSE Panlongqi Tablet (PLQT), a proprietary Chinese medicine composed of 29 herbs, has been included in the Chinese Medical Insurance List and has shown promising therapeutic effects on patients with rheumatoid arthritis (RA) in clinical practice. However, the molecular mechanisms of PLQT against RA have not been fully elucidated. This study aimed to further decipher the active ingredients and molecular mechanism of PLQT anti-RA. METHODS A Complete Freund's adjuvant (CFA)-induced rat model was established to evaluate the pharmacodynamic effects of PLQT against RA, the assessment included arthritis index, paw thickness, ankle diameter, morphological and histopathological analysis. Network analysis was used to elucidate the active ingredients and underlying mechanisms of PLQT in the treatment of RA, molecular docking was conducted to assess the binding of active ingredients to key targets. In vitro and in vivo experimental verification were employed to reveal the mechanism of PLQT against RA. RESULTS Experimentally, PLQT improved CFA-induced arthritis without evident side effects. Network analysis revealed that the active ingredients in PLQT were mainly flavonoids, biscoumarin derivatives, alklaloid and lignans. Integrated with molecular docking studies, the molecular mechanisms of PLQT against RA were enriched in inflammatory response, immune regulation, angiogenesis, osteoclast differentiation and autophagy. In vitro experiments confirmed that PLQT exerted anti-inflammatory and immune regulatory effects by targeting the inflammatory response of M1 macrophages and the biological functions of T lymphocytes. In addition, In vivo experiments verified that PLQT could further inhibit synovial angiogenesis to prevent RA. CONCLUSION This study integrated network pharmacology analysis, molecular docking and experimental validation to elucidate the active components of PLQT and its mechanisms in intervening the pathological progression of RA, providing a more comprehensive theoretical basis for the clinical application of PLQT in the treatment of RA.
Collapse
Affiliation(s)
- Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Lili Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinyao Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Siqi Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Xinya Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, PR China
| | - Jianguo Meng
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited by Share LTD, Xi'an, PR China
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| | - Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
3
|
Gao X, Feng X, Hou T, Huang W, Ma Z, Zhang D. The roles of flavonoids in the treatment of inflammatory bowel disease and extraintestinal manifestations: A review. FOOD BIOSCI 2024; 62:105431. [DOI: 10.1016/j.fbio.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
4
|
Hu Y, Pan R, Wang Y, Ma M, Peng Y, Fan W, Zhang R, Nian H, Zhu J. Daphne genkwa: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Fitoterapia 2024; 177:106089. [PMID: 38906384 DOI: 10.1016/j.fitote.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Daphne genkwa, as a traditional medicine, is widely distributed in China, Korea and Vietnam. In China, the dried flower buds of this plant are named "Yuanhua". It has the ability to effectively promote urination, eliminate phlegm and alleviate cough, eliminate parasites and cure of scabies, with a broad spectrum of pharmacological effects and considerable clinical efficacy. This paper provides a summary and classification of the main chemical constituents of D. genkwa based on a review of relevant domestic and foreign literature. It also outlines the current research status of traditional clinical usage, pharmacological effects, and toxicity of D. genkwa. The aim is to provide a theoretical basis for further study of D. genkwa and its potential new clinical applications.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Rongrong Pan
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Peng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weiqing Fan
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
5
|
Aihaiti Y, Zheng H, Cai Y, Tuerhong X, Kaerman M, Wang F, Xu P. Exploration and validation of therapeutic molecules for rheumatoid arthritis based on ferroptosis-related genes. Life Sci 2024; 351:122780. [PMID: 38866217 DOI: 10.1016/j.lfs.2024.122780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
AIMS This study aimed to identify hub ferroptosis-related genes (FRGs) and investigate potential therapy for RA based on FRGs. MAIN METHODS The differentially expressed FRGs in synovial tissue of RA patients were obtained from the dataset GSE12021 (GPL96). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were conducted to investigate the potential signaling pathways associated with FRGs. Hub genes were identified through topological analysis. The expression levels of these hub genes as well as their diagnostic accuracies were further evaluated. Connectivity Map (CMap) database was utilized to analyze the top 10 FRGs-guided potential drugs for RA. In vitro and in vivo experiments were carried out for further validation. KEY FINDINGS 2 hub genes among 58 FRGs were identified (EGR1 and CDKN1A), and both were down regulated in RA synovial tissue. GPx4 expression was also decreased in the RA synovial tissue. The natural compound withaferin-a exhibited the highest negative CMap score. In-vitro and in-vivo experiments demonstrated anti-arthritic effects of withaferin-a. SIGNIFICANCE Ferroptosis participates in pathogenesis of RA, ferroptosis-related genes EGR1 and CDKN1A can be used as diagnostic and therapeutic targets for RA. Withaferin-a can be used as potential anti-arthritic treatment.
Collapse
Affiliation(s)
- Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China; Translational Medicine Centre, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Yongsong Cai
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Xiadiye Tuerhong
- Translational Medicine Centre, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Minawaer Kaerman
- Department of Rheumatology, Immunology and Endocrinology, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Fan Wang
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, China.
| |
Collapse
|
6
|
Kimariyo PF, Kurati SP, Bhargavi SNVD, Gordon A, Kayabu D, Muthyala MKK. Synthesized pyrrole ester ameliorates adjuvant‑induced arthritis in Wistar rats by alleviating inflammation and downregulating the pro‑inflammatory cytokines. Inflammopharmacology 2024; 32:2361-2375. [PMID: 38683276 DOI: 10.1007/s10787-024-01470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024]
Abstract
Piperine is an amide alkaloid responsible for producing the pungent smell that comes from black pepper. Piperine has been explained to exhibit significant properties such as anti-rheumatic, anti-inflammatory, and antihypertensive effects. The aim of the study was to synthesize pyrrole ester from piperine and evaluate its anti-arthritis effects in adjuvant-induced arthritis female Wistar rats. In this study, pyrrole ester (AU-5) was designed, synthesized and evaluated for ant-arthritic activity in adjuvant-induced arthritis Wistar rats. The synthesized pyrrole ester (AU-5) was administered in three selected doses (20, 10 and 5 mg/kg) to the arthritic-induced model. The administered ester significantly inhibited the increase in arthritis index, paw and ankle joint swelling compared to the arthritic control group. Similarly, the treated rats exhibited a remarkable increase in body weight increase, improved haematological, biochemical, histopathological and radiological parameters. Moreover, the excess production of rheumatoid factor (RF), C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) was noticeably attenuated in all AU-5-treated rats. However, the spleen index, tumour necrosis factor (TNF-α) and interleukin-6 (IL-6) were distinctly lowered compared to arthritic control rats. Moreover, AU-5 showed promising liver protection by lowering the level of liver function markers Serum glutamic pyruvic transaminase (SGPT), Serum glutamic-oxaloacetic transaminase (SGOT) and alkaline phosphatase (ALP) in serum. Henceforth, it might be concluded that AU-5 has an anti-arthritic effect which can be credited to the down regulation of inflammatory markers and the pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Patrick Francis Kimariyo
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
- Science and Laboratory Technology Department, Dar es Salaam Institute of Technology (DIT), Dar es Salaam, Tanzania
| | - Sony Priya Kurati
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | | | - Andrew Gordon
- Science Laboratory Technology Department, Accra Technical University, Accra, Ghana
| | - Dickson Kayabu
- AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | | |
Collapse
|
7
|
Li M, Yu X, Chen X, Jiang Y, Zeng Y, Ren R, Nie M, Zhang Z, Bao Y, Kang H. Genkwanin alleviates intervertebral disc degeneration via regulating ITGA2/PI3K/AKT pathway and inhibiting apoptosis and senescence. Int Immunopharmacol 2024; 133:112101. [PMID: 38640717 DOI: 10.1016/j.intimp.2024.112101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a progressive degenerative disease influenced by various factors. Genkwanin, a known anti-inflammatory flavonoid, has not been explored for its potential in IVDD management. This study aims to investigate the effects and mechanisms of genkwanin on IVDD. In vitro, cell experiments revealed that genkwanin dose-dependently inhibited Interleukin-1β-induced expression levels of inflammatory factors (Interleukin-6, inducible nitric oxide synthase, cyclooxygenase-2) and degradation metabolic protein (matrix metalloproteinase-13). Concurrently, genkwanin upregulated the expression of synthetic metabolism genes (type II collagen, aggrecan). Moreover, genkwanin effectively reduced the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin, mitogen-activated protein kinase (MAPK), and nuclear factor-κB (NF-κB) pathways. Transcriptome sequencing analysis identified integrin α2 (ITGA2) as a potential target of genkwanin, and silencing ITGA2 reversed the activation of PI3K/AKT pathway induced by Interleukin-1β. Furthermore, genkwanin alleviated Interleukin-1β-induced senescence and apoptosis in nucleus pulposus cells. In vivo animal experiments demonstrated that genkwanin mitigated the progression of IVDD in the rat model through imaging and histological examinations. In conclusion, This study suggest that genkwanin inhibits inflammation in nucleus pulposus cells, promotes extracellular matrix remodeling, suppresses cellular senescence and apoptosis, through the ITGA2/PI3K/AKT, NF-κB and MAPK signaling pathways. These findings indicate that genkwanin may be a promising therapeutic candidate for IVDD.
Collapse
Affiliation(s)
- Mengwei Li
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, China
| | - Xin Chen
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yongqiao Jiang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yunqian Zeng
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ranyue Ren
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mingbo Nie
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ziyang Zhang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yuan Bao
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Hao Kang
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
8
|
Peng Y, Chen Q, Xue YH, Jin H, Liu S, Du MQ, Yao SY. Ginkgo biloba and Its Chemical Components in the Management of Alzheimer's Disease. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:625-666. [PMID: 38654507 DOI: 10.1142/s0192415x24500277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 04/26/2024]
Abstract
The pathogenesis of Alzheimer's disease (AD), a degenerative disease of the central nervous system, remains unclear. The main manifestations of AD include cognitive and behavioral disorders, neuropsychiatric symptoms, neuroinflammation, amyloid plaques, and neurofibrillary tangles. However, current drugs for AD once the dementia stage has been reached only treat symptoms and do not delay progression, and the research and development of targeted drugs for AD have reached a bottleneck. Thus, other treatment options are needed. Bioactive ingredients derived from plants are promising therapeutic agents. Specifically, Ginkgo biloba (Gb) extracts exert anti-oxidant, anticancer, neuroplastic, neurotransmitter-modulating, blood fluidity, and anti-inflammatory effects, offering alternative options in the treatment of cardiovascular, metabolic, and neurodegenerative diseases. The main chemical components of Gb include flavonoids, terpene lactones, proanthocyanidins, organic acids, polysaccharides, and amino acids. Gb and its extracts have shown remarkable therapeutic effects on various neurodegenerative diseases, including AD, with few adverse reactions. Thus, high-quality Gb extracts are a well-established treatment option for AD. In this review, we summarize the insights derived from traditional Chinese medicine, experimental models, and emerging clinical trials on the role of Gb and its chemical components in the treatment of the main clinical manifestations of AD.
Collapse
Affiliation(s)
- Yong Peng
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Quan Chen
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Ya-Hui Xue
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Hong Jin
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shu Liu
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Miao-Qiao Du
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| | - Shun-Yu Yao
- Department of Neurology, Affiliated First Hospital of Hunan Traditional, Chinese Medical College, Zhuzhou, Hunan, P. R. China
- Department of Neurology, Affiliated Provincial Hospital of Hunan University of Chinese Medicine, Zhuzhou, Hunan, P. R. China
| |
Collapse
|
9
|
Zhou J, Qiao C, Gao Y, Wang H, Li J, Yang S, Chai K, Zhao T, Wu J. Exploring the mechanism of action of Shuangyang houbitong granules in the treatment of acute pharyngitis based on network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37674. [PMID: 38552049 PMCID: PMC10977574 DOI: 10.1097/md.0000000000037674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Acute pharyngitis (AP) refers to the acute inflammation of the pharynx, characterized by swelling and pain in the throat. Shuangyang houbitong granules (SHG), a traditional Chinese medicine compound, have been found to be effective in providing relief from symptoms associated with AP. METHODS The chemical components of SHG were screened using Traditional Chinese Medicine Systems Pharmacology database, HERB database, and China National Knowledge Infrastructure. The targets of the granules were predicted using SwissTargetPrediction database. A network was constructed based on the targets of AP obtained from Genecards database, and protein-protein interaction analysis was performed on the intersection targets using STRING database. Key targets were screened for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and the binding activity of components and targets was predicted using AutoDockTools-1.5.7. RESULTS A total of 65 components of SHG that met the screening criteria were retrieved, resulting in 867 corresponding targets. Additionally, 1086 AP target genes were retrieved, and 272 gene targets were obtained from the intersection as potential targets for SHG in the treatment of AP. Molecular docking results showed that the core components genkwanin, acacetin, apigenin, quercetin can stably bind to the core targets glyceraldehyde 3-phosphate dehydrogenase, interleukin 6, tumor necrosis factor, serine/threonine protein kinase, tumor protein 53, and epidermal growth factor receptor. CONCLUSION The research results preliminarily predict and verify the mechanism of action of SHG in the treatment of AP, providing insights for further in-depth research.
Collapse
Affiliation(s)
- Jiying Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chuanqi Qiao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Gao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyun Yang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Keyan Chai
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Wang X, Kong Y, Li Z. Advantages of Chinese herbal medicine in treating rheumatoid arthritis: a focus on its anti-inflammatory and anti-oxidative effects. Front Med (Lausanne) 2024; 11:1371461. [PMID: 38515982 PMCID: PMC10954842 DOI: 10.3389/fmed.2024.1371461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Oxidative stress is a condition characterized by an imbalance between the oxidative and antioxidant processes within the human body. Rheumatoid arthritis (RA) is significantly influenced by the presence of oxidative stress, which acts as a pivotal factor in its pathogenesis. Elevated levels of mitochondrial reactive oxygen species (ROS) and inflammation have been found to be closely associated in the plasma of patients with RA. The clinical treatment strategies for this disease are mainly chemical drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), glucocorticoids (GCs) and biological agents, but it is difficult for patients to accept long-term drug treatment and its side effects. In the theory of traditional Chinese medicine (TCM), RA is thought to be caused by the attack of "wind, cold, damp humor," and herbs with the effect of removing wind and dampness are used to relieve pain. Chinese herbal medicine boasts a rich heritage in effectively attenuating the symptoms of RA, and its global recognition continues to ascend. In particular, RA-relevant anti-inflammatory/anti-oxidative effects of TCM herbs/herbal compounds. The main aim of this review is to make a valuable contribution to the expanding pool of evidence that advocates for the incorporation of Chinese herbal medicine in conventional treatment plans for RA.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Youqian Kong
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeguang Li
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
11
|
Rufino AT, Freitas M, Proença C, Ferreira de Oliveira JMP, Fernandes E, Ribeiro D. Rheumatoid arthritis molecular targets and their importance to flavonoid-based therapy. Med Res Rev 2024; 44:497-538. [PMID: 37602483 DOI: 10.1002/med.21990] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 04/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is a progressive, chronic, autoimmune, inflammatory, and systemic condition that primarily affects the synovial joints and adjacent tissues, including bone, muscle, and tendons. The World Health Organization recognizes RA as one of the most prevalent chronic inflammatory diseases. In the last decade, there was an expansion on the available RA therapeutic options which aimed to improve patient's quality of life. Despite the extensive research and the emergence of new therapeutic approaches and drugs, there are still significant unwanted side effects associated to these drugs and still a vast number of patients that do not respond positively to the existing therapeutic strategies. Over the years, several references to the use of flavonoids in the quest for new treatments for RA have emerged. This review aimed to summarize the existing literature about the flavonoids' effects on the major pathogenic/molecular targets of RA and their potential use as lead compounds for the development of new effective molecules for RA treatment. It is demonstrated that flavonoids can modulate various players in synovial inflammation, regulate immune cell function, decrease synoviocytes proliferation and balance the apoptotic process, decrease angiogenesis, and stop/prevent bone and cartilage degradation, which are all dominant features of RA. Although further investigation is necessary to determine the effectiveness of flavonoids in humans, the available data from in vitro and in vivo models suggest their potential as new disease-modifying anti-rheumatic drugs. This review highlights the use of flavonoids as a promising avenue for future research in the treatment of RA.
Collapse
Affiliation(s)
- Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José M P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Agrarian Sciences and Environment, University of the Azores, Açores, Portugal
| |
Collapse
|
12
|
Su M, Zhou D, Huang J, Yang T, Zhou Q, Tan Y. Forsythiaside A exhibits anti-migration and anti-inflammation effects in rheumatoid arthritis in vitro model. Int J Rheum Dis 2024; 27:e14976. [PMID: 37997635 DOI: 10.1111/1756-185x.14976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a kind of systemic autoimmune disease, and the joint inflammation and cartilage destruction are the major features. Some traditional Chinese medicine have been discovered to exhibit regulatory roles in the treatment of RA. Forsythiaside A (FA) as an active ingredient isolated from forsythia suspensa has been discovered to participate into the regulation of some diseases through improving inflammation. However, the regulatory effects of FA on the progression of RA keep indistinct. METHODS IL-1β treatment (10 ng/mL) in MH7A cells was built to mimic RA in vitro (cell) model. The cell viability was examined through CCK-8 assay. The cell proliferation was detected through Edu assay. The levels of TNF-α, IL-6, and IL-8 were evaluated through ELISA. The protein expressions were measured through western blot. The cell apoptosis was assessed through flow cytometry. The cell migration and invasion abilities were tested through Transwell assay. RESULTS In this study, it was revealed that the cell proliferation was strengthened after IL-1β treatment (p < .001), but this effect was reversed after FA treatment in a dose-increasing manner (p < .05). Furthermore, FA suppressed inflammation in IL-1β-triggered MH7A cells through attenuating the levels of TNF-α, IL-6, and IL-8 (p < .05). The cell apoptosis was lessened after IL-1β treatment (p < .001), but this effect was rescued after FA treatment (p < .05). Besides, the cell migration and invasion abilities were both increased after IL-1β treatment (p < .001), but these changes were offset after FA treatment (p < .05). Eventually, FA retarded the JAK/STAT pathway through reducing p-JAK/JAK and p-STAT/STAT levels (p < .01). CONCLUSION Our study manifested that FA exhibited anti-migration and anti-inflammation effects in RA in vitro model (IL-1β-triggered MH7A cells) through regulating the JAK/STAT pathway. This work hinted that FA can be an effective drug for RA treatment.
Collapse
Affiliation(s)
- Minhui Su
- Department of Rheumatology, Changzhou Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Dinghua Zhou
- Department of Rheumatology, Changzhou Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Jiamin Huang
- Department of Rheumatology, Changzhou Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Ting Yang
- Department of Rheumatology, Changzhou Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Qi Zhou
- Department of Rheumatology, Changzhou Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| | - Yaju Tan
- Department of Rheumatology, Changzhou Hospital of Traditional Chinese Medicine, Affiliated to Nanjing University of Traditional Chinese Medicine, Changzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Hung SY, Chen JL, Tu YK, Tsai HY, Lu PH, Jou IM, Mbuyisa L, Lin MW. Isoliquiritigenin inhibits apoptosis and ameliorates oxidative stress in rheumatoid arthritis chondrocytes through the Nrf2/HO-1-mediated pathway. Biomed Pharmacother 2024; 170:116006. [PMID: 38091640 DOI: 10.1016/j.biopha.2023.116006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition known for its irreversible destructive impact on the joints. Chondrocytes play a pivotal role in the production and maintenance of the cartilage matrix. However, the presence of inflammatory cytokines can hinder chondrocyte proliferation and promote apoptosis. Isoliquiritigenin (ISL), a flavonoid, potentially exerts protective effects against various inflammatory diseases. However, its specific role in regulating the nuclear factor E2-associated factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in chondrocytes in RA remains unclear. To investigate this, this study used human chondrocytes and Sprague-Dawley rats to construct in vitro and in vivo RA models, respectively. The study findings reveal that cytokines markedly induced oxidative stress, the activation of matrix metalloproteinases, and apoptosis both in vitro and in vivo. Notably, ISL treatment significantly mitigated these effects. Moreover, Nrf2 or HO-1 inhibitors reversed the protective effects of ISL, attenuated the expression of Nrf2/HO-1 and peroxisome proliferator-activated receptor gamma-coactivator-1α, and promoted chondrocyte apoptosis. This finding indicates that ISL primarily targets the Nrf2/HO-1 pathway in RA chondrocytes. Moreover, ISL treatment led to improved behavior scores, reduced paw thickness, and mitigated joint damage as well as ameliorated oxidative stress in skeletal muscles in an RA rat model. In conclusion, this study highlights the pivotal role of the Nrf2/HO-1 pathway in the protective effects of ISL and demonstrates the potential of ISL as a treatment option for RA.
Collapse
Affiliation(s)
- Shih-Ya Hung
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan; Division of Surgery, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Jen-Lung Chen
- Department of Surgery, E-Da Hospital, Kaohsiung 82445, Taiwan
| | - Yuan-Kun Tu
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Hsin-Yi Tsai
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - Pin-Hsuan Lu
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan
| | - I-Ming Jou
- Department of Orthopaedic Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Lulekiwe Mbuyisa
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ming-Wei Lin
- Department of Medical Research, E-Da Hospital/ E-Da Cancer Hospital, Kaohsiung 82445, Taiwan; Department of Nursing, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan; Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
14
|
Ijaz MU, Ishtiaq A, Tahir A, Alvi MA, Rafique A, Wang P, Zhu GP. Antioxidant, anti-inflammatory, and anti-apoptotic effects of genkwanin against aflatoxin B 1-induced testicular toxicity. Toxicol Appl Pharmacol 2023; 481:116750. [PMID: 37980962 DOI: 10.1016/j.taap.2023.116750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Aflatoxin B1 (AFB1) is the most hazardous aflatoxin that causes significant damage to the male reproductive system. Genkwanin (GNK) is a bioactive flavonoid that shows antioxidant and anti-inflammatory potential. Therefore, the current study was planned to evaluate the effects of GNK against AFB1-induced testicular toxicity. Forty-eight male rats were distributed into four groups (n = 12 rats). AFB1 (50 μg/kg) and GNK (20 mg/kg) were administered to the rats for eight weeks. Results of the current study revealed that AFB1 exposure induced adverse effects on the Nrf2/Keap1 pathway and reduced the expressions and activities of antioxidant enzymes. Additionally, it increased the levels of oxidative stress markers. Furthermore, expressions of steroidogenic enzymes were down-regulated by AFB1 intoxication. Besides, AFB1 exposure reduced the levels of gonadotropins and plasma testosterone, which subsequently reduced the epididymal sperm count, motility, and hypo-osmotic swelled (HOS) sperms, while increasing the number of dead sperms and causing morphological anomalies of the head, midpiece, and tail of the sperms. In addition, AFB1 decreased the activities of testicular function marker enzymes and the levels of inflammatory markers. Moreover, it severely affected the apoptotic profile by up-regulating the expressions of Bax and Casp3, while down-regulating the Bcl2 expression. Besides, AFB1 significantly damaged the histoarchitecture of testicular tissues. However, GNK treatment reversed all the AFB1-induced damages in the rats. Taken together, the current study reports the potential use of GNK as a therapeutic agent to prevent AFB1-induced testicular toxicity due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| | - Ayesha Ishtiaq
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Arfa Tahir
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Mughees Aizaz Alvi
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Azhar Rafique
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Peng Wang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Guo-Ping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| |
Collapse
|
15
|
Ni LL, Che YH, Sun HM, Wang B, Wang MY, Yang ZZ, Liu H, Xiao H, Yang DS, Zhu HL, Yang ZB. The therapeutic effect of wasp venom (Vespa magnifica, Smith) and its effective part on rheumatoid arthritis fibroblast-like synoviocytes through modulating inflammation, redox homeostasis and ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116700. [PMID: 37315652 DOI: 10.1016/j.jep.2023.116700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic inflammatory disease that is related to the aberrant proliferation of fibroblast-like synoviocytes (FLS). Wasp venom (WV, Vespa magnifica, Smith), an insect secretion, has been used to treat RA in Chinese Jingpo national minority's ancient prescription. However, the potential mechanisms haven't been clarified. AIM OF THE STUDY The purposes of this paper were two-fold. First, to investigate which was the best anti-RA effective part of WV-I (molecular weight less than 3 kDa), WV-II (molecular weight 3-10 kDa) and WV-III (molecular weight more than 10 kDa) that were separated from WV. Second, to explore the underlying molecular mechanism of WV and WV-II that was best effective part in RA. MATERIALS AND METHODS The wasps were electrically stimulated and the secretions were collected. WV-I, WV-II and WV-III were acquired by ultracentrifuge method according to molecular weight. Next, WV, WV-I, WV-II and WV-III were identified by HPLC. Functional annotation and pathway analysis of WV used to bioinformatics analysis. RNA-seq analyses were constructed to identify differentially expressed genes (DEGs). GO and KEGG pathway analyses were performed by Metascape database. STRING was used to analyze the PPI network from DEGs. Next, PPI network was visualized using Cytoscape that based on MCODE. The pivotal genes of PPI network and MCODE analysis were verified by qRT-PCR. Subsequently, MH7A cells were performed by MTT assay to evaluate the ability of inhibiting cell proliferation. Luciferase activity assay was conducted in HepG2/STAT1 or HepG2/STAT3 cells to assess STAT1/3 sensitivity of WV, WV-I, WV-II and WV-III. Additionally, interleukin (IL)-1β and IL-6 expression levels were detected by ELISA kits. Intracellular thioredoxin reductase (TrxR) enzyme was evaluated by TrxR activity assay kit. ROS levels, lipid ROS levels and Mitochondrial membrane potential (MMP) were assessed by fluorescence probe. Cell apoptosis and MMP were measured by using flow cytometry. Furthermore, the key proteins of JAK/STAT signaling pathway, protein levels of TrxR and glutathione peroxidase 4 axis (GPX4) were examined by Western blotting assay. RESULTS RNA-sequencing analysis of WV displayed be related to oxidation-reduction, inflammation and apoptosis. The data displayed that WV, WV-II and WV-III inhibited significantly cells proliferation in human MH7A cell line compared to WV-I treatment group, but WV-III had no significant suppressive effect on luciferase activity of STAT3 compared with IL-6-induced group. Combined with earlier reports that WV-III contained major allergens, we selected WV and WV-II further to study the mechanism of anti-RA. In addition, WV and WV-II decreased the level of IL-1β and IL-6 in TNF-α-induced MH7A cells via inactivating of JAK/STAT signaling pathway. On the other hand, WV and WV-II down-regulated the TrxR activity to produce ROS and induce cell apoptosis. Furthermore, WV and WV-II could accumulate lipid ROS to induce GPX4-mediated ferroptosis. CONCLUSIONS Taken together, the experimental results revealed that WV and WV-II were potential therapeutic agents for RA through modulating JAK/STAT signaling pathways, redox homeostasis and ferroptosis in MH7A cells. Of note, WV-II was an effective part and the predominant active monomer in WV-II will be further explored in the future.
Collapse
Affiliation(s)
- Lian-Li Ni
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi-Hao Che
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Mei Sun
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Bo Wang
- Clinical Pharmacy Office, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Mei-Yu Wang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zi-Zhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Da-Song Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China
| | - Hui-Lin Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Zhi-Bin Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Li J, Zhao R, Miao P, Xu F, Chen J, Jiang X, Hui Z, Wang L, Bai R. Discovery of anti-inflammatory natural flavonoids: Diverse scaffolds and promising leads for drug discovery. Eur J Med Chem 2023; 260:115791. [PMID: 37683361 DOI: 10.1016/j.ejmech.2023.115791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Natural products have been utilized for medicinal purposes for millennia, endowing them with a rich source of chemical scaffolds and pharmacological leads for drug discovery. Among the vast array of natural products, flavonoids represent a prominent class, renowned for their diverse biological activities and promising therapeutic advantages. Notably, their anti-inflammatory properties have positioned them as promising lead compounds for developing novel drugs combating various inflammatory diseases. This review presents a comprehensive overview of flavonoids, highlighting their manifold anti-inflammatory activities and elucidating the underlying pathways in mediating inflammation. Furthermore, this review encompasses systematical classification of flavonoids, related anti-inflammatory targets, involved in vitro and in vivo test models, and detailed statistical analysis. We hope this review will provide researchers engaged in active natural products and anti-inflammatory drug discovery with practical information and potential leads.
Collapse
Affiliation(s)
- Junjie Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Peiran Miao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Fengfeng Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Liwei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou, 311121, PR China; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
17
|
Liu G, Tan L, Zhao X, Wang M, Zhang Z, Zhang J, Gao H, Liu M, Qin W. Anti-atherosclerosis mechanisms associated with regulation of non-coding RNAs by active monomers of traditional Chinese medicine. Front Pharmacol 2023; 14:1283494. [PMID: 38026969 PMCID: PMC10657887 DOI: 10.3389/fphar.2023.1283494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the leading cause of numerous cardiovascular diseases with a high mortality rate. Non-coding RNAs (ncRNAs), RNA molecules that do not encode proteins in human genome transcripts, are known to play crucial roles in various physiological and pathological processes. Recently, researches on the regulation of atherosclerosis by ncRNAs, mainly including microRNAs, long non-coding RNAs, and circular RNAs, have gradually become a hot topic. Traditional Chinese medicine has been proved to be effective in treating cardiovascular diseases in China for a long time, and its active monomers have been found to target a variety of atherosclerosis-related ncRNAs. These active monomers of traditional Chinese medicine hold great potential as drugs for the treatment of atherosclerosis. Here, we summarized current advancement of the molecular pathways by which ncRNAs regulate atherosclerosis and mainly highlighted the mechanisms of traditional Chinese medicine monomers in regulating atherosclerosis through targeting ncRNAs.
Collapse
Affiliation(s)
- Guoqing Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Liqiang Tan
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaona Zhao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Minghui Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Zejin Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Jing Zhang
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Honggang Gao
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Meifang Liu
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| | - Wei Qin
- School of Pharmacy, Jining Medical University, Rizhao, Shandong, China
| |
Collapse
|
18
|
Zhou L, Chai JH, Zhang Y, Jing XJ, Kong XW, Liang J, Xia YG. TMT-Based Proteomics Reveal the Mechanism of Action of Amygdalin against Rheumatoid Arthritis in a Rat Model through Regulation of Complement and Coagulation Cascades. Molecules 2023; 28:7126. [PMID: 37894605 PMCID: PMC10609517 DOI: 10.3390/molecules28207126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The limitations of current medications for treating rheumatoid arthritis (RA) emphasize the urgent need for the development of new drugs. This study aimed to investigate the potential anti-RA mechanism of amygdalin using tandem mass tag (TMT)-based quantitative proteomics technology. First, the anti-RA activity of amygdalin was evaluated in a Complete Freund's adjuvant (CFA)-induced rat model. Then, the roles and importance of proteins in the extracted rat joint tissue were evaluated using TMT-based quantitative proteomics technology. A bioinformatics analysis was used to analyze differentially abundant proteins (DAPs). A proteomics analysis identified 297 DAPs in the amygdalin group compared with the model group, of which 53 upregulated proteins and 51 downregulated proteins showed opposite regulatory trends to the DAPs produced after modeling. According to enrichment analyses of the DAPs, the signaling pathways with a high correlation degree were determined to be the complement and coagulation cascades. Furthermore, western blotting and molecular docking were used to further validate the key node proteins, e.g., complement C1s subcomponent (C1s), component C3 (C3) and kininogen 1 (Kng1). These results suggest that amygdalin may be a promising agent for treating RA by regulating the complement and coagulation cascades.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Liang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| | - Yong-Gang Xia
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
19
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
20
|
Xu K, Wang H, Wu Z. Genkwanin suppresses mitochondrial dysfunction to alleviate IL-1β-elicited inflammation, apoptosis, and degradation of extracellular matrix in chondrocytes through upregulating DUSP1. CHINESE J PHYSIOL 2023; 66:284-293. [PMID: 37635488 DOI: 10.4103/cjop.cjop-d-23-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a form of chronic degenerative disease contributing to elevated disability rate among the elderly. Genkwanin is an active component extracted from Daphne genkwa possessing pharmacologic effects. Here, this study is designed to expound the specific role of genkwanin in OA and elaborate the probable downstream mechanism. First, the viability of chondrocytes in the presence or absence of interleukin-1 beta (IL-1β) treatment was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess cell apoptosis. Inflammatory response was estimated through enzyme-linked immunosorbent assay and Western blot. In addition, immunofluorescence staining and Western blot were utilized to measure the expression of extracellular matrix (ECM)-associated proteins. Dual-specificity protein phosphatase-1 (DUSP1) expression was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. Following DUSP1 elevation in genkwanin-treated chondrocytes exposed to IL-1β, inflammatory response and ECM-associated factors were evaluated as forementioned. In addition, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining was to assess the mitochondrial membrane potential. Adenosine triphosphate (ATP) level was examined with ATP assay kit, and RT-qPCR was used to test mitochondrial DNA expression. Results indicated that genkwanin administration enhanced the viability while ameliorated the apoptosis, inflammatory response, and ECM degradation in IL-1β-induced chondrocytes. Besides, genkwanin treatment fortified DUSP1 expression in IL-1β-exposed chondrocytes. DUSP1 interference further offsets the impacts of genkwanin on the inflammation, ECM degradation, and mitochondrial dysfunction in IL-1β-challenged chondrocytes. In short, genkwanin enhanced DUSP1 expression to mitigate mitochondrial dysfunction, thus ameliorating IL-1β-elicited inflammation, apoptosis, and degradation of ECM in chondrocytes.
Collapse
Affiliation(s)
- Kanna Xu
- Emergency Department, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Haoran Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| | - Zhongqing Wu
- Department of Orthopedics, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| |
Collapse
|
21
|
Balendran T, Lim K, Hamilton JA, Achuthan AA. Targeting transcription factors for therapeutic benefit in rheumatoid arthritis. Front Immunol 2023; 14:1196931. [PMID: 37457726 PMCID: PMC10339812 DOI: 10.3389/fimmu.2023.1196931] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a destructive inflammatory autoimmune disease that causes pain and disability. Many of the currently available drugs for treating RA patients are aimed at halting the progression of the disease and alleviating inflammation. Further, some of these treatment options have drawbacks, including disease recurrence and adverse effects due to long-term use. These inefficiencies have created a need for a different approach to treating RA. Recently, the focus has shifted to direct targeting of transcription factors (TFs), as they play a vital role in the pathogenesis of RA, activating key cytokines, chemokines, adhesion molecules, and enzymes. In light of this, synthetic drugs and natural compounds are being explored to target key TFs or their signaling pathways in RA. This review discusses the role of four key TFs in inflammation, namely NF-κB, STATs, AP-1 and IRFs, and their potential for being targeted to treat RA.
Collapse
Affiliation(s)
- Thivya Balendran
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Keith Lim
- Department of Medicine, Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - John A. Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Adrian A. Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
22
|
Wang Y, Shao Z, Song C, Zhou H, Zhao J, Zong K, Zhou G, Meng D. Clinopodium chinense Kuntze ameliorates dextran sulfate sodium-induced ulcerative colitis in mice by reducing systematic inflammation and regulating metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116330. [PMID: 36868438 DOI: 10.1016/j.jep.2023.116330] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Clinopodium chinense Kuntze (CC), traditional Chinese medicine with anti-inflammatory, anti-diarrheal, and hemostatic activities, has been used to treat dysentery and bleeding diseases for thousands of years, which are similar to the symptoms of ulcerative colitis (UC). AIM OF THE STUDY To obtain a novel treatment for UC, an integrated strategy was developed in this study to investigate the effect and mechanism of CC against UC. MATERIALS AND METHODS The chemical characterization of CC was scanned by UPLC-MS/MS. Network pharmacology analysis was performed to predict the active ingredients and pharmacological mechanisms of CC against UC. Further, the results of network pharmacology were validated using LPS-induced RAW 264.7 cells and DSS-induced UC mice. The production of pro-inflammatory mediators and biochemical parameters was tested using the ELISA kits. The expression of NF-κB, COX-2, and iNOS proteins was evaluated using Western blot analysis. Body weight, disease activity index, colon length, histopathological examination, and metabolomics analysis in colon tissues were carried out to confirm the effect and mechanism of CC. RESULTS Based on the chemical characterization and literature collection, a rich database of ingredients in CC was constructed. Network pharmacology analysis provided five core components as well as revealed that the mechanism of CC against UC was highly related to inflammation, especially the NF-κB signaling pathway. In vitro experiments showed CC could inhibit inflammation by LPS-TLR4-NF-κB-iNOS/COX-2 signaling pathway in RAW264.7 cells. Meanwhile, in vivo experimental results proved that CC significantly alleviated pathological features with increased body weight and colonic length, decreased DAI and oxidative damage, as well as mediated inflammatory factors like NO, PGE2, IL-6, IL-10, and TNF-ɑ. In addition, colon metabolomics analysis revealed CC could restore the abnormal endogenous metabolite levels in UC. 18 screened biomarkers were further enriched in four pathways including Arachidonic acid metabolism, Histidine metabolism, Alanine, aspartate and glutamate metabolism as well as the Pentose phosphate pathway. CONCLUSION This study demonstrates that CC could alleviate UC by reducing systematic inflammation and regulating metabolism, which is beneficial for providing scientific data for the development of UC treatment.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Zhutao Shao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Ce Song
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Hongxu Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Jiaming Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Kunqi Zong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Guangxin Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China
| | - Dali Meng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, PR China.
| |
Collapse
|
23
|
Chen S, Wang Y, Zhang L, Hang Y, Liang C, Wang S, Qi L, Pang X, Li J, Chang Y. Therapeutic effects of columbianadin from Angelicae Pubescentis radix on the progression of collagen-induced rheumatoid aarthritis by regulating inflammation and oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2023:116727. [PMID: 37277080 DOI: 10.1016/j.jep.2023.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/20/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angelicae pubescentis radix (APR) has a long history in the treatment of rheumatoid arthritis (RA) in China. It has the effects of dispelling wind to eliminate dampness, removing arthralgia and stopping pain in the Chinese Pharmacopeia, but its mechanisms was remained unclear. Columbianadin (CBN), one of the main bioactive compounds of APR, was reported that it has many pharmacological effects including anti-inflammatory and immunosuppression. However, little study has been investigated therapeutic effect of CBN on RA. AIM OF THE STUDY A comprehensive strategy via incorporating pharmacodynamics, microbiomics, metabolomics, and multiple molecular biological methods was adopted to evaluated the therapeutic effects of CBN on collagen-induced arthritis (CIA) mice and explored the potential mechanisms. MATERIALS AND METHODS A variety of pharmacodynamic methods were used to evaluate the therapeutic effect of CBN on CIA mice. The microbial and metabolic characteristics of CBN anti-RA were obtained by metabolomics and 16S rRNA sequencing technology. The potential mechanism of CBN anti-RA was predicted through bioinformatics network analysis, and verified by a variety of molecular biology methods. RESULTS CBN effectively improve symptoms of rheumatoid arthritis in CIA mice, including paw swelling and arthritic scores. The inflammatory factors and oxidative stress markers were effectively regulated by the treatment of CBN. The fecal microbial communities and serum and urine metabolic compositions were significantly altered in CIA mice, CBN ameliorated the CIA-associated gut microbiota dysbiosis, and regulated the disturbance of serum and urine metabolome and reversed the changes of key CIA and gut microbiota-related metabolites. The acute toxicity test, results showed that the LD50 of CBN is greater than 2000 mg kg-1, which confirmed the security of CBN. CONCLUSIONS CBN exert anti-RA effects from four perspectives: inhibiting inflammatory response, regulating oxidative stress, and improving changes in gut microbiota and metabolites. The JAK1/STAT3, NF-κB and Keap1/Nrf2 pathway may be an important mechanism for CBN's inflammatory response and oxidative stress activity. CBN could be considered as a potential anti-RA drug for further study.
Collapse
Affiliation(s)
- Shujing Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuan Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lei Zhang
- Tianjin Hospital, Tianjin, 300211, China
| | - Yuli Hang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chunxiao Liang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangqi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lina Qi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaoli Pang
- Academy of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
24
|
Niu X, Yang Y, Yu J, Song H, Yu J, Huang Q, Liu Y, Zhang D, Han T, Li W. Panlongqi tablet suppresses adjuvant-induced rheumatoid arthritis by inhibiting the inflammatory reponse in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116250. [PMID: 36791928 DOI: 10.1016/j.jep.2023.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/06/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panlongqi Tablet is prepared with the ancestral secret recipe provided by Mr. Wang Jiacheng, a famous specialist in orthopedics and traumatology of China. The efficacy and safety of PLQT have been supported by years of clinical practice in the treatment of joint-related conditions. Has remarkable effect for treating rheumatoid arthritis (RA) clinically. However, its mechanism is not entirely clear. AIM OF THE STUDY We aim to evaluate the anti-inflammatory activity of PLQT and explore its mechanism in adjuvant-induced arthritis (AA) mice and LPS-induced Human fibroblast-like synovial (HFLS) cells. MATERIALS AND METHODS To this end, we analyzed the active ingredients in PLQT by HPLC-MS/MS. Furthermore, the anti-RA effect of PLQT was studied through proliferation, apoptosis, foot swelling, cytokine levels, immune organ index, histopathology and related signal pathways in LPS-induced HFLS cells and AA-treated mice. RESULTS HPLC-MS/MS results showed that PLQT contained a variety of active compounds, such as epicatechin, imperatorin, hydroxysafflor yellow A and so on. PLQT significantly inhibited the abnormal proliferation of HFLS cells induced by LPS, promoted cell apoptosis. In AA-treated mice, PLQT alleviated RA symptoms by alleviating paw swelling, synovial hyperplasia, pannus formation, inflammatory cell infiltration, and inhibiting abnormal immune responses. The results showed that PLQT significantly decreased the expression of inflammatory mediators (IL-1β, IL-6, IL-17) in vivo and in vitro, which may be related to the regulation of PI3K/Akt, MAPK and JAK/STAT signaling pathways. CONCLUSION Based on serum pharmacology and in vivo pharmacology studies, PLQT may regulate RA symptoms by regulating inflammatory and immune response-related pathways, which is an effective method for the treatment of RA.
Collapse
Affiliation(s)
- Xiaofeng Niu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yajie Yang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jinjin Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Huixin Song
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Jiabao Yu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Qiuxia Huang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Yang Liu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China
| | - Tengfei Han
- Shaanxi Panlong Pharmaceutical Group Limited By Share LTD, Xi'an, PR China.
| | - Weifeng Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
25
|
Luo Y, Shen Y, Zong L, Xie J, Dai L, Luo X. Anti-rheumatoid arthritis potential of Rhododendron molle G. Don leaf extract in adjuvant induced arthritis rats. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116175. [PMID: 36702447 DOI: 10.1016/j.jep.2023.116175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/07/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
AIM OF THE STUDY The aim of this study was to test the anti-rheumatic arthritis effects of Rhododendron molle G. Don leaf extract in arthritis rats and inflammatory RAW 264.7 cells. Preliminary analysis and comparison of potential medicinal components of three polar extracts by HPLC and UHPLC-Q-TOF-MS. MATERIALS AND METHODS SD rats were subcutaneously injected with complete Freund's adjuvant (CFA) to induce inflammation on the right hind paw. RAW 264.7 cells were induced by lipopolysaccharide (LPS) to established cell inflammatory model. The volume of rat hind paw was measured with a volume meter to detect swelling, and the weight of rats was measured with an electronic balance. The severity of arthritis in rats was evaluated by arthritis score. The pathological sections of rat hind paw joints were observed by hematoxylin-eosin staining, and the contents of IL-6 and IL-1β in serum were detected. qRT-PCR was used to detect the expression of IL-1β, IL-6, TNF-α and COX-2 genes in RAW 264.7 cells. The release of nitric oxide was measured by Griess reaction. The expression levels of IL-6 and IL-1β were detected by Western-Blot. RESULTS and discussion: The chloroform extract from R. molle leaves (CERL), Ethyl acetate extract from R. molle leaves (EERL), n-butanol extract from R. molle leaves (BERL) could significantly inhibit hind paws swelling and reduce arthritis index in arthritis rats. And it showed dose dependence. Compared with tripterygium glycosides (TG) tablets, an effective drug of RA treatment, CERL have better anti-RA effect after administration. In addition, the three kinds of the polar extracts of Rhododendron molle leaves (PERL) had lower toxicity, with the LD50 279.87, 239.65, 500.08 (mg/kg) respectively, while TG group's LD50 was 96.00 (mg/kg). In vitro experiments showed that the three PERLs can significantly inhibit the level of pro-inflammatory factors and inflammatory mediator, such as TNF-α, IL-1β, IL-6, COX-2 and NO, which were consistent with their anti-RA ability. Among the three kinds of PERLs, CERL showed the best inhibitory activity. CONCLUSION The R. molle leaf is a potential medicinal part for the treatment of RA. This study explored the anti-RA and anti-inflammatory activities of CERL, EERL, BERL, which laid a foundation for further promoting the clinical application of R. molle.
Collapse
Affiliation(s)
- Yuqiang Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yu Shen
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Luye Zong
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Jiankun Xie
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Liangfang Dai
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| | - Xiangdong Luo
- College of Life Science, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
26
|
Biernacka P, Adamska I, Felisiak K. The Potential of Ginkgo biloba as a Source of Biologically Active Compounds-A Review of the Recent Literature and Patents. Molecules 2023; 28:3993. [PMID: 37241734 PMCID: PMC10222153 DOI: 10.3390/molecules28103993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Ginkgo biloba is a relict tree species showing high resistance to adverse biotic and abiotic environmental factors. Its fruits and leaves have high medicinal value due to the presence of flavonoids, terpene trilactones and phenolic compounds. However, ginkgo seeds contain toxic and allergenic alkylphenols. The publication revises the latest research results (mainly from 2018-2022) regarding the chemical composition of extracts obtained from this plant and provides information on the use of extracts or their selected ingredients in medicine and food production. A very important section of the publication is the part in which the results of the review of patents concerning the use of Ginkgo biloba and its selected ingredients in food production are presented. Despite the constantly growing number of studies on its toxicity and interactions with synthetic drugs, its health-promoting properties are the reason for the interest of scientists and motivation to create new food products.
Collapse
Affiliation(s)
- Patrycja Biernacka
- Faculty of Food Science and Fisheries, Department of Food Science and Technology—West Pomeranian University of Technology, 70-310 Szczecin, Poland
| | | | | |
Collapse
|
27
|
Thabet NM, Abdel-Rafei MK, Amin MM. Fractionated whole body γ-irradiation aggravates arthritic severity via boosting NLRP3 and RANKL expression in adjuvant-induced arthritis model: the mitigative potential of ebselen. Inflammopharmacology 2023:10.1007/s10787-023-01238-5. [PMID: 37131046 DOI: 10.1007/s10787-023-01238-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2023] [Accepted: 04/16/2023] [Indexed: 05/04/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune chronic inflammatory disease associated with oxidative stress that causes excruciating pain, discomfort, and joint destruction. Ebselen (EB), a synthesized versatile organo-selenium compound, protects cells from reactive oxygen species (ROS)-induced injury by mimicking glutathione peroxidase (GPx) action. This study aimed to investigate the antioxidant and anti-inflammatory effects of EB in an arthritic irradiated model. This goal was achieved by subjecting adjuvant-induced arthritis (AIA) rats to fractionated whole body γ-irradiation (2 Gy/fraction once per week for 3 consecutive weeks, for a total dose of 6 Gy) and treating them with EB (20 mg/kg/day, p.o) or methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) as a reference anti-RA drug. The arthritic clinical signs, oxidative stress and antioxidant biomarkers, inflammatory response, expression of NOD-like receptor protein-3 (NLRP-3) inflammasome, receptor activator of nuclear factor κB ligand (RANKL), nuclear factor-κB (NF-κB), apoptotic indicators (caspase 1 and caspase 3), cartilage integrity marker (collagen-II), and histopathological examination of ankle joints were assessed. EB notably improved the severity of arthritic clinical signs, alleviated joint histopathological lesions, modulated oxidative stress and inflammation in serum and synovium, as well as reduced NLRP-3, RANKL, and caspase3 expression while boosting collagen-II expression in the ankle joints of arthritic and arthritic irradiated rats with comparable potency to MTX. Our findings suggest that EB, through its antioxidant and anti-inflammatory properties, has anti-arthritic and radioprotective properties in an arthritic irradiated model.
Collapse
Affiliation(s)
- Noura M Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed K Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, 3 Ahmed El-Zomor Street, Nasr City, P.O. Box 29, Cairo, 11787, Egypt.
| | - Mohamed M Amin
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Egypt
| |
Collapse
|
28
|
2-Styrylchromones Prevent IL-1β-Induced Pro-Inflammatory Activation of Fibroblast-like Synoviocytes while Increasing COX-2 Expression. Pharmaceutics 2023; 15:pharmaceutics15030780. [PMID: 36986641 PMCID: PMC10053337 DOI: 10.3390/pharmaceutics15030780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by systemic immune and chronic inflammatory features, leading to the destruction of the joints. Presently, there are no effective drugs able to control synovitis and catabolism in the process of RA. 2-Styrylchromones (2-SC) are a small group of compounds characterized by the attachment of a styryl group to the chromone core that have already been associated to a wide range of biological activities, including antioxidant and anti-inflammatory activities. The present study investigated the effect of a set of six 2-SC on the interleukin-1β (IL-1β)-induced increase of nitric oxide (•NO), inducible form of nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and matrix metalloproteinase-3 (MMP-3) expression levels in human fibroblast-like synoviocytes (HFLS), pointing to the role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in the process. From a set of six 2-SC, presenting hydroxy and methoxy substituents, the one presenting two methoxy substituents at C-5 and C-7 of A ring and a catechol group on B ring, significantly reduced •NO production and the expression of its inducible synthase (iNOS). It also significantly reduced the catabolic MMP-3 protein expression. This 2-SC inhibited the NF-κB pathway by reversing the IL-1β - induced levels of cytoplasmatic NF-kB inhibitor alpha (IκBα), and decreasing the p65 nuclear levels, suggesting the involvement of these pathways in the observed effects. The same 2-SC significantly increased the COX-2 expression, which may indicate a negative feedback loop mechanism of action. The properties of 2-SC may be of great value in the development of new therapies with improved efficacy and selectivity towards RA, and thus deserve further exploitation and evaluation to disclose the full potential of 2-SC.
Collapse
|
29
|
The Effective Treatment of Purpurin on Inflammation and Adjuvant-Induced Arthritis. Molecules 2023; 28:molecules28010366. [PMID: 36615560 PMCID: PMC9824476 DOI: 10.3390/molecules28010366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Rubia cordifolia L. (Rubiaceae), one of the traditional anti-rheumatic herbal medicines in China, has been used to treat rheumatoid arthritis (RA) since ancient times. Purpurin, an active compound of Rubia cordifolia L., has been identified in previous studies and exerts antibacterial, antigenotoxic, anticancer, and antioxidant effects. However, the efficacy and the underlying mechanism of purpurin to alleviate RA are unclear. In this study, the effect of purpurin on inflammation was investigated using macrophage RAW264.7 inflammatory cells, induced by lipopolysaccharide (LPS), and adjuvant-induced arthritis (AIA) rat was established to explore the effect of purpurin on joint damage and immune disorders; the network pharmacology and molecular docking were integrated to dig out the prospective target. Purpurin showed significantly anti-inflammatory effect by reducing the content of IL-6, TNF-α, and IL-1β and increasing IL-10. Besides, purpurin obviously improved joint injury and hypotoxicity in the liver and spleen and regulated the level of FOXP3 and CD4+/CD8+. Furthermore, purpurin reduced the MMP3 content of AIA rats. Network pharmacology and molecular docking also suggested that MMP3 may be the key target of purpurin against RA. The results of this study strongly indicated that purpurin has a potential effect on anti-RA.
Collapse
|
30
|
You LP, Wang KX, Lin JC, Ren XY, Wei Y, Li WX, Gao YQ, Kong XN, Sun XH. Yin-chen Wu-ling powder alleviate cholestatic liver disease: Network pharmacological analysis and experimental validation. Gene 2023; 851:146973. [DOI: 10.1016/j.gene.2022.146973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
31
|
Ni YL, Shen HT, Chen SP, Kuan YH. Protective effect of genkwanin against lipopolysaccharide-induced acute lung injury in mice with p38 mitogen-activated protein kinase and nuclear factor-κB pathway inhibition. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022] Open
|
32
|
Xu L, Lu G, Zhan B, Wei L, Deng X, Zhang Q, Shen X, Wang J, Feng H. Uncovering the efficacy and mechanisms of Genkwa flos and bioactive ingredient genkwanin against L. monocytogenes infection. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115571. [PMID: 35870686 DOI: 10.1016/j.jep.2022.115571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/11/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Genkwa flos (yuanhua in Chinese), the dried flower buds of the plant Daphne genkwa Siebold & Zucc., as a traditional herb widely used for the treatment of inflammation-related symptoms and diseases, with the efficacies of diuretic, phlegm-resolving and cough suppressant. AIM OF THE STUDY Traditional Chinese Medicine (TCM) is presumed to be of immense potential against pathogens infection. Whereas, the potential efficacy and mechanisms of Genkwa flos against L. monocytogenes infection has not been extensively explored. The present study aimed to identify the bioactive ingredients of Genkwa flos against L. monocytogenes infection and to delineate the underlying mechanisms of action. MATERIALS AND METHODS Bioinformatics approach at protein network level was employed to investigate the therapeutic mechanisms of Genkwa flos against L. monocytogenes infection. And hemolysis inhibition assay, cytoprotection test, western blotting, oligomerization assay and molecular docking analysis were applied to substantiate the multiple efficacies of Genkwa flos and the bioactive ingredient genkwanin. Histopathological analysis and biochemistry detection were conducted to evaluate the in vivo protective effect of genkwanin. RESULTS Network pharmacology and experimental validation revealed that Traditional Chinese Medicine (TCM) Genkwa flos exhibited anti-L. monocytogenes potency and was found to inhibit the hemolytic activity of LLO. Bioactive ingredient genkwanin interfered with the pore-forming activity of LLO by engaging the active residues Tyr414, Tyr98, Asn473, Val100, Tyr440 and Val438, and thereby attenuated LLO-mediated cytotoxicity. Consistent with the bioinformatics prediction, exposed to genkwanin could upregulate the Nrf2 level and promote the translocation of Nrf2. In vivo, genkwanin oral administration (80 mg/kg) significantly protected against systemic L. monocytogenes infection, as evidenced by reduced myeloperoxidase (MPO) and malondialdehyde (MDA) levels, increased mice survival rate by 30% and decreased pathogen colonization. CONCLUSION Our study demonstrated that Genkwa flos is a potential anti-L. monocytogenes TCM, highlighted the therapeutic potential of Genkwa flos active ingredient genkwanin by targeting the pore-forming cytolysin LLO and acting as a promising antioxidative candidate against L. monocytogenes infection.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Gejin Lu
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Yujinxiang Street 573, Changchun, Jilin, 130122, China.
| | - Baihe Zhan
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Lijuan Wei
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Hebei Veterinary Medicine Technology Innovation Center, Shijiazhuang, 050041, Hebei, China.
| | - Xuming Deng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Qiaoling Zhang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun, China.
| | - Jianfeng Wang
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Haihua Feng
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
33
|
Rao J, Peng T, Li N, Wang Y, Yan C, Wang K, Qiu F. Nephrotoxicity induced by natural compounds from herbal medicines - a challenge for clinical application. Crit Rev Toxicol 2022; 52:757-778. [PMID: 36815678 DOI: 10.1080/10408444.2023.2168178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/24/2023]
Abstract
Herbal medicines (HMs) have long been considered safe and effective without serious toxic and side effects. With the continuous use of HMs, more and more attention has been paid to adverse reactions and toxic events, especially the nephrotoxicity caused by natural compounds in HMs. The composition of HMs is complex and various, especially the mechanism of toxic components has been a difficult and hot topic. This review comprehensively summarizes the kidney toxicity characterization and mechanism of nephrotoxic natural compounds (organic acids, alkaloids, glycosides, terpenoids, phenylpropanoids, flavonoids, anthraquinones, cytotoxic proteins, and minerals) from different sources. Recommendations for the prevention and treatment of HMs-induced kidney injury were provided. In vitro and in vivo models for evaluating nephrotoxicity and the latest biomarkers are also included in this investigation. More broadly, this review may provide theoretical basis for safety evaluation and further comprehensive development and utilization of HMs in the future.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Ting Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Na Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Yuan Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Caiqin Yan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| |
Collapse
|
34
|
Shen Y, Fan X, Qu Y, Tang M, Huang Y, Peng Y, Fu Q. Magnoflorine attenuates inflammatory responses in RA by regulating the PI3K/Akt/NF-κB and Keap1-Nrf2/HO-1 signalling pathways in vivo and in vitro. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154339. [PMID: 35870375 DOI: 10.1016/j.phymed.2022.154339] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Revised: 07/02/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As a prolonged autoimmune disorder, rheumatoid arthritis (RA) is characterised by synovial hyperplasia and the erosion of bone and cartilage. Magnoflorine (MAG) is the main component purified from Clematis manshurica Rupr. Recent studies have shown that MAG has anti-inflammatory, antioxidant, and immunosuppressive effects, which are relevant to anti-RA activities. OBJECTIVE The current investigation was conducted to explore the anti-RA effects of MAG and to discover the possible molecular mechanisms. METHODS In vitro experiments, CCK-8, wound healing, and transwell assays were utilized to evaluate the anti-proliferative, anti-migratory, and anti-invasive activities of MAG, respectively. The rate of cell distribution and cell apoptosis were evaluated by flow cytometry. ROS generation was detected by DCFH-DA staining. Western blotting, quantitative real-time polymerase chain reaction assay, and immunofluorescent staining were employed to test the anti-RA effect of MAG as well as to explore the potential mechanisms by evaluating related gene and protein expression. For in vivo experiments, an adjuvant-induced arthritis (AIA) rat model was established. The related parameters were measured in rats. Then, rats were sacrificed, and ankle joints were collected for histopathological analysis and observation. RESULTS MAG significantly decreased the proliferation, migration, invasion, and reactive oxygen species levels in IL-1β-treated MH7A cells. Furthermore, MAG promoted cell apoptosis by increasing Bax levels and decreasing Bcl-2 levels. MAG also induced cell cycle arrest. Inflammatory cytokines (iNOS, COX-2, IL-6, and IL-8) and MMPs (MMP-1, 2, 3, 9, and 13) were reduced by MAG treatment. Molecular analysis revealed that MAG exerted anti-RA effects by partly inhibiting the PI3K/Akt/NF-κB signalling axis and activating the Keap1-Nrf2/HO-1 signalling pathway. In vivo studies have revealed that MAG treatment substantially improved severe symptoms in AIA rats, and these curative effects were linked to the attenuation of inflammatory responses. CONCLUSION These results first suggested that MAG exhibits anti-arthritic effects in IL-1β-treated MH7A cells and AIA rat models. Thus, MAG may be used as a new drug to treat RA clinically.
Collapse
Affiliation(s)
- Yue Shen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Xinting Fan
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Yuhan Qu
- School of Food and Biological engineering, Chengdu university, Chengdu 610106, China
| | - Min Tang
- School of Food and Biological engineering, Chengdu university, Chengdu 610106, China
| | - Yuehui Huang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Yi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu university, Chengdu 610106, China.
| |
Collapse
|
35
|
Zhang D, Ning T, Wang H. Vitexin alleviates inflammation and enhances apoptosis through the regulation of the JAK/STAT/SOCS signaling pathway in the arthritis rat model. J Biochem Mol Toxicol 2022; 36:e23201. [PMID: 36029189 DOI: 10.1002/jbt.23201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Revised: 05/31/2022] [Accepted: 07/25/2022] [Indexed: 11/08/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory and autoimmune disorder. RA is progressive and needs long-term treatment. Vitexin is a naturally-occurring flavonoid that is identified in various plant sources. Vitexin is demonstrated to produce antioxidant effects with numerous pharmacological activities. This experimental in vivo study assessed the antiarthritic and apoptotic role of a natural plant extract, vitexin, on RA. Collagen-induced arthritis (CIA) rat model Sprague Dawley males were grouped into five sets with six rats each: control, CIA, CIA + vitexin (10 mg/kg bw), CIA + Methotrexate (1 mg/kg bw), and vitexin (10 mg/kg bw) alone. The body weight, organ weight, biochemical assay, inflammatory enzymes, apoptosis, and cytokines levels were evaluated and compared among groups. Janus kinase (JAK)/signal transducer and activator of transcription (STAT)/suppressors of cytokine signaling (SOCS) levels and histopathology of ankle joints were also studied and compared. Significance was considered at a p < 0.05. Vitexin (10 mg/kg bw) significantly reduced the inflammatory enzyme markers, interleukin (IL)-1β, IL-6, IL-17, IL-4, IL-10, tumor necrosis factor-α, interferon-γ, and iNOS levels in arthritis rats (p < 0.05). Vitexin significantly improved collagen-induced arthritic histological changes (p < 0.05). Vitexin also reduced JAK/STAT expressions associated with inflammation and significantly increased elevated SOCS levels (p < 0.05). Aberration in apoptosis, inflammatory mediators, C-reactive protein, and rheumatoid factor levels in the arthritic rats reverted to normal with vitexin. These results emphasize that vitexin possesses anti-inflammatory and apoptotic activity via the regulation of JAK/STAT/SOCS signaling in CIA in a rat model. Hence, vitexin is a promising auxiliary drug for RA treatment.
Collapse
Affiliation(s)
- Daojian Zhang
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| | - Taiguo Ning
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| | - Hongbin Wang
- Department of Orthopedics, Peking University First Hospital, Beijing, China
| |
Collapse
|
36
|
Lv M, Liang Q, Wan X, Wang Z, Qian Y, Xiang J, Luo Z, Ni T, Jiang W, Wang W, Wang H, Liu Y. Metabolomics and molecular docking-directed antiarthritic study of the ethyl acetate extract from Celastrus orbiculatus Thunb. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115369. [PMID: 35562091 DOI: 10.1016/j.jep.2022.115369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/06/2022] [Revised: 04/30/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Celastrus orbiculatus Thunb., an important folk medicine, has long been used for the treatment of rheumatoid arthritis and its ethyl acetate extract (COE) has been reported to possess anticancer, antiinflammation and antiarthritic effects. However, the therapeutic effect and mechanism of COE treatment in rheumatoid arthritis has been rarely studied especially from the perspective of metabolomics. AIM OF STUDY To reveal the therapeutic effects of COE on adjuvant-induced arthritis (AIA) rats through histopathological analysis, non-targeted metabolomics, and molecular docking study. MATERIALS AND METHODS Forty-three Wistar rats were randomly divided into normal group, AIA model group, methotrexate group, and COE groups (80 mg/kg, 160 mg/kg and 320 mg/kg of ethyl acetate extract). Paw swelling and arthritis score were monitored through the experiment. Serum levels of tumor necrosis factor α (TNF-α) and nitric oxide were determined and histopathological evaluation was performed. Furthermore, Ultra-high performance liquid chromatography-linear trap quadrupole-Orbitrap-based metabolomics was employed to characterize metabolic changes of AIA rats after COE treatment and molecular docking was performed to predict the potential phytochemicals of COE against TNF-α. RESULTS COE at three dosages could significantly relieve paw swelling and reduce arthritis scores of AIA rat. Histopathological analysis revealed remarkable decrease in synovial inflammation and bone erosion after COE treatment, especially at middle and high dosage. Additionally, COE down-regulated serum levels of TNF-α and nitric oxide. Serum metabolomics showed that 22 potential biomarkers for the COE treatment of AIA rats were identified, which were closely related to fatty acid metabolism, glycerophospholipid catabolism, and tryptophan metabolism. The molecular docking models predicted that olean-type triterpenes in COE may contribute most to therapeutic effects of rheumatoid arthritis through targeting TNF-α. CONCLUSIONS COE could significantly relieve the arthritic symptoms in AIA rats and the ultra-high performance liquid chromatography-mass spectrometry based metabolomics proved to be an efficient method to characterize subtle metabolic changes of AIA rats after COE treatment.
Collapse
Affiliation(s)
- Mengying Lv
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| | - Qiaoling Liang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Xiayun Wan
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Zheng Wang
- Department of Pathology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yayun Qian
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Jie Xiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Zhaoyong Luo
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Tengyang Ni
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Wei Jiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Weimin Wang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Haibo Wang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China
| | - Yanqing Liu
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China; The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou, China.
| |
Collapse
|
37
|
Concerted regulation of OPG/RANKL/ NF‑κB/MMP-13 trajectories contribute to ameliorative capability of prodigiosin and/or low dose γ-radiation against adjuvant- induced arthritis in rats. Int Immunopharmacol 2022; 111:109068. [PMID: 35944459 DOI: 10.1016/j.intimp.2022.109068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prodigiosin (PDG) is a microbial red dye with antioxidant and anti-inflammatory properties, although its effect on rheumatoid arthritis (RA) remains uncertain. Also, multiple doses of low dose γ- radiation (LDR) have been observed to be as a successful intervention for RA. Thus, the purpose of this study was to investigate the ameliorative potential of PDG and/or LDR on adjuvant-induced arthritis (AIA) in rats. METHODS The anti-inflammatory and anti-arthritic effects of PDG and/or LDR were examined in vitro and in vivo, respectively. In the AIA model, the arthritic indexes, paw swelling degrees, body weight gain, and histopathological assessment in AIA rats were assayed. The impact of PDG (200 µg/kg; p.o) and/or LDR (0.5 Gy) on the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18, IL-17A, and IL-10) as well as the regulation of osteoprotegrin (OPG)/ receptor activator of nuclear factor κB ligand (RANKL)/ nuclear factor-κB (NF-κB)/MMP-13 pathways was determined. Methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) was administered concurrently as a standard anti-arthritic drug. RESULTS PDG and/or LDR markedly diminished the arthritic indexes, paw edema, weigh loss in AIA rats, alleviated the pathological alterations in joints, reduced the levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-18, IL-17A, and RANKL in serum and synovial tissues, while increasing anti-inflammatory cytokines IL-10 and OPG levels. Moreover, PDG and/or LDR down-regulated the expression of RANKL, NF-κBp65, MMP13, caspase-3, and decreased the RANKL/OPG ratio, whereas OPG and collagen II were enhanced in synovial tissues. CONCLUSION PDG and/or LDR exhibited obvious anti-RA activity on AIA.
Collapse
|
38
|
He Q, Tan X, Geng S, Du Q, Pei Z, Zhang Y, Wang S, Zhang Y. Network analysis combined with pharmacological evaluation strategy to reveal the mechanism of Tibetan medicine Wuwei Shexiang pills in treating rheumatoid arthritis. Front Pharmacol 2022; 13:941013. [PMID: 35924046 PMCID: PMC9340267 DOI: 10.3389/fphar.2022.941013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022] Open
Abstract
Tibetan medicine is an important part of traditional Chinese medicine and a significant representative of ethnic medicine in China. Tibetan medicine is gradually recognized by the world for its unique curative effects. Wuwei Shexiang pills (WPW) has been widely used to treat “Zhenbu” disease (Also known as rheumatoid arthritis) in Tibetan medicine, however, its potential bioactive ingredients and mechanism for RA treatment remain unclear. In this study, we used a combination of gas chromatography-mass spectrometry (GC-MS), ultra-performance liquid chromatography coupled with quadrupole time-of-fight mass spectrometry (UPLC-Q-TOF/MS), network analysis and experimental validation to elucidate the potential pharmacodynamic substances and mechanisms of WPW in the treatment of rheumatoid arthritis (RA). The results showed that songoramine, cheilanthifoline, saussureanine C, acoric acid, arjunolic acid, peraksine, ellagic acid, arjungenin and other 11 components may be the main activities of WPW in the treatment of RA. PIK3CA, AKT, MAPK, IL-6, TNF, MMP1, MMP3, and CDK1 are considered as core targets. PI3K-AKT, MAPK, apoptosis, cell cycle, and other signaling pathways may be the key pathways for WPW to play a role in the treatment of RA. Furthermore, we validated the underlying molecular mechanism of WPW predicted by network analysis and demonstrated its possible mechanism through in vivo animal experiments. It was found that WPW could significantly improve the degree of paw swelling, and reduce ankle joint diameter and arthritis index. Further histomorphological analysis showed that WPW could reduce the degree of synovial tissue inflammation and ankle joint cartilage damage. Meanwhile, WPW could down-regulate the levels of IL-6, IL-1β, and IL-17, and increase the levels of IL-10 and IL-4 in the serum of AA rats. TUNEL staining confirmed that WPW could significantly promote the apoptosis of synovial cells. Moreover, the immunohistochemical results showed that WPW decreased the expression of PI3K, AKT, MAPK, MMP1, MMP3, CDK1, and Bcl-2, as well as increased the expression of Bax protein. In conclusion, we successfully combined GC-MS, UPLC-Q-TOF/MS, network analysis, and experimental validation strategies to elucidate the inhibition of inflammation by WPW in AA model rats via PI3K/AKT, MAPK, cell cycle and apoptotic pathways process. This not only provides new evidence for the study of potential pharmacodynamic substances and the mechanism of WPW in the treatment of RA, but also provides ideas for the study of other Tibetan medicine compound preparations.
Collapse
Affiliation(s)
- Qingxiu He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sang Geng
- Affiliated Hospital of University of Tibetan Medicine, University of Tibetan Medicine, Lasa, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaoqing Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Zhang, ; Shaohui Wang,
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yi Zhang, ; Shaohui Wang,
| |
Collapse
|
39
|
Lu YC, Tseng LW, Huang YC, Yang CW, Chen YC, Chen HY. The Potential Complementary Role of Using Chinese Herbal Medicine with Western Medicine in Treating COVID-19 Patients: Pharmacology Network Analysis. Pharmaceuticals (Basel) 2022; 15:ph15070794. [PMID: 35890093 PMCID: PMC9323801 DOI: 10.3390/ph15070794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic in 2019—coronavirus disease (COVID-19). More and more Western medicine (WM) and Chinese herbal medicine (CHM) treatments have been used to treat COVID-19 patients, especially among Asian populations. However, the interactions between WM and CHM have not been studied. This study aims at using the network pharmacology approach to explore the potential complementary effects among commonly used CHM and WM in a clinical setting from a biomolecular perspective. Three well-published and widely used CHM formulas (National Research Institute of Chinese Medicine 101 (NRICM101), Qing-Fei-Pai-Du-Tang (QFPDT), Hua-Shi-Bai-Du-Formula (HSBDF)) and six categories of WM (Dexamethasone, Janus kinase inhibitors (JAKi), Anti-Interleukin-6 (Anti-IL6), anticoagulants, non-vitamin K antagonist oral anticoagulants (NOAC), and Aspirin) were included in the network pharmacology analysis. The target proteins on which these CHM and WM had direct effects were acquired from the STITCH database, and the potential molecular pathways were found in the REACTOME database. The COVID-19-related target proteins were obtained from the TTD database. For the three CHM formulas, QFPDT covered the most proteins (714), and 27 of them were COVID-19-related, while HSBDF and NRICM101 covered 624 (24 COVID-19-related) and 568 (25 COVID-19-related) proteins, respectively. On the other hand, WM covered COVID-19-related proteins more precisely and seemed different from CHM. The network pharmacology showed CHM formulas affected several inflammation-related proteins for COVID-19, including IL-10, TNF-α, IL-6, TLR3, and IL-8, in which Dexamethasone and Aspirin covered only IL-10 and TNF-α. JAK and IL-6 receptors were only inhibited by WM. The molecular pathways covered by CHM and WM also seemed mutually exclusive. WM had advantages in cytokine signaling, while CHM had an add-on effect on innate and adaptive immunity, including neutrophil regulation. WM and CHM could be used together to strengthen the anti-inflammation effects for COVID-19 from different pathways, and the combination of WM and CHM may achieve more promising results. These findings warrant further clinical studies about CHM and WM use for COVID-19 and other diseases.
Collapse
Affiliation(s)
- Yi-Chin Lu
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Liang-Wei Tseng
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
| | - Yu-Chieh Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung 20401, Taiwan;
| | - Ching-Wei Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chun Chen
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan;
- Institute of Hospital and Health Care Administration, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33378, Taiwan; (Y.-C.L.); (L.-W.T.); (C.-W.Y.)
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
40
|
Fu X, Sun X, Zhang C, Lv N, Guo H, Xing C, Lv J, Wu J, Zhu X, Liu M, Su L. Genkwanin Prevents Lipopolysaccharide-Induced Inflammatory Bone Destruction and Ovariectomy-Induced Bone Loss. Front Nutr 2022; 9:921037. [PMID: 35811983 PMCID: PMC9260391 DOI: 10.3389/fnut.2022.921037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives The first objective of this study was to probe the effects of genkwanin (GKA) on osteoclast. The second goal of this study was to study whether GKA can protect lipopolysaccharide (LPS) and ovariectomized (OVX) induced bone loss. Materials and Methods Various concentrations of GKA (1 and 10 mg/kg) were injected into mice. Different concentrations of GKA (1 and 5 μM) were used to detect the effects of GKA on osteoclast and osteoblast. Key Findings GKA attenuated the osteoclast differentiation promoted by RANKL and expression of marker genes containing c-fos, ctsk as well as bone resorption related gene Trap and to the suppression of MAPK signaling pathway. In addition, GKA induced BMMs cell apoptosis in vitro. Moreover, GKA prevented LPS-induced and ovariectomized-induced bone loss in mice. Conclusion Our research revealed that GKA had a potential to be an effective therapeutic agent for osteoclast-mediated osteoporosis.
Collapse
Affiliation(s)
- Xin Fu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaochen Sun
- School of Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang, China
- Lianyungang Clinical School of Xuzhou Medical University, Lianyungang, China
| | - Huan Guo
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Jiwen Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
| | - Xiaoli Zhu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Xiaoli Zhu,
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang, China
- Lianyungang Clinical School of Xuzhou Medical University, Lianyungang, China
- Mingming Liu,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- Li Su,
| |
Collapse
|
41
|
Zhou Y, Zhao Y, Xu H, Zhao X, Zhao C, Zhou T, Zhang Y. Antirheumatoid Arthritic Effects of Sabia parviflora Wall. Leaf Extracts via the NF-κB Pathway and Transient Receptor Potential Protein Family. Front Pharmacol 2022; 13:880350. [PMID: 35784680 PMCID: PMC9243545 DOI: 10.3389/fphar.2022.880350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022] Open
Abstract
As an important traditional medicine of Buyi and Miao ethnic groups in Guizhou, Sabia parviflora Wall. provides antiviral properties against hepatitis, eliminates wind and dampness, and exhibits anti-inflammatory and pain relief properties. It has also been shown to treat rheumatoid arthritis (RA) and other diseases. However, the pharmacodynamic mechanism of S. parviflora Wall. for RA has not been reported. In this study, we identified the effective compounds of S. parviflora Wall. leaves against RA and discussed the mechanism against complete Freund’s adjuvant-induced arthritis (AIA) based on inflammatory proteins and transient receptor potential (TRP) proteins. S. parviflora Wall. leaf extracts (0.64 g/kg, 0.32 g/kg, and 0.16 g/kg, once daily) were given orally for 21 days. On the 15th day of complete Freund’s adjuvant-induced RA, the effects of this medicine on RA rats were investigated. S. parviflora Wall. extracts increased body weight, decreased foot swelling, and reduced thymus and spleen indices in model rats. Most of pannus in the synovial tissue of RA rats disappeared upon treatment, and the local inflammatory cells were greatly reduced when given the fraction of n-butanol (0.64 g/kg/d, 0.32 g/kg/d, and 0.16 g/kg/d) of 70% alcohol-soluble fraction of S. parviflora Wall. leaves. In addition, the release of inflammatory factors such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-15 (IL-15), and vascular endothelial growth factor (VEGF) in the RA rat serum was inhibited. The active compounds inhibited the expression of TNF-α, IL-1β, IL-6, IL-10, IL-15 and nuclear factor kappa-Bp65 (NF-κBp65) inflammatory protein and TRP protein transient receptor potential melastatin-5 (TRPM-5) and transient receptor potential channel-6 (TRPC-6), to reduce the expression of VEGF in synovial tissue of RA rats and relieve redness and edema. High-performance liquid chromatography identified six flavonoids and three triterpenoid saponins as active compounds. These findings suggest S. parviflora Wall. leaves may play a role in RA treatment by inhibiting the release of inflammatory factors as well as participating in the inflammatory protein expression in the NF-κB pathway and TRP protein family.
Collapse
Affiliation(s)
- Yongqiang Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Yongqiang Zhou, ; Tao Zhou,
| | - Yamin Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hui Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoyan Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chunli Zhao
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Tao Zhou
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Resource Institute for Chinese & Ethnic Materia Medica, Gui Zhou University of Traditional Chinese Medicine, Guiyang, China
- *Correspondence: Yongqiang Zhou, ; Tao Zhou,
| | - Yongping Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
42
|
Ma J, Huo H, Zhang H, Wang L, Meng Y, Jin F, Wang X, Zhao Y, Zhao Y, Tu P, Song Y, Zheng J, Li J. 2-(2-phenylethyl)chromone-enriched extract of the resinous heartwood of Chinese agarwood (Aquilaria sinensis) protects against taurocholic acid-induced gastric epithelial cells apoptosis through Perk/eIF2α/CHOP pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153935. [PMID: 35104763 DOI: 10.1016/j.phymed.2022.153935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Injury of gastric epithelial cells is one of the most important pathological features of bile reflux gastritis. Chinese agarwood (the resinous heartwood of Aquilaria sinensis) has been used to treat stomach problems for thousands of years in China. However, the pathological mechanism of epithelial cells death induced by bile acids and the therapeutic target of Chinese agarwood for improving bile reflux gastritis have not yet been fully clarified. PURPOSE This study aimed to investigate the pro-apoptotic effect of taurocholic acid (TCA) by regulating the ER stress pathway. Moreover, the role of Chinese agarwood 2-(2-phenylethyl)chromone-enriched extract (CPE) to inhibit gastric epithelial cell death induced by TCA was also been demonstrated. METHODS We adopted human gastric epithelial GES-1 cells to explore the mechanism of TCA-induced cell death in vitro. Then the cell viability, apoptosis rate, and protein expressions were evaluated to explore the protective effects of CPE on GES-1 cells by TCA injury. The therapeutic effect of CPE on bile reflux gastritis was further confirmed by the bile reflux mice in vivo. RESULTS Our results demonstrated that TCA activated GES-1 cell apoptosis by increased cleavage of caspase-7 and PARP. Further experiments showed that TCA up-regulated endoplasmic reticulum (ER) stress, subsequently triggered the apoptosis of the epithelial cells. Our research explored that CPE is the main effective fraction in Chinese agarwood by preventing the TCA-induced gastric epithelial cell injury. CPE effectively suppressed GES-1 cell apoptosis activated by TCA through inhibiting Perk/eIF2α/CHOP pathway. The anti-apoptotic effect of CPE on gastric mucosa had also been confirmed in vivo. Moreover, the main effective components in CPE corresponding to the protection of epithelial cells were also been identified. CONCLUSION Our finding suggested that CPE recovered the TCA-induced epithelial cell apoptosis by mediating the activation of ER stress, which explored potential medicine to treat bile reflux gastritis.
Collapse
Affiliation(s)
- Jiale Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huixia Huo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hang Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lingxiao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingxin Meng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fengyu Jin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yimu Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunfang Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jiao Zheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
43
|
Li Y, Yu P, Fu W, Wang J, Ma Y, Wu Y, Cui H, Zhao W, Zhang F, Yu X, Sui D, Xu H. Polysaccharides from Panax ginseng C. A. Meyer alleviated DSS-induced IBD by inhibiting JAK2/STAT1/NLPR3 inflammasome signalling pathway in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023] Open
|
44
|
Shen Y, Teng L, Qu Y, Liu J, Zhu X, Chen S, Yang L, Huang Y, Song Q, Fu Q. Anti-proliferation and anti-inflammation effects of corilagin in rheumatoid arthritis by downregulating NF-κB and MAPK signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114791. [PMID: 34737112 DOI: 10.1016/j.jep.2021.114791] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/12/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The dried aboveground part of Geranium Wilfordii Maxim. (G. Wilfordii) is a traditional Chinese herbal medicine named lao-guan-cao. It has long been used for dispelling wind-dampness, unblocking meridians, and stopping diarrhea and dysentery. Previous investigations have revealed that 50% ethanolic extract of G. Wilfordii has anti-inflammatory and anti-proliferation activities on TNF-α induced murine fibrosarcoma L929 cells. Corilagin (COR) is a main compound in G. Wilfordii with the content up to 1.69 mg/g. Pharmacology study showed that COR has anti-inflammatory, anti-tumor, anti-microorganism, anti-oxidant, and hepatoprotective effects. However, there is no any investigation on its anti-proliferation and anti-inflammation effects in rheumatoid arthritis (RA). AIM OF THE STUDY The present study aimed to evaluate the potential pharmacological mechanisms of anti-proliferation and anti-inflammation effects of COR in RA. MATERIALS AND METHODS In vitro, MH7A cells model induced by IL-1β was used. The anti-proliferation activity of COR was assessed by Cell Counting Kit-8 (CCK-8) assay, and the anti-migration and anti-invasion activity of COR was determined by wound healing assay and transwell assay, respectively. Furthermore, apoptosis assay by flow cytometer was used to measure the pro-apoptotic effect of COR. The mRNA expressions of Bax, Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS were measured by qRT-PCR, and related protein were further verified by ELISA kits or Western blot. Moreover, protein levels associated with NF-κB and MAPK signaling pathways of p65, P-p65, IκBα, P-IκBα, ERK1/2, P-ERK1/2, JNK, P-JNK1/2/3, p38, and P-p38 were determined by Western blot. The nuclear translocation of NF-κB-p65 was detected by immunofluorescent staining. In vivo, adjuvant-induced arthritis (AIA) rat model was used, and the body weight, paw swelling, and arthritis score during the entire period were measured. Histopathological analysis of joints of synovial tissues was also determined. The expression of pro-inflammatory cytokines in serum including IL-6, TNF-α, IL-1β, and IL-17 were measured. RESULTS The in vitro results showed that COR could dose-dependently inhibit the proliferation, migration, and invasion of IL-1β-induced MH7A cells, as well as promote its apoptosis. Moreover, it also suppressed the over-expression of Bcl-2, IL-6, IL-8, MMP-1, MMP-2, MMP-3, MMP-9, COX-2, and iNOS while up-regulated the level of Bax. Besides, the ratios of P-p65/p65, P-IκBα/IκBα, P-ERK/ERK, P-JNK/JNK, and P-p38/p38 were decreased, and the nuclear translocation of p65 induced by IL-1β was blocked by COR. In vivo results indicated that COR significantly reduced the paw swelling and arthritis score in AIA rats, and inhibited synovial tissue hyperplasia and erosion, as well as inflammatory cells infiltration. It also decreased the serum pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, and IL-17) production. CONCLUSION These results revealed that COR exerted anti-rheumatoid arthritis effect, and its underlying mechanisms may be related to inhibiting the proliferation, migration, and invasion of synovial fibroblasts, enhancing cell apoptosis, and suppressing inflammatory responses via downregulating NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yue Shen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Li Teng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Yuhan Qu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Jie Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Xudong Zhu
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Shan Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Longfei Yang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yuehui Huang
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Qin Song
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Qiang Fu
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
45
|
AMSP-30 m as a novel HIF-1α inhibitor attenuates the development and severity of adjuvant-induced arthritis in rats: Impacts on synovial apoptosis, synovial angiogenesis and sonic hedgehog signaling pathway. Int Immunopharmacol 2022; 103:108467. [DOI: 10.1016/j.intimp.2021.108467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022]
|
46
|
Mahmoud AM, Sayed AM, Ahmed OS, Abdel-Daim MM, Hassanein EHM. The role of flavonoids in inhibiting IL-6 and inflammatory arthritis. Curr Top Med Chem 2022; 22:746-768. [PMID: 34994311 DOI: 10.2174/1568026622666220107105233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily affects the synovial joints. RA has well-known clinical manifestations and can cause progressive disability and premature death along with socioeconomic burdens. Interleukin-6 (IL-6) has been implicated in the pathology of RA where it can stimulate pannus formation, osteoclastogenesis, and oxidative stress. Flavonoids are plant metabolites with beneficial pharmacological effects, including anti-inflammatory, antioxidant, antidiabetic, anticancer, and others. Flavonoids are polyphenolic compounds found in a variety of plants, vegetables, and fruits. Many flavonoids have demonstrated anti-arthritic activity mediated mainly through the suppression of pro-inflammatory cytokines. This review thoroughly discusses the accumulate data on the role of flavonoids on IL-6 in RA.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University-Assiut Branch, Egypt
| |
Collapse
|
47
|
Phytochemicals targeting JAK/STAT pathway in the treatment of rheumatoid arthritis: Is there a future? Biochem Pharmacol 2022; 197:114929. [DOI: 10.1016/j.bcp.2022.114929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2021] [Revised: 01/05/2022] [Accepted: 01/13/2022] [Indexed: 12/13/2022]
|
48
|
Luo W, Wu B, Tang L, Li G, Chen H, Yin X. Recent research progress of Cirsium medicinal plants in China. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114475. [PMID: 34363929 DOI: 10.1016/j.jep.2021.114475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/21/2021] [Revised: 07/16/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species of the genus Cirsium have been used as traditional Chinese medicine for hundreds of years. It is believed that Cirsium has the efficacies of cooling blood and stopping bleeding, dispelling blood stasis, detoxifying and eliminating carbuncle. At present, they are mainly used in treatment of the hemoptysis, hematemesis, hemoptysis, hematuria, traumatic bleeding and Henoch-Schonlein purpura. They are widely used in traditional Chinese medicine. AIM This paper systematically collated the classification, traditional use, pharmacological action, phytochemistry and clinical application of Cirsium plants in the past ten years, intending to provide a critical appraisal of current knowledge for future in-depth study and rational development and utilization of Cirsium plants. MATERIAL AND METHODS This paper searched various databases (SciFinder, Science Direct, CNKI, Wiley online library, Spring Link, Web of Science, PubMed, Wanfang Data, Weipu Data), Chinese Pharmacopoeia 2020 Edition, Chinese Flora, Chinese Materia Medica and some local books on ethnopharmacology. RESULTS More than ten species of Cirsium have been used as folk medicine, and modern pharmacological studies have shown that Cirsium has the effects of protecting liver, antioxidation, anti-tumor, anti-inflammation, antibacterial, etc. More than 200 chemical constituents such as flavonoids, triterpenes, sterols, phenylpropanoids have been isolated from Cirsium. Some ingredients show a wide variety of bioactivities including hepatoprotective, anti-inflammatory, antioxidant, anti-tumor and other activities. At present, Cirsium medicinal plants, as traditional Chinese medicine, were mainly used to treat nephritis, Henoch-Schonlein purpura and hemorrhage, although some species used in folk lack of quality control systems. CONCLUSION Cirsium plants are a safe and effective medicine for cooling blood and hemostasis. Recent studies on pharmacology and phytochemistry also provide solid scientific evidences for the traditional application of this genus. It also shows significant hepatoprotective activity and may be a potential clinical candidate for the treatment of liver disease. However, the qualitative and quantitative analysis, pharmacokinetics-pharmacodynamics and mechanism of action also need in-depth study.
Collapse
Affiliation(s)
- Wei Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bei Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Liangjie Tang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guoyou Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hulan Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| |
Collapse
|
49
|
Xie J, Zhang D, Liu C, Wang L. A periodic review of chemical and pharmacological profiles of Tubiechong as insect Chinese medicine. RSC Adv 2021; 11:33952-33968. [PMID: 35497279 PMCID: PMC9042404 DOI: 10.1039/d1ra05425b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2021] [Accepted: 10/03/2021] [Indexed: 12/14/2022] Open
Abstract
Tubiechong, in Chinese medicine, denotes the dried female insects of Eupolyphaga sinensis Walker (ESW) or Polyphaga plancyi Bolivar (PPB). As a traditional insect-type, in medicine, it has been historically utilized to treat bruises, fractures, amenorrhea, postpartum blood stasis, lumps and relieving pain. We herein have performed a systematic survey involving the chemical and biological studies in the past decades to reveal the value of such insect resources for their development and clinical utilization. Chemical studies indicated that Tubiechong generated many active compounds, including proteins, amino acids, peptides, fatty acids, alkaloids, nucleosides, polysaccharides, fat-soluble vitamins and mineral elements. Tubiechong or its extract has a wide range of activities including anticoagulation and anti-thrombosis, anti-tumor, antioxidant, immune regulation, blood lipid regulation and hepatoprotection. Finally, a periodic mini-review was conducted to summarize such chemical and pharmacological profiles of Tubiechong medicine. The active peptides in Tubiechong are majorly focused in this review and introduced as one important aspect since there is much literature and huge investigative interest in it. Traditional medical use of the insect was also stressed in this review associating with its disease-eliminating actions by promoting blood circulation or eliminating tissue-swelling pains, which might play important roles in anticancer practices or investigation. In accordance with the modern pharmacological progress, Tubiechong and its extracts indeed exerted antitumor actions through multiple pathways, such as interfering with tumor biological behaviors (growth, apoptosis, invasion, metastasis and angiogenesis), and regulating host immune function. To some extent, this knowledge would provide a basis for further research and application of Tubiechong medicine.
Collapse
Affiliation(s)
- Jiayu Xie
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing City Jiangsu Province 210023 P. R. China (+86)-15050581339
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai City 200062 P. R. China (+86)-021-22233329
| | - Dapeng Zhang
- The First Affiliated Hospital of Guangzhou Medical University Guangzhou City 510120 P. R. China
| | - Cheng Liu
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine Shanghai City 200062 P. R. China (+86)-021-22233329
| | - Lingchong Wang
- School of Pharmacy, Nanjing University of Chinese Medicine Nanjing City Jiangsu Province 210023 P. R. China (+86)-15050581339
| |
Collapse
|
50
|
Genkwanin suppresses MPP +-induced cytotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in a cellular model of Parkinson's disease. Neurotoxicology 2021; 87:62-69. [PMID: 34481870 DOI: 10.1016/j.neuro.2021.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
Parkinson's disease (PD) is a complicated multifactorial neurodegenerative disorder. Oxidative stress, neuroinflammatory response, and activation of apoptosis have been proposed to be tightly involved in the pathogenesis of PD. Genkwanin is a typical bioactive non-glycosylated flavonoid with anti-inflammatory and anti-oxidant activities. However, the effect of genkwanin on PD remains unclear. Cell viability, lactate dehydrogenase (LDH) release, caspase-3/7 activity, and apoptosis was evaluated by MTT, LDH release assay, caspase-3/7 activity assay, and TUNEL assay, respectively. The secretion of prostaglandin E2 (PGE2), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were measured by respective commercial ELISA kits. The mRNA expression of TNF-α, IL-1β, and IL-6 was detected by qRT-PCR. The protein levels of cycloxygenase-2 (COX-2), toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NOD-like receptor (NLR) protein: 3 (NLRP3) were determined by western blot analysis. Genkwanin at concentrations less than 40 μM had no impact on cell viability and LDH release. Genkwanin suppressed MPP+-induced neuroinflammation in SH-SY5Y cells. MPP+ treatment inhibited cell viability, increased LDH release, apoptosis, and ROS generation, and reduced superoxide dismutase (SOD) activity in SH-SY5Y cells, which were abolished by genkwanin treatment. Genkwanin suppressed MPP+-induced activation of TLR4/MyD88/NLRP3 inflammasome pathway in SH-SY5Y cells. TLR4 overexpression weakened the anti-inflammatory and anti-neurotoxicity of genkwanin in SH-SY5Y cells. In conclusion, genkwanin attenuated neuroinflammation and neurotoxicity by inhibiting TLR4/MyD88/NLRP3 inflammasome pathway in MPP+-induced cellular model of PD.
Collapse
|