1
|
Weiner SP, Carr KD. Behavioral tests of the insulin-cholinergic-dopamine link in nucleus accumbens and inhibition by high fat-high sugar diet in male and female rats. Physiol Behav 2024; 284:114647. [PMID: 39067780 PMCID: PMC11323239 DOI: 10.1016/j.physbeh.2024.114647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
It was previously shown in striatal slices obtained from male rats that insulin excites cholinergic interneurons and increases dopamine (DA) release via α4β2 nicotinic receptors on DA terminals. The effect of insulin on DA release was blocked either by maintaining rats on a high sugar-high fat (HS-HF) diet that induced hyperinsulinemia and nucleus accumbens (NAc) insulin receptor insensitivity, or applying the α4β2 antagonist DHβE. In vivo, NAc shell insulin inactivation decreased a glucose lick microstructure parameter indicative of hedonic impact in male and female rats, and prevented flavor-nutrient learning, tested only in males. The HS-HF diet decreased hedonic impact in males but not females, and prevented flavor-nutrient learning, tested only in males. The present study extends testing to more fully assess the translation of brain slice results to the behaving rat. Insulin inactivation by antibody microinjection in NAc shell was found to decrease the number of lick bursts emitted and average lick burst size, measures of incentive motivation and hedonic impact respectively, for a wide range of glucose concentrations in male and female rats. In contrast, the HS-HF diet decreased these lick parameters in males but not females. Follow-up two-bottle choice tests for 10 % versus 40 % glucose showed decreased intake of both concentrations by males but increased intake of 40 % glucose by females. In a further set of experiments, it was predicted that α4β2 receptor blockade would induce the same behavioral effects as insulin inactivation. In females, DHβE microinjection in NAc shell decreased both lick parameters for glucose as predicted, but in males only the number of lick bursts emitted was decreased. DHβE also decreased the number of lick bursts emitted for saccharin by females but not males. Finally, DHβE microinjection in NAc shell decreased flavor-nutrient learning in both sexes. The few discrepancies seen with regard to the hypothesized insulin-nicotinic-dopaminergic regulation of behavioral responses to nutritive sweetener, and its inhibition by HS-HF diet, are discussed with reference to sex differences in DA dynamics, female resistance to diet-induced metabolic morbidities, and extra-striatal cholinergic inputs to NAc.
Collapse
Affiliation(s)
- Sydney P Weiner
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Kenneth D Carr
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA; Departments of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA.
| |
Collapse
|
2
|
Selenius JS, Silveira PP, von Bonsdorff M, Lahti J, Koistinen H, Koistinen R, Seppälä M, Eriksson JG, Wasenius NS. Biologically Informed Polygenic Scores for Brain Insulin Receptor Network Are Associated with Cardiometabolic Risk Markers and Diabetes in Women. Diabetes Metab J 2024; 48:960-970. [PMID: 38527457 PMCID: PMC11449818 DOI: 10.4093/dmj.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/25/2023] [Indexed: 03/27/2024] Open
Abstract
BACKGRUOUND To investigate associations between variations in the co-expression-based brain insulin receptor polygenic score and cardiometabolic risk factors and diabetes mellitus. METHODS This cross-sectional study included 1,573 participants from the Helsinki Birth Cohort Study. Biologically informed expression-based polygenic risk scores for the insulin receptor gene network were calculated for the hippocampal (hePRS-IR) and the mesocorticolimbic (mePRS-IR) regions. Cardiometabolic markers included body composition, waist circumference, circulating lipids, insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 1 and 3 (IGFBP-1 and -3). Glucose and insulin levels were measured during a standardized 2-hour 75 g oral glucose tolerance test and impaired glucose regulation status was defined by the World Health Organization 2019 criteria. Analyzes were adjusted for population stratification, age, smoking, alcohol consumption, socioeconomic status, chronic diseases, birth weight, and leisure-time physical activity. RESULTS Multinomial logistic regression indicated that one standard deviation increase in hePRS-IR was associated with increased risk of diabetes mellitus in all participants (adjusted relative risk ratio, 1.17; 95% confidence interval, 1.01 to 1.35). In women, higher hePRS-IR was associated with greater waist circumference and higher body fat percentage, levels of glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, triglycerides, apolipoprotein B, insulin, and IGFBP-1 (all P≤0.02). The mePRS-IR was associated with decreased IGF-1 level in women (P=0.02). No associations were detected in men and studied outcomes. CONCLUSION hePRS-IR is associated with sex-specific differences in cardiometabolic risk factor profiles including impaired glucose regulation, abnormal metabolic markers, and unfavorable body composition in women.
Collapse
Affiliation(s)
- Jannica S. Selenius
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Patricia P. Silveira
- Department of Psychiatry, Faculty of Medicine, McGill University, Verdun, QC, Canada
- Ludmer Center for Neuroinformatic and Mental Health, Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Mikaela von Bonsdorff
- Folkhälsan Research Center, Helsinki, Finland
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
- Turku Institute for Advanced Studies, University of Turku, Turku, Finland
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Helsinki University Hospital, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riitta Koistinen
- Department of Clinical Chemistry and Haematology, Helsinki University Hospital, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Markku Seppälä
- Department of Clinical Chemistry and Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Johan G. Eriksson
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- Department of Obstetrics & Gynecology and Human Potential Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niko S. Wasenius
- Folkhälsan Research Center, Helsinki, Finland
- Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Carr KD, Weiner SP, Vasquez C, Schmidt AM. Involvement of the Receptor for Advanced Glycation End Products (RAGE) in high fat-high sugar diet-induced anhedonia in rats. Physiol Behav 2023; 271:114337. [PMID: 37625475 PMCID: PMC10592025 DOI: 10.1016/j.physbeh.2023.114337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Clinical and basic science investigation indicates a link between insulin resistance and anhedonia. Previous results of this laboratory point to impaired nucleus accumbens (NAc) insulin signaling as an underpinning of diet-induced anhedonia, based on use of a glucose lick microstructure assay. The present study evaluated whether advanced glycation end products (AGEs) and their receptor (RAGE), known to mediate obesogenic diet-induced inflammation and pathological metabolic conditions, are involved in this behavioral change. Six weeks maintenance of male and female rats on a high fat-high sugar liquid diet (chocolate Ensure) increased body weight gain, and markedly increased circulating insulin and leptin, but induced anhedonia (decreased first minute lick rate and lick burst size) in males only. In these subjects, anhedonia correlated with plasma concentrations of insulin. Although the diet did not alter plasma or NAc AGEs, or the expression of RAGE in the NAc, marginally significant correlations were seen between anhedonia and plasma content of several AGEs and NAc RAGE. Importantly, a small molecule RAGE antagonist, RAGE229, administered twice daily by oral gavage, prevented diet-induced anhedonia. This beneficial effect was associated with improved adipose function, reflected in the adiponectin/leptin ratio, and increased pCREB/total CREB in the NAc, and a shift in the pCREB correlation with pThr34-DARPP-32 from near-zero to strongly positive, such that both phospho-proteins correlated with the rescued hedonic response. This set of findings suggests that the receptor/signaling pathway and cell type underlying the RAGE229-mediated increase in pCREB may mediate anhedonia and its prevention. The possible role of adipose tissue as a locus of diet-induced RAGE signaling, and source of circulating factors that target NAc to modify hedonic reactivity are discussed.
Collapse
Affiliation(s)
- Kenneth D Carr
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| | - Sydney P Weiner
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Departments of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Ann Marie Schmidt
- Departments of Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
4
|
Becetti I, Bwenyi EL, de Araujo IE, Ard J, Cryan JF, Farooqi IS, Ferrario CR, Gluck ME, Holsen LM, Kenny PJ, Lawson EA, Lowell BB, Schur EA, Stanley TL, Tavakkoli A, Grinspoon SK, Singhal V. The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets: A Report from the 23rd Annual Harvard Nutrition Obesity Symposium. Am J Clin Nutr 2023; 118:314-328. [PMID: 37149092 PMCID: PMC10375463 DOI: 10.1016/j.ajcnut.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023] Open
Abstract
Obesity is increasing at an alarming rate. The effectiveness of currently available strategies for the treatment of obesity (including pharmacologic, surgical, and behavioral interventions) is limited. Understanding the neurobiology of appetite and the important drivers of energy intake (EI) can lead to the development of more effective strategies for the prevention and treatment of obesity. Appetite regulation is complex and is influenced by genetic, social, and environmental factors. It is intricately regulated by a complex interplay of endocrine, gastrointestinal, and neural systems. Hormonal and neural signals generated in response to the energy state of the organism and the quality of food eaten are communicated by paracrine, endocrine, and gastrointestinal signals to the nervous system. The central nervous system integrates homeostatic and hedonic signals to regulate appetite. Although there has been an enormous amount of research over many decades regarding the regulation of EI and body weight, research is only now yielding potentially effective treatment strategies for obesity. The purpose of this article is to summarize the key findings presented in June 2022 at the 23rd annual Harvard Nutrition Obesity Symposium entitled "The Neurobiology of Eating Behavior in Obesity: Mechanisms and Therapeutic Targets." Findings presented at the symposium, sponsored by NIH P30 Nutrition Obesity Research Center at Harvard, enhance our current understanding of appetite biology, including innovative techniques used to assess and systematically manipulate critical hedonic processes, which will shape future research and the development of therapeutics for obesity prevention and treatment.
Collapse
Affiliation(s)
- Imen Becetti
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States.
| | - Esther L Bwenyi
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Ivan E de Araujo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Jamy Ard
- Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Bariatric and Weight Management Center, Wake Forest Baptist Health, Winston-Salem, NC, United States; Center on Diabetes, Obesity, and Metabolism, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Hypertension and Vascular Research Center, Cardiovascular Sciences Center, Wake Forest University School of Medicine, Winston-Salem, NC, United States; Maya Angelou Center for Healthy Equity, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Ismaa Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and National Institute for Health and Care Research (NIHR) Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom; Wellcome-Medical Research Council (MRC) Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom; Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Carrie R Ferrario
- Department of Pharmacology, Psychology Department (Biopsychology Area), University of Michigan, Ann Arbor, MI, United States
| | - Marci E Gluck
- National Institutes of Health, Phoenix, AZ, United States; National Institute of Diabetes and Digestive and Kidney Disease, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, Phoenix, AZ, United States
| | - Laura M Holsen
- Harvard Medical School, Boston, MA, United States; Division of Women's Health, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States; Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, United States
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Elizabeth A Lawson
- Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States; Neuroendocrine Unit, Massachusetts General Hospital, Boston, MA, United States
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Ellen A Schur
- Division of General Internal Medicine, University of Washington, Seattle, WA, United States; Univeristy of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States; Univeristy of Washington Nutrition and Obesity Research Center, University of Washington, Seattle, WA, United States; Clinical and Translational Research Services Core, University of Washington, Seattle, WA, United States
| | - Takara L Stanley
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Ali Tavakkoli
- Division of General and Gastrointestinal (GI) Surgery, Center for Weight Management and Wellness, Advanced Minimally Invasive Fellowship, Harvard Medical School, Boston, MA, United States
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Boston, MA, United States; Nutrition Obesity Research Center at Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Vibha Singhal
- Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical School, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Pediatric Endocrinology and Obesity Medicine, Massachusetts General Hospital, Boston, MA, United States; Pediatric Program MGH Weight Center, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
5
|
Gruber J, Hanssen R, Qubad M, Bouzouina A, Schack V, Sochor H, Schiweck C, Aichholzer M, Matura S, Slattery DA, Zopf Y, Borgland SL, Reif A, Thanarajah SE. Impact of insulin and insulin resistance on brain dopamine signalling and reward processing- an underexplored mechanism in the pathophysiology of depression? Neurosci Biobehav Rev 2023; 149:105179. [PMID: 37059404 DOI: 10.1016/j.neubiorev.2023.105179] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/16/2023]
Abstract
Type 2 diabetes and major depressive disorder (MDD) are the leading causes of disability worldwide and have a high comorbidity rate with fatal outcomes. Despite the long-established association between these conditions, the underlying molecular mechanisms remain unknown. Since the discovery of insulin receptors in the brain and the brain's reward system, evidence has accumulated indicating that insulin modulates dopaminergic (DA) signalling and reward behaviour. Here, we review the evidence from rodent and human studies, that insulin resistance directly alters central DA pathways, which may result in motivational deficits and depressive symptoms. Specifically, we first elaborate on the differential effects of insulin on DA signalling in the ventral tegmental area (VTA) - the primary DA source region in the midbrain - and the striatum as well as its effects on behaviour. We then focus on the alterations induced by insulin deficiency and resistance. Finally, we review the impact of insulin resistance in DA pathways in promoting depressive symptoms and anhedonia on a molecular and epidemiological level and discuss its relevance for stratified treatment strategies.
Collapse
Affiliation(s)
- Judith Gruber
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Ruth Hanssen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Policlinic for Endocrinology, Diabetology and Prevention Medicine, Germany
| | - Mishal Qubad
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Aicha Bouzouina
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Vivi Schack
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Hannah Sochor
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Carmen Schiweck
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Mareike Aichholzer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Silke Matura
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Yurdaguel Zopf
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Canada
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Sharmili Edwin Thanarajah
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|
6
|
Actions and Consequences of Insulin in the Striatum. Biomolecules 2023; 13:biom13030518. [PMID: 36979453 PMCID: PMC10046598 DOI: 10.3390/biom13030518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/14/2023] Open
Abstract
Insulin crosses the blood–brain barrier to enter the brain from the periphery. In the brain, insulin has well-established actions in the hypothalamus, as well as at the level of mesolimbic dopamine neurons in the midbrain. Notably, insulin also acts in the striatum, which shows abundant expression of insulin receptors (InsRs) throughout. These receptors are found on interneurons and striatal projections neurons, as well as on glial cells and dopamine axons. A striking functional consequence of insulin elevation in the striatum is promoting an increase in stimulated dopamine release. This boosting of dopamine release involves InsRs on cholinergic interneurons, and requires activation of nicotinic acetylcholine receptors on dopamine axons. Opposing this dopamine-enhancing effect, insulin also increases dopamine uptake through the action of insulin at InsRs on dopamine axons. Insulin acts on other striatal cells as well, including striatal projection neurons and astrocytes that also influence dopaminergic transmission and striatal function. Linking these cellular findings to behavior, striatal insulin signaling is required for the development of flavor–nutrient learning, implicating insulin as a reward signal in the brain. In this review, we discuss these and other actions of insulin in the striatum, including how they are influenced by diet and other physio-logical states.
Collapse
|
7
|
Ferrario CR, Finnell JE. Beyond the hypothalamus: roles for insulin as a regulator of neurotransmission, motivation, and feeding. Neuropsychopharmacology 2023; 48:232-233. [PMID: 35933517 PMCID: PMC9700669 DOI: 10.1038/s41386-022-01398-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carrie R Ferrario
- Department of Pharmacology, Ann Arbor, MI, 48109, USA.
- Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI, 48109, USA.
| | | |
Collapse
|
8
|
Finnell JE, Ferrario CR. Intra-NAc insulin reduces the motivation for food and food intake without altering cue-triggered food-seeking. Physiol Behav 2022; 254:113892. [PMID: 35753434 PMCID: PMC10583176 DOI: 10.1016/j.physbeh.2022.113892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/24/2022]
Abstract
Insulin receptors are expressed throughout the adult brain, and insulin from the periphery reaches the central nervous system. In humans and rodents, actions of insulin in the brain decrease food intake. Furthermore, insulin receptor activation alters dopamine and glutamate transmission within mesolimbic regions that influence food-seeking and feeding including the nucleus accumbens (NAc). Here we determined how intra-NAc insulin affects conditioned approach (a measure of cue-triggered food-seeking), free food intake, and the motivation to obtain food in hungry rats using Pavlovian and instrumental approaches. Intra-NAc insulin did not affect conditioned approach but did reduce home cage chow intake immediately following conditioned approach testing. Consistent with reduced chow intake, intra-NAc insulin also reduced the motivation to work for flavored food pellets (assessed by a progressive ratio procedure). This effect was partially reversed by insulin receptor blockade and was not driven by insulin-induced sickness or malaise. Taken together, these data show that insulin within the NAc does not alter behavioral responses to a food cue, but instead reduces the motivation to work for and consume food in hungry animals. These data are discussed in light of insulin's role in the regulation of feeding, and its dysregulation by obesity.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, University of Michigan, United States
| | - Carrie R Ferrario
- Department of Pharmacology, University of Michigan, United States; Psychology Department (Biopsychology), University of Michigan, Ann Arbor MI 48109, United States.
| |
Collapse
|
9
|
Crosstalk between neurological, cardiovascular, and lifestyle disorders: insulin and lipoproteins in the lead role. Pharmacol Rep 2022; 74:790-817. [PMID: 36149598 DOI: 10.1007/s43440-022-00417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Insulin resistance and impaired lipoprotein metabolism contribute to a plethora of metabolic and cardiovascular disorders. These alterations have been extensively linked with poor lifestyle choices, such as consumption of a high-fat diet, smoking, stress, and a redundant lifestyle. Moreover, these are also known to increase the co-morbidity of diseases like Type 2 diabetes mellitus and atherosclerosis. Under normal physiological conditions, insulin and lipoproteins exert a neuroprotective role in the central nervous system. However, the tripping of balance between the periphery and center may alter the normal functioning of the brain and lead to neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, depression, and multiple sclerosis. These neurological disorders are further characterized by certain behavioral and molecular changes that show consistent overlap with alteration in insulin and lipoprotein signaling pathways. Therefore, targeting these two mechanisms not only reveals a way to manage the co-morbidities associated with the circle of the metabolic, central nervous system, and cardiovascular disorders but also exclusively work as a disease-modifying therapy for neurological disorders. In this review, we summarize the role of insulin resistance and lipoproteins in the progression of various neurological conditions and discuss the therapeutic options currently in the clinical pipeline targeting these two mechanisms; in addition, challenges faced in designing these therapeutic approaches have also been touched upon briefly.
Collapse
|
10
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
11
|
Carr KD, Weiner SP. Effects of nucleus accumbens insulin inactivation on microstructure of licking for glucose and saccharin in male and female rats. Physiol Behav 2022; 249:113769. [PMID: 35247443 PMCID: PMC8969111 DOI: 10.1016/j.physbeh.2022.113769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
Insulin of pancreatic origin enters the brain where several regions express a high density of insulin receptors. Functional studies of brain insulin signaling have focused predominantly on hypothalamic regulation of appetite and hippocampal regulation of learning. Recent studies point to involvement of nucleus accumbens (NAc) insulin signaling in a diet-sensitive response to glucose intake and reinforcement of flavor-nutrient learning. The present study used NAc shell microinjection of an insulin inactivating antibody (InsAb) to evaluate effects on the microstructure of licking for flavored 6.1% glucose. In both male and female rats, InsAb had no effect on the number of lick bursts emitted (a measure of motivation and/or satiety), but decreased the size of lick bursts (a measure of reward magnitude) in a series of five 30 min test sessions. This effect persisted beyond microinjection test sessions and was shown to depend on previous flavored glucose consumption under InsAb treatment rather than InsAb treatment alone. This suggests learning of diminished reward value and aligns with the previous finding that InsAb blocks flavor-nutrient learning. Specificity of the InsAb effect for nutrient reward was indicated by failure to affect any parameter of licking for flavored 0.25% saccharin solution. Finally, maintenance of rats on a 'Western' diet for twelve weeks produced a decrease in lick burst size for glucose in male rats, but an increase in lick burst size in females. Possible implications of these results for flavor-nutrient learning, maladaptive consequences of NAc insulin receptor subsensitivity, and the plausible involvement of distinct insulin-regulated mechanisms in NAc are discussed.
Collapse
Affiliation(s)
- Kenneth D Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States.
| | - Sydney P Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
12
|
Compensatory Role of Insulin in the Extinction but Not Reinstatement of Morphine-Induced Conditioned Place Preference in the Streptozotocin-Induced Diabetic Rats. Neurochem Res 2022; 47:1565-1573. [DOI: 10.1007/s11064-022-03550-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/02/2023]
|
13
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022; 13:758-791. [PMID: 35134815 PMCID: PMC9156369 DOI: 10.1093/advances/nmac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
14
|
Holsen LM, Hoge WS, Lennerz BS, Cerit H, Hye T, Moondra P, Goldstein JM, Ebbeling CB, Ludwig DS. Diets Varying in Carbohydrate Content Differentially Alter Brain Activity in Homeostatic and Reward Regions in Adults. J Nutr 2021; 151:2465-2476. [PMID: 33852013 PMCID: PMC8349124 DOI: 10.1093/jn/nxab090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Obesity has one of the highest refractory rates of all chronic diseases, in part because weight loss induced by calorie restriction, the first-line treatment for obesity, elicits biological adaptations that promote weight regain. Although acute feeding trials suggest a role for macronutrient composition in modifying brain activity related to hunger and satiety, relevance of these findings to weight-loss maintenance has not been studied. OBJECTIVES We investigated effects of weight-loss maintenance diets varying in macronutrient content on regional cerebral blood flow (rCBF) in brain regions involved in hunger and reward. METHODS In conjunction with a randomized controlled feeding trial, we investigated the effects of weight-loss maintenance diets varying in carbohydrate content [high, 60% of total energy: n = 20; 6 men/14 women; mean age: 32.5 y; mean BMI (in kg/m 2): 27.4; moderate, 40% of total energy: n = 22; 10 men/12 women; mean age: 32.5 y; mean BMI: 29.0; low, 20% of total energy: n = 28; 12 men/16 women; mean age: 33.2 y; mean BMI: 27.7] on rCBF in brain regions involved in hunger and reward preprandial and 4 h postprandial after 14-20 wk on the diets. The primary outcome was rCBF in the nucleus accumbens (NAcc) at 4 h postprandial; the secondary outcome was preprandial rCBF in the hypothalamus. RESULTS Consistent with a priori hypothesis, at 4 h postprandial, NAcc rCBF was 43% higher in adults assigned to the high- compared with low-carbohydrate diet {P[family-wise error (FWE)-corrected] < 0.05}. Preprandial hypothalamus rCBF was 41% higher on high-carbohydrate diet [P(FWE-corrected) < 0.001]. Exploratory analyses revealed that elevated rCBF on high-carbohydrate diet was not specific to prandial state: preprandial NAcc rCBF [P(FWE-corrected) < 0.001] and 4 h postprandial rCBF in hypothalamus [P(FWE-corrected) < 0.001]. Insulin secretion predicted differential postprandial activation of the NAcc by diet. CONCLUSIONS We report significant differences in rCBF in adults assigned to diets varying in carbohydrate content for several months, which appear to be partially associated with insulin secretion. These findings suggest that chronic intake of a high-carbohydrate diet may affect brain reward and homeostatic activity in ways that could impede weight-loss maintenance. This trial was registered at clinicaltrials.gov as NCT02300857.
Collapse
Affiliation(s)
- Laura M Holsen
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - W Scott Hoge
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Belinda S Lennerz
- Harvard Medical School, Boston, MA, USA
- New Balance Foundation Obesity Prevention Center, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Hilâl Cerit
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Taryn Hye
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Priyanka Moondra
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Jill M Goldstein
- Division of Women's Health and Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Psychiatry and Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Cara B Ebbeling
- Harvard Medical School, Boston, MA, USA
- New Balance Foundation Obesity Prevention Center, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - David S Ludwig
- Harvard Medical School, Boston, MA, USA
- New Balance Foundation Obesity Prevention Center, Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
15
|
Sallam NA, Borgland SL. Insulin and endocannabinoids in the mesolimbic system. J Neuroendocrinol 2021; 33:e12965. [PMID: 33856071 DOI: 10.1111/jne.12965] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/19/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022]
Abstract
Easy access to palatable food and an abundance of food-related cues exacerbate non-homeostatic feeding. The metabolic and economical sequelae of non-homeostatic feeding outweigh those of homeostatic feeding and contribute significantly to the global obesity pandemic. The mesolimbic dopamine system is the primary central circuit that governs the motivation to consume food. Insulin and endocannabinoids (eCBs) are two major, presumably opposing, players in regulating homeostatic and non-homeostatic feeding centrally and peripherally. Insulin is generally regarded as a postprandial satiety signal, whereas eCBs mainly function as pre-prandial orexinergic signals. In this review, we discuss the effects of insulin and eCB-mediated actions within the mesolimbic pathways. We propose that insulin and eCBs have regional- and time course-dependent roles. We discuss their mechanisms of actions in the ventral tegmental area and nucleus accumbens, as well as how their mechanisms converge to finely tune dopaminergic activity and food intake.
Collapse
Affiliation(s)
- Nada A Sallam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Mizoguchi A, Banno R, Sun R, Yaginuma H, Taki K, Kobayashi T, Sugiyama M, Tsunekawa T, Onoue T, Takagi H, Hagiwara D, Ito Y, Iwama S, Suga H, Arima H. High-fat Feeding Causes Inflammation and Insulin Resistance in the Ventral Tegmental Area in Mice. Neuroscience 2021; 461:72-79. [PMID: 33609637 DOI: 10.1016/j.neuroscience.2021.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/17/2022]
Abstract
The reward system plays an important role in the pathogenesis of not only drug addiction, but also diet-induced obesity. Recent studies have shown that insulin and leptin receptor signaling in the ventral tegmental area (VTA) regulate energy homeostasis and that their dysregulation is responsible for obesity and altered food preferences. Although a high-fat diet (HFD) induces inflammation that leads to insulin and leptin resistance in the brain, it remains unclear whether HFD induces inflammation in the VTA. In the present study, we placed male mice on a chow diet or HFD for 3, 7, and 28 days and evaluated the mRNA expression of inflammatory cytokines and microglial activation markers in the VTA. The HFD group showed significantly elevated mRNA expressions of IL1β at 3 days; tumor necrosis factor-alpha (TNFα), IL1β, IL6, Iba1, and CD11b at 7 days; and TNFα, IL1β, Iba1, and CD11b at 28 days. The changes in TNFα were also confirmed in immunohistochemical analysis. Next, after administration of chow or HFD for 7 days, we selected mice with equal weights in both groups. In experiments using these mice, Akt phosphorylation in the VTA was significantly decreased after intracerebroventricular injection of insulin, whereas no change in STAT3 phosphorylation was found with leptin. Taken together, these results suggest that HFD induces inflammation at least partly associated with microglial activation in the VTA leading to insulin resistance, independently of the energy balance. Our data provide new insight into the pathophysiology of obesity caused by a dysfunctional reward system under HFD conditions.
Collapse
Affiliation(s)
- Akira Mizoguchi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Ryoichi Banno
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan.
| | - Runan Sun
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hiroshi Yaginuma
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Keigo Taki
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Taku Tsunekawa
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of Endocrinology and Diabetes, Ichinomiya Municipal Hospital, 2-2-22 Bunkyo, Ichinomiya 491-8558, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hiroshi Takagi
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Yoshihiro Ito
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan; Department of CKD Initiatives/Nephrology, Nagoya University Graduate School of Medicine, Japan Nagoya 466-8560, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8560, Japan
| |
Collapse
|
17
|
Insulin Bidirectionally Alters NAc Glutamatergic Transmission: Interactions between Insulin Receptor Activation, Endogenous Opioids, and Glutamate Release. J Neurosci 2021; 41:2360-2372. [PMID: 33514676 PMCID: PMC7984597 DOI: 10.1523/jneurosci.3216-18.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/27/2020] [Accepted: 01/21/2021] [Indexed: 01/11/2023] Open
Abstract
Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Human fMRI studies show that insulin influences brain activity in regions that mediate reward and motivation, including the nucleus accumbens (NAc). Insulin receptors are expressed by NAc medium spiny neurons (MSNs), and studies of cultured cortical and hippocampal neurons suggest that insulin influences excitatory transmission via presynaptic and postsynaptic mechanisms. However, nothing is known about how insulin influences excitatory transmission in the NAc. Furthermore, insulin dysregulation accompanying obesity is linked to cognitive decline, depression, anxiety, and altered motivation that rely on NAc excitatory transmission. Using whole-cell patch-clamp and biochemical approaches, we determined how insulin affects NAc glutamatergic transmission in nonobese and obese male rats and the underlying mechanisms. We find that there are concentration-dependent, bidirectional effects of insulin on excitatory transmission, with insulin receptor activation increasing and IGF receptor activation decreasing NAc excitatory transmission. Increases in excitatory transmission were mediated by activation of postsynaptic insulin receptors located on MSNs. However, this effect was due to an increase in presynaptic glutamate release. This suggested feedback from MSNs to presynaptic terminals. In additional experiments, we found that insulin-induced increases in presynaptic glutamate release are mediated by opioid receptor-dependent disinhibition. Furthermore, obesity resulted in a loss of insulin receptor-mediated increases in excitatory transmission and a reduction in NAc insulin receptor surface expression, while preserving reductions in transmission mediated by IGF receptors. These results provide the first insights into how insulin influences excitatory transmission in the adult brain, and evidence for a previously unidentified form of opioid receptor-dependent disinhibition of NAc glutamatergic transmission. SIGNIFICANCE STATEMENT Data here provide the first insights into how insulin influences excitatory transmission in the adult brain, and identify previously unknown interactions between insulin receptor activation, opioids, and glutamatergic transmission. These data contribute to our fundamental understanding of insulin's influence on brain motivational systems and have implications for the use of insulin as a cognitive enhancer and for targeting of insulin receptors and IGF receptors to alter motivation.
Collapse
|
18
|
Chrissobolis S, Luu AN, Waldschmidt RA, Yoakum ME, D'Souza MS. Targeting the renin angiotensin system for the treatment of anxiety and depression. Pharmacol Biochem Behav 2020; 199:173063. [PMID: 33115635 DOI: 10.1016/j.pbb.2020.173063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 12/27/2022]
Abstract
Emotional disorders like anxiety and depression are responsible for considerable morbidity and mortality all over the world. Several antidepressant and anxiolytic medications are available for the treatment of anxiety and depression. However, a significant number of patients either do not respond to these medications or respond inadequately. Hence, there is a need to identify novel targets for the treatment of anxiety and depression. In this review we focus on the renin angiotensin system (RAS) as a potential target for the treatment of these disorders. We review work that has evaluated the effects of various compounds targeting the RAS on anxiety- and depression-like behaviors. Further, we suggest future work that must be carried out to fully exploit the RAS for the treatment of anxiety and depression. The RAS provides an attractive target for both the identification of novel anxiolytic and antidepressant medications and/or for enhancing the efficacy of currently available medications used for the treatment of anxiety and depression.
Collapse
Affiliation(s)
- Sophocles Chrissobolis
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Anh N Luu
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Ryan A Waldschmidt
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Madison E Yoakum
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH 45810, United States of America.
| |
Collapse
|
19
|
Jiang FH, Liu XM, Yu HR, Qian Y, Chen HL. The Incidence of Depression in Patients With Diabetic Foot Ulcers: A Systematic Review and Meta-Analysis. INT J LOW EXTR WOUND 2020; 21:161-173. [PMID: 32527164 DOI: 10.1177/1534734620929892] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Some patients with diabetic foot ulcers (DFUs) may suffer from depression, but the latest information regarding the incidence of depression in patients with DFUs is limited. This review aimed to provide up-to-date information concerning the incidence of depression in patients with DFUs. We searched the literature in PubMed and Web of Science databases, limited to English publications. 11 eligible studies with a total of 2117 participants were included in this review. A random-effects model was applied due to high heterogeneity. The incidence of depression in patients with DFUs ranged from 26% (95% confidence interval [CI] = 19% to 33%) to 85% (95% CI = 78% to 92%), and was 47% (95% CI = 36% to 58%) after systematically summarizing. Subgroup analyses suggested that the incidence of depression were 49% (95%CI = 35% to 63%) in Europe, 37% (95% CI = 23% to 51%) in Asia, 62% (95% CI = 48% to 76%) in North America. Additionally, the incidence of depression were 40% (95% CI = 29% to 50%) in prospective studies, 55% (95% CI = 28% to 82%) in retrospective studies, 40% (95% CI = 29% to 50%) in cross-sectional studies. Furthermore, the incidence of depression were 43% (95% CI = 25% to 60%), 49% (95% CI = 35% to 63%), 68% (95% CI = 35% to 102%), 32% (95% CI = 26% to 38%), and 28% (95% CI = 18% to 38%) in patients with DFUs assessed by the Hospital Anxiety and Depression Scale, EuroQol 5-Dimension Questionnaire, Geriatric Depression Scale, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, and the Center for Epidemiologic Studies Depression Scale, respectively. The estimates were robust in the sensitivity analysis. According to the meta-regression analyses, diabetes mellitus duration (t = 0.93, P = .422), publication years (t = -0.72, P = .488), and age of subjects (t = 0.01, P = .989) were not the sources of high heterogeneity. Our meta-analysis showed nearly half of patients with DFUs had depression problems.
Collapse
Affiliation(s)
- Fu-Hui Jiang
- Medical College, Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Xiao-Man Liu
- Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Hai-Rong Yu
- Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Yan Qian
- Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| | - Hong-Lin Chen
- Public Health College, Nantong University, Nantong City, Jiangsu Province, People's Republic of China
| |
Collapse
|
20
|
Elman I, Howard M, Borodovsky JT, Mysels D, Rott D, Borsook D, Albanese M. Metabolic and Addiction Indices in Patients on Opioid Agonist Medication-Assisted Treatment: A Comparison of Buprenorphine and Methadone. Sci Rep 2020; 10:5617. [PMID: 32221389 PMCID: PMC7101411 DOI: 10.1038/s41598-020-62556-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/03/2020] [Indexed: 12/18/2022] Open
Abstract
Metabolic hormones stabilize brain reward and motivational circuits, whereas excessive opioid consumption counteracts this effect and may impair metabolic function. Here we addressed the role of metabolic processes in the course of the agonist medication-assisted treatment for opioid use disorder (OUD) with buprenorphine or methadone. Plasma lipids, hemoglobin A1C, body composition, the oral glucose tolerance test (oGTT) and the Sweet Taste Test (STT) were measured in buprenorphine- (n = 26) or methadone (n = 32)- treated subjects with OUD. On the whole, the subjects in both groups were overweight or obese and insulin resistant; they displayed similar oGTT and STT performance. As compared to methadone-treated subjects, those on buprenorphine had significantly lower rates of metabolic syndrome (MetS) along with better values of the high-density lipoproteins (HDL). Subjects with- vs. without MetS tended to have greater addiction severity. Correlative analyses revealed that more buprenorphine exposure duration was associated with better HDL and opioid craving values. In contrast, more methadone exposure duration was associated with worse triglycerides-, HDL-, blood pressure-, fasting glucose- and hemoglobin A1C values. Buprenorphine appears to produce beneficial HDL- and craving effects and, contrary to methadone, its role in the metabolic derangements is not obvious. Our data call for further research aimed at understanding the distinctive features of buprenorphine metabolic effects vis-à-vis those of methadone and their potential role in these drugs' unique therapeutic profiles.
Collapse
Affiliation(s)
- Igor Elman
- Center for Pain and the Brain, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Margaret Howard
- Rhode Island Department of Behavioral Healthcare, Cranston, RI, USA
| | - Jacob T Borodovsky
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - David Mysels
- Department of Psychiatry, Alpert Medical School of Brown University, Providence, RI, USA
| | - David Rott
- Department of Cardiology, Sheba Medical Center, Sackler School of Medicine, Tel Aviv, Israel
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesia, Critical Care and Pain Medicine, Boston Children's Hospital, Massachusetts General Hospital and McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Albanese
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
21
|
Yoest KE, Cummings JA, Becker JB. Ovarian Hormones Mediate Changes in Adaptive Choice and Motivation in Female Rats. Front Behav Neurosci 2019; 13:250. [PMID: 31780908 PMCID: PMC6861187 DOI: 10.3389/fnbeh.2019.00250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/14/2019] [Indexed: 11/13/2022] Open
Abstract
In female rodents, sexual receptivity is coordinated with cyclic changes in the release of gonadal hormones. Increases in estradiol (E) and progesterone (P) during proestrus and estrus not only induce ovulation but also modulate behaviors that increase the likelihood that the female will find a mate and reproduce. This includes changes in receptive behaviors, such as lordosis, as well as changes in appetitive or proceptive behaviors, including motivation. Interestingly, the direction of these changes in motivation is dependent on the type of reward that is being pursued. While induction of sexual receptivity by E and P increases motivation for access to a male, motivation for a palatable food reward is decreased. These concurrent changes may facilitate adaptive choice across the estrous cycle; females bias their choice for sex when fertilization is most likely to occur, but for food when copulation is unlikely to result in impregnation. In order to test this hypothesis, we developed a novel paradigm to measure the motivated choice between a palatable food reward and access to a male conspecific. Ovariectomized, hormone primed females were trained to operantly respond for both food and sex on a fixed interval (FI) schedule. After training, unprimed and primed females were tested in a chamber that allows them to choose between food and sex while still requiring responding on the FI schedule for reach reward. From this we can not only determine the impact of hormone priming on female choice for food or sex, but also how this is reflected by changes in motivation for each specific reward, as measured by the average number of responses made during each fixed interval. Induction of sexual receptivity by hormone priming biases choice toward sex over food and this change is accompanied by an increase in motivation for sex but a decrease in motivation for food. This work provides evidence in support of a novel framework for understanding how the release of ovarian hormones over the course of the estrous cycle modulates adaptive behavioral choice in females by directly assessing motivation via operant responding when multiple rewards are available.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Department of Psychology, Michigan State University, East Lansing, MI, United States
| | - Jennifer A Cummings
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Jill B Becker
- Department of Psychology, College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019; 497:110320. [PMID: 30395874 PMCID: PMC6497565 DOI: 10.1016/j.mce.2018.10.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022]
Abstract
The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) are still poorly understood, but psychobiological models have proposed a key role for disturbances in the neuroendocrines that signal hunger and satiety and maintain energy homeostasis. Mounting evidence suggests that many neuroendocrines involved in the regulation of homeostasis and body weight also play integral roles in food reward valuation and learning via their interactions with the mesolimbic dopamine system. Neuroimaging data have associated altered brain reward responses in this system with the dietary restriction and binge eating and purging characteristic of AN and BN. Thus, neuroendocrine dysfunction may contribute to or perpetuate eating disorder symptoms via effects on reward circuitry. This narrative review focuses on reward-related neuroendocrines that are altered in eating disorder populations, including peptide YY, insulin, stress and gonadal hormones, and orexins. We provide an overview of the animal and human literature implicating these neuroendocrines in dopaminergic reward processes and discuss their potential relevance to eating disorder symptomatology and treatment.
Collapse
Affiliation(s)
- Laura A Berner
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States.
| | - Tiffany A Brown
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Jason M Lavender
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Emily Lopez
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Christina E Wierenga
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Walter H Kaye
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| |
Collapse
|
23
|
Liu S, Borgland SL. Insulin actions in the mesolimbic dopamine system. Exp Neurol 2019; 320:113006. [DOI: 10.1016/j.expneurol.2019.113006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/21/2019] [Accepted: 07/03/2019] [Indexed: 01/22/2023]
|
24
|
Forty-eight hour conditioning produces a robust long lasting flavor preference in rats. Appetite 2019; 139:159-163. [PMID: 31047937 DOI: 10.1016/j.appet.2019.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 11/23/2022]
Abstract
Conditioned flavor preference (CFP) learning is a form of associative learning in ingestive behavior. CFP Learning can be rapid and produces preferences of varying strengths that can be exceptionally persistent. We sought to establish a method to produce a robust long-lasting CFP in rats. Rats were given 48-h access (conditioning) to a CS+ flavor (grape or cherry 0.05% Kool-Aid, counterbalanced) mixed with 8% glucose and 0.05% saccharin. In order to determine the strength of conditioning rats were given 14 consecutive days of 24-h access to CS+ and CS- flavors mixed only with 0.05% Kool-Aid and 0.05% saccharin (extinction), then further tested 34 days after the last extinction test (48 days post conditioning) for 2 consecutive days with the CS+ and CS-. We found that not only did the learned CFP fail to extinguish over 14 days of testing, but it also persisted for at least 48 days after conditioning. These data provide a method to produce a robust, long lasting and persistent CFP for use in future ingestive behavior research.
Collapse
|
25
|
Lyra E Silva NDM, Lam MP, Soares CN, Munoz DP, Milev R, De Felice FG. Insulin Resistance as a Shared Pathogenic Mechanism Between Depression and Type 2 Diabetes. Front Psychiatry 2019; 10:57. [PMID: 30837902 PMCID: PMC6382695 DOI: 10.3389/fpsyt.2019.00057] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/25/2019] [Indexed: 12/28/2022] Open
Abstract
Neuropsychiatric disorders and type 2 diabetes (T2D) are major public health concerns proposed to be intimately connected. T2D is associated with increased risk of dementia, neuropsychiatric and mood disorders. Evidences of the involvement of insulin signaling on brain mechanisms related to depression indicate that insulin resistance, a hallmark of type 2 diabetes, could develop in the brains of depressive patients. In this article, we briefly review possible molecular mechanisms associating defective brain insulin signaling with reward system, neurogenesis, synaptic plasticity and hypothalamic-pituitary-adrenal (HPA) stress axis in depression. We further discuss the involvement of tumor necrosis factor α (TNFα) promoting defective insulin signaling and depressive-like behavior in rodent models. Finally, due to the high resistant rate of anti-depressants, novel insights into the link between insulin resistance and depression may advance the development of alternative treatments for this disease.
Collapse
Affiliation(s)
| | - Minh P Lam
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Claudio N Soares
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Roumen Milev
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Fernanda G De Felice
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada.,Institute of Medical Biochemistry Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Patel JC, Stouffer MA, Mancini M, Nicholson C, Carr KD, Rice ME. Interactions between insulin and diet on striatal dopamine uptake kinetics in rodent brain slices. Eur J Neurosci 2018; 49:794-804. [PMID: 29791756 DOI: 10.1111/ejn.13958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 04/25/2018] [Indexed: 12/28/2022]
Abstract
Diet influences dopamine transmission in motor- and reward-related basal ganglia circuitry. In part, this reflects diet-dependent regulation of circulating and brain insulin levels. Activation of striatal insulin receptors amplifies axonal dopamine release in brain slices, and regulates food preference in vivo. The effect of insulin on dopamine release is indirect, and requires striatal cholinergic interneurons that express insulin receptors. However, insulin also acts directly on dopamine axons to increase dopamine uptake by promoting dopamine transporter (DAT) surface expression, counteracting enhanced dopamine release. Here, we determined the functional consequences of acute insulin exposure and chronic diet-induced changes in insulin on DAT activity after evoked dopamine release in striatal slices from adult ad-libitum fed (AL) rats and mice, and food-restricted (FR) or high-fat/high-sugar obesogenic (OB) diet rats. Uptake kinetics were assessed by fitting evoked dopamine transients to the Michaelis-Menten equation and extracting Cpeak and Vmax . Insulin (30 nm) increased both parameters in the caudate putamen and nucleus accumbens core of AL rats in an insulin receptor- and PI3-kinase-dependent manner. A pure effect of insulin on uptake was unmasked using mice lacking striatal acetylcholine, in which increased Vmax caused a decrease in Cpeak . Diet also influenced Vmax , which was lower in FR vs. AL. The effects of insulin on Cpeak and Vmax were amplified by FR but blunted by OB, consistent with opposite consequences of these diets on insulin levels and insulin receptor sensitivity. Overall, these data reveal acute and chronic effects of insulin and diet on dopamine release and uptake that will influence brain reward pathways.
Collapse
Affiliation(s)
- Jyoti C Patel
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA
| | - Melissa A Stouffer
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA
| | - Maria Mancini
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,NYU Marlene and Paolo Fresco Institute on Parkinson's Disease and Movement Disorders, New York University School of Medicine, New York, NY, USA
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Kenneth D Carr
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA.,Psychiatry, New York University School of Medicine, New York, NY, USA.,Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Margaret E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,NYU Marlene and Paolo Fresco Institute on Parkinson's Disease and Movement Disorders, New York University School of Medicine, New York, NY, USA.,NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
27
|
The convergence of psychology and neurobiology in flavor-nutrient learning. Appetite 2018; 122:36-43. [DOI: 10.1016/j.appet.2017.03.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/15/2022]
|
28
|
Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: An update. Biol Psychol 2018; 131:31-42. [DOI: 10.1016/j.biopsycho.2016.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/10/2016] [Accepted: 12/15/2016] [Indexed: 12/22/2022]
|
29
|
Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology 2017; 136:182-191. [PMID: 29217283 PMCID: PMC5988909 DOI: 10.1016/j.neuropharm.2017.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/17/2022]
Abstract
For decades the brain was erroneously considered an insulin insensitive organ. Although gaps in our knowledge base remain, conceptual frameworks are starting to emerge to provide insight into the mechanisms through which insulin facilitates critical brain functions like metabolism, cognition, and motivated behaviors. These diverse physiological and behavioral activities highlight the region-specific activities of insulin in the CNS; that is, there is an anatomical context to the activities of insulin in the CNS. Similarly, there is also a temporal context to the activities of insulin in the CNS. Indeed, brain insulin receptor activity can be conceptualized as a continuum in which insulin promotes neuroplasticity from development into adulthood where it is an integral part of healthy brain function. Unfortunately, brain insulin resistance likely contributes to neuroplasticity deficits in obesity and type 2 diabetes mellitus (T2DM). This neuroplasticity continuum can be conceptualized by the mechanisms through which insulin promotes cognitive function through its actions in brain regions like the hippocampus, as well as the ability of insulin to modulate motivated behaviors through actions in brain regions like the nucleus accumbens and the ventral tegmental area. Thus, the goals of this review are to highlight these anatomical, temporal, and functional contexts of insulin activity in these brain regions, and to identify potentially critical time points along this continuum where the transition from enhancement of neuroplasticity to impairment may take place.
Collapse
|
30
|
Reduction of smoking urges with intranasal insulin: a randomized, crossover, placebo-controlled clinical trial. Mol Psychiatry 2017; 22:1413-1421. [PMID: 28242873 DOI: 10.1038/mp.2016.234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/20/2016] [Accepted: 10/31/2016] [Indexed: 11/09/2022]
Abstract
Many cigarette smokers express a desire to quit smoking, but ~85% of cessation attempts fail. In our attempt to delineate genetic modulators of smoking persistence, we have earlier shown that a locus within an ~250 kb haplotype block spanning the 5' untranslated region region of insulin-degrading enzyme is associated with serum cotinine levels; the study's measure of smoking quantity. Based on our findings, and coupled with recent preclinical studies showing the importance of multiple neuropeptides in reinstatement of drug use, we formulated intranasal insulin to evaluate its efficacy during acute abstinence from smoking. Our original study was a crossover trial including 19 otherwise healthy smokers who abstained from smoking for 36 h. The morning following their second night of abstinence, in random order, study participants received intranasal insulin (60 IU) or placebo (8.7% sodium chloride). The goal of our second study was to replicate the craving findings from the original trial and expand this research by including additional stress-related measures. Thirty-seven study participants abstained from smoking overnight. The next day, they were administered either intranasal insulin (60 IU) or placebo, following which they participated in the Trier Social Stress Test Task. This was a parallel design study focusing on the standard stress subjective, hormonal and cardiovascular measures. We also evaluated any changes in circulating glucose, insulin and c-peptide (a marker of endogenous insulin). In the original study, intranasal insulin significantly reduced morning nicotine craving (b=3.65, P⩽0.05). Similarly, in the second study, intranasal insulin reduced nicotine cravings over time (b=0.065, P⩽0.05) and the effect lasted through the psychosocial stress period. Intranasal insulin also increased circulating cortisol levels (F=12.78, P⩽0.001). No changes in insulin or c-peptide were detected. A significant treatment × time interaction (P⩽0.05) was detected for glucose, but subjects remained well within the euglycemic range. Previous studies have shown that heightened nicotine cravings and blunted response to stress are independent and significant predictors of relapse to smoking. In our study, intranasal insulin normalized the subjective and hormonal response to stress. As such, intranasal insulin should further be studied in a larger clinical trial of smoking cessation. In support of this, we provide evidence that the treatment is safe and effective and, based on absence of peripheral insulin changes, conclude that the pharmacodynamic effect is centrally driven.
Collapse
|
31
|
Integration of Sweet Taste and Metabolism Determines Carbohydrate Reward. Curr Biol 2017; 27:2476-2485.e6. [PMID: 28803868 DOI: 10.1016/j.cub.2017.07.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/05/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023]
Abstract
Post-ingestive signals related to nutrient metabolism are thought to be the primary drivers of reinforcement potency of energy sources. Here, in a series of neuroimaging and indirect calorimetry human studies, we examine the relative roles of caloric load and perceived sweetness in driving metabolic, perceptual, and brain responses to sugared beverages. Whereas caloric load was manipulated using the tasteless carbohydrate maltodextrin, sweetness levels were manipulated using the non-nutritive sweetener sucralose. By formulating beverages that contain different amounts of maltodextrin+sucralose, we demonstrate a non-linear association between caloric load, metabolic response, and reinforcement potency, which is driven in part by the extent to which sweetness is proportional to caloric load. In particular, we show that (1) lower-calorie beverages can produce greater metabolic response and condition greater brain response and liking than higher-calorie beverages and (2) when sweetness is proportional to caloric load, greater metabolic responses are observed. These results demonstrate a non-linear association between caloric load and reward and describe an unanticipated role for sweet taste in regulating carbohydrate metabolism, revealing a novel mechanism by which sugar-sweetened beverages influence physiological responses to carbohydrate ingestion.
Collapse
|
32
|
Hippocampal insulin resistance and altered food decision-making as players on obesity risk. Neurosci Biobehav Rev 2017; 77:165-176. [DOI: 10.1016/j.neubiorev.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/17/2022]
|
33
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
34
|
Jones KT, Woods C, Zhen J, Antonio T, Carr KD, Reith MEA. Effects of diet and insulin on dopamine transporter activity and expression in rat caudate-putamen, nucleus accumbens, and midbrain. J Neurochem 2017; 140:728-740. [PMID: 27973691 DOI: 10.1111/jnc.13930] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/15/2022]
Abstract
Food restriction (FR) and obesogenic (OB) diets are known to alter brain dopamine transmission and exert opposite modulatory effects on behavioral responsiveness to psychostimulant drugs of abuse. Mechanisms underlying these diet effects are not fully understood. In this study, we examined diet effects on expression and function of the dopamine transporter (DAT) in caudate-putamen (CPu), nucleus accumbens (NAc), and midbrain regions. Dopamine (DA) uptake by CPu, NAc or midbrain synapto(neuro)somes was measured in vitro with rotating disk electrode voltammetry or with [3 H]DA uptake and was found to correlate with DAT surface expression, assessed by maximal [3 H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding and surface biotinylation assays. FR and OB diets were both found to decrease DAT activity in CPu with a corresponding decrease in surface expression but had no effects in the NAc and midbrain. Diet treatments also affected sensitivity to insulin-induced enhancement of DA uptake, with FR producing an increase in CPu and NAc, likely mediated by an observed increase in insulin receptor expression, and OB producing a decrease in NAc. The increased expression of insulin receptor in NAc of FR rats was accompanied by increased DA D2 receptor expression, and the decreased DAT expression and function in CPu of OB rats was accompanied by decreased DA D2 receptor expression. These results are discussed as partial mechanistic underpinnings of diet-induced adaptations that contribute to altered behavioral sensitivity to psychostimulants that target the DAT.
Collapse
Affiliation(s)
- Kymry T Jones
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Catherine Woods
- Center for Neural Science, New York Graduate School of Arts and Sciences, New York, New York, USA
| | - Juan Zhen
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Tamara Antonio
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | - Kenneth D Carr
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| | - Maarten E A Reith
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
35
|
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017; 104:364-381. [PMID: 28122381 DOI: 10.1159/000455865] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Physiology/Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
36
|
Sucralose Promotes Food Intake through NPY and a Neuronal Fasting Response. Cell Metab 2016; 24:75-90. [PMID: 27411010 DOI: 10.1016/j.cmet.2016.06.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/22/2016] [Accepted: 06/15/2016] [Indexed: 01/16/2023]
Abstract
Non-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance. In flies, chronic sweet/energy imbalance promoted hyperactivity, insomnia, glucose intolerance, enhanced sweet taste perception, and a sustained increase in food and calories consumed, effects that are reversed upon sucralose removal. Mechanistically, this response was mapped to the ancient insulin, catecholamine, and NPF/NPY systems and the energy sensor AMPK, which together comprise a novel neuronal starvation response pathway. Interestingly, chronic sweet/energy imbalance promoted increased food intake in mammals as well, and this also occurs through an NPY-dependent mechanism. Together, our data show that chronic consumption of a sweet/energy imbalanced diet triggers a conserved neuronal fasting response and increases the motivation to eat.
Collapse
|