1
|
Esmailpourmoghadam E, Salehi H, Moshtaghi N. Differential Gene Expression Responses to Salt and Drought Stress in Tall Fescue (Festuca arundinacea Schreb.). Mol Biotechnol 2024; 66:2481-2496. [PMID: 37742296 DOI: 10.1007/s12033-023-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Understanding gene expression kinetics and the underlying physiological mechanisms in stress combinations is a challenge for the purpose of stress resistance breeding. The novelty of this study is correlating the physiological mechanisms with the expression of key target genes in tall fescue under a combination of various salinity and osmotic stress treatments. Four drought- and salt-responsive genes belonging to different crucial pathways evaluated included one transcription factor FabZIP69, one for the cytosolic polyamine synthetase FaADC1, one for ABA signaling FaCYP707A1, and another one for the specific Na+/H+ plasma membrane antiporter FaSOS1 involve in osmotic homeostasis. FaSOS1, FaCYP707A1, and FabZIP69 were induced early at 6 h after NaCl treatment, while FaSOS1 and FaCYP707A1 were transcribed gradually after exposure to PEG. However, stress interactions showed a significantly increased expression in all genes. Expression of these genes was positively correlated to Pro, SSs, IL, DPPH, and antioxidant enzyme activity and negatively correlated with RWC, total Chl, and MSI. Chemical analyses showed that tall fescue plants exposed to the combination of stresses exhibited increased quantity of reactive oxygen species (H2O2), EL and DPPH, and higher levels of antioxidant enzyme activities (CAT, and SOD), Pro, and SSs content, compared with control seedlings. Under dual-stress conditions, the expression of FabZIP69 was effective in controlling the expression of FaSOS1 and FaADC1 genes differently.
Collapse
Affiliation(s)
| | - Hassan Salehi
- Department of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Nasrin Moshtaghi
- Department of Biotechnology and Plant Breeding, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Alharbi B, Hunt JD, Dimitrova S, Spadafora ND, Cort AP, Colombo D, Müller CT, Ghuge SA, Davoli D, Cona A, Mariotti L, Picciarelli P, de Graaf B, Rogers HJ. Mutation of Arabidopsis Copper-Containing Amine Oxidase Gene AtCuAOδ Alters Polyamines, Reduces Gibberellin Content and Affects Development. Int J Mol Sci 2020; 21:E7789. [PMID: 33096855 PMCID: PMC7589035 DOI: 10.3390/ijms21207789] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 01/20/2023] Open
Abstract
Polyamines (PAs) are essential metabolites in plants performing multiple functions during growth and development. Copper-containing amine oxidases (CuAOs) catalyse the catabolism of PAs and in Arabidopsis thaliana are encoded by a gene family. Two mutants of one gene family member, AtCuAOδ, showed delayed seed germination, leaf emergence, and flowering time. The height of the primary inflorescence shoot was reduced, and developmental leaf senescence was delayed. Siliques were significantly longer in mutant lines and contained more seeds. The phenotype of AtCuAOδ over-expressors was less affected. Before flowering, there was a significant increase in putrescine in AtCuAOδ mutant leaves compared to wild type (WT), while after flowering both spermidine and spermine concentrations were significantly higher than in WT leaves. The expression of GA (gibberellic acid) biosynthetic genes was repressed and the content of GA1, GA7, GA8, GA9, and GA20 was reduced in the mutants. The inhibitor of copper-containing amine oxidases, aminoguanidine hydrochloride, mimicked the effect of AtCuAOδ mutation on WT seed germination. Delayed germination, reduced shoot height, and delayed flowering in the mutants were rescued by GA3 treatment. These data strongly suggest AtCuAOδ is an important gene regulating PA homeostasis, and that a perturbation of PAs affects plant development through a reduction in GA biosynthesis.
Collapse
Affiliation(s)
- Basmah Alharbi
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Julie D. Hunt
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Simone Dimitrova
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Natasha D. Spadafora
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Alex P. Cort
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Davide Colombo
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Carsten T. Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Sandip A. Ghuge
- Department of Sciences, Università Roma Tre, Viale Marconi, 446, 00146 Roma, Italy; (S.A.G.); (A.C.)
| | - Daniela Davoli
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Alessandra Cona
- Department of Sciences, Università Roma Tre, Viale Marconi, 446, 00146 Roma, Italy; (S.A.G.); (A.C.)
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy; (L.M.); (P.P.)
| | - Piero Picciarelli
- Department of Agriculture, Food and Environment, University of Pisa, Via Mariscoglio 34, 56124 Pisa, Italy; (L.M.); (P.P.)
| | - Barend de Graaf
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (B.A.); (J.D.H.); (S.D.); (N.D.S.); (A.P.C.); (D.C.); (C.T.M.); (D.D.); (B.d.G.)
| |
Collapse
|
3
|
Cui J, Pottosin I, Lamade E, Tcherkez G. What is the role of putrescine accumulated under potassium deficiency? PLANT, CELL & ENVIRONMENT 2020; 43:1331-1347. [PMID: 32017122 DOI: 10.1111/pce.13740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 05/25/2023]
Abstract
Biomarker metabolites are of increasing interest in crops since they open avenues for precision agriculture, whereby nutritional needs and stresses can be monitored optimally. Putrescine has the potential to be a useful biomarker to reveal potassium (K+ ) deficiency. In fact, although this diamine has also been observed to increase during other stresses such as drought, cold or heavy metals, respective changes are comparably low. Due to its multifaceted biochemical properties, several roles for putrescine under K+ deficiency have been suggested, such as cation balance, antioxidant, reactive oxygen species mediated signalling, osmolyte or pH regulator. However, the specific association of putrescine build-up with low K+ availability in plants remains poorly understood, and possible regulatory roles must be consistent with putrescine concentration found in plant tissues. We hypothesize that the massive increase of putrescine upon K+ starvation plays an adaptive role. A distinction of putrescine function from that of other polyamines (spermine, spermidine) may be based either on its specificity or (which is probably more relevant under K+ deficiency) on a very high attainable concentration of putrescine, which far exceeds those for spermidine and spermine. putrescine and its catabolites appear to possess a strong potential in controlling cellular K+ and Ca2+ , and mitochondria and chloroplasts bioenergetics under K+ stress.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Igor Pottosin
- Biomedical Centre, University of Colima, Colima, Mexico
| | - Emmanuelle Lamade
- UPR34 Performance des systèmes de culture des plantes pérennes, Département PERSYST, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
4
|
Tassoni A, Awad N, Griffiths G. Effect of ornithine decarboxylase and norspermidine in modulating cell division in the green alga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:125-131. [PMID: 29232652 DOI: 10.1016/j.plaphy.2017.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 06/07/2023]
Abstract
The extensive genetic resources of Chlamydomonas has led to its widespread use as a model system for understanding fundamental processes in plant cells, including rates of cell division potentially modulated through polyamines. Putrescine was the major polyamine in both free (88%) and membrane-bound fractions (93%) while norspermidine was the next most abundant in these fractions accounting for 11% and 6%, respectively. Low levels of diaminopropane, spermidine and spermine were also observed although no cadaverine or norspermine were detected. Ornithine decarboxylase (ODC, EC 4.1.1.17) activity was almost five times higher than arginine decarboxylase (ADC, EC 4.1.1.19) and is the major route of putrescine synthesis. The fluoride analogue of ornithine (α-DFMO) inhibited membrane associated ODC activity whilst simultaneously stimulating cell division in a dose dependent manner. Following exposure to α-DFMO the putrescine content in the cells declined while the norspermidine content increased over two fold. Addition of norspermidine to cultures stimulated cell division mimicking the effects observed using DFMO and also reversed the inhibitory effects of cyclohexylamine on growth. The results reveal that ODC is the major route to polyamine formation in the Chlamydomonas CC-406 cell-wall mutant, in contrast to the preferential ADC route reported for Chlorella vulgaris, suggesting that significant species differences exist in biosynthetic pathways which modulate endogenous polyamine levels in green algae.
Collapse
Affiliation(s)
- Annalisa Tassoni
- Department of Biological, Geological and Environmental Sciences, Via Irnerio 42, University of Bologna, 40126, Bologna, Italy.
| | - Nahid Awad
- European Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK
| | - Gareth Griffiths
- European Bioenergy Research Institute, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
5
|
Majumdar R, Shao L, Turlapati SA, Minocha SC. Polyamines in the life of Arabidopsis: profiling the expression of S-adenosylmethionine decarboxylase (SAMDC) gene family during its life cycle. BMC PLANT BIOLOGY 2017; 17:264. [PMID: 29281982 PMCID: PMC5745906 DOI: 10.1186/s12870-017-1208-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 12/08/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Arabidopsis has 5 paralogs of the S-adenosylmethionine decarboxylase (SAMDC) gene. Neither their specific role in development nor the role of positive/purifying selection in genetic divergence of this gene family is known. While some data are available on organ-specific expression of AtSAMDC1, AtSAMDC2, AtSAMDC3 and AtSAMDC4, not much is known about their promoters including AtSAMDC5, which is believed to be non-functional. RESULTS (1) Phylogenetic analysis of the five AtSAMDC genes shows similar divergence pattern for promoters and coding sequences (CDSs), whereas, genetic divergence of 5'UTRs and 3'UTRs was independent of the promoters and CDSs; (2) while AtSAMDC1 and AtSAMDC4 promoters exhibit high activity (constitutive in the former), promoter activities of AtSAMDC2, AtSAMDC3 and AtSAMDC5 are moderate to low in seedlings (depending upon translational or transcriptional fusions), and are localized mainly in the vascular tissues and reproductive organs in mature plants; (3) based on promoter activity, it appears that AtSAMDC5 is both transcriptionally and translationally active, but based on it's coding sequence it seems to produce a non-functional protein; (4) though 5'-UTR based regulation of AtSAMDC expression through upstream open reading frames (uORFs) in the 5'UTR is well known, no such uORFs are present in AtSAMDC4 and AtSAMDC5; (5) the promoter regions of all five AtSAMDC genes contain common stress-responsive elements and hormone-responsive elements; (6) at the organ level, the activity of AtSAMDC enzyme does not correlate with the expression of specific AtSAMDC genes or with the contents of spermidine and spermine. CONCLUSIONS Differential roles of positive/purifying selection were observed in genetic divergence of the AtSAMDC gene family. All tissues express one or more AtSAMDC gene with significant redundancy, and concurrently, there is cell/tissue-specificity of gene expression, particularly in mature organs. This study provides valuable information about AtSAMDC promoters, which could be useful in future manipulation of crop plants for nutritive purposes, stress tolerance or bioenergy needs. The AtSAMDC1 core promoter might serve the need of a strong constitutive promoter, and its high expression in the gametophytic cells could be exploited, where strong male/female gametophyte-specific expression is desired; e.g. in transgenic modification of crop varieties.
Collapse
Affiliation(s)
- Rajtilak Majumdar
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
- USDA-ARS, SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA 70124 USA
| | - Lin Shao
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Swathi A. Turlapati
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| | - Subhash C. Minocha
- Department of Biological Sciences, University of New Hampshire, Durham, NH USA
| |
Collapse
|
6
|
Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, Fotopoulos V, Munnik T, Gómez-Cadenas A, Tiburcio AF, Alcázar R. Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. PLANT, CELL & ENVIRONMENT 2017; 40:527-542. [PMID: 26791972 DOI: 10.1111/pce.12714] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 01/13/2016] [Accepted: 01/17/2016] [Indexed: 05/18/2023]
Abstract
The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine and its structural isomer thermospermine (tSpm) into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonate (JA) biosynthesis and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signalling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Xavier Zarza
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Kostadin E Atanasov
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francisco Marco
- Departamento de Biología Vegetal, Facultad de Farmacia, Universidad de Valencia, Burjassot, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E-12071, Castelló de la Plana, Spain
| | - Pedro Carrasco
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Spain
| | - Joachim Kopka
- Max Planck Institute for Molecular Plant Physiology, Golm, Germany
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, P.O. Box 50329, Limassol, Cyprus
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Campus Riu Sec, E-12071, Castelló de la Plana, Spain
| | - Antonio F Tiburcio
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Rubén Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Laboratory of Plant Physiology Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Sudhakar C, Veeranagamallaiah G, Nareshkumar A, Sudhakarbabu O, Sivakumar M, Pandurangaiah M, Kiranmai K, Lokesh U. Polyamine metabolism influences antioxidant defense mechanism in foxtail millet (Setaria italica L.) cultivars with different salinity tolerance. PLANT CELL REPORTS 2015; 34:141-56. [PMID: 25348337 DOI: 10.1007/s00299-014-1695-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.
Collapse
Affiliation(s)
- Chinta Sudhakar
- Plant Molecular Biology Unit, Department of Botany, Sri Krishnadevaraya University, Anantapur, 515 003, India,
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ioannidis NE, Kotzabasis K. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress. FRONTIERS IN PLANT SCIENCE 2014; 5:71. [PMID: 24592272 PMCID: PMC3938100 DOI: 10.3389/fpls.2014.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/10/2014] [Indexed: 05/07/2023]
Abstract
Polyamines (PAs) are low molecular weight amines that occur in every living organism. The three main PAs (putrescine, spermidine, and spermine) are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (Δψ) and decreases the ΔpH component of the proton motive force. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts) and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress.
Collapse
Affiliation(s)
- Nikolaos E. Ioannidis
- *Correspondence: Nikolaos E. Ioannidis and Kiriakos Kotzabasis, Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece e-mail: ;
| | - Kiriakos Kotzabasis
- *Correspondence: Nikolaos E. Ioannidis and Kiriakos Kotzabasis, Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece e-mail: ;
| |
Collapse
|
9
|
Ioannidis NE, Cruz JA, Kotzabasis K, Kramer DM. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS One 2012; 7:e29864. [PMID: 22253808 PMCID: PMC3257247 DOI: 10.1371/journal.pone.0029864] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
The light reactions of photosynthesis store energy in the form of an electrochemical gradient of protons, or proton motive force (pmf), comprised of electrical (Δψ) and osmotic (ΔpH) components. Both components can drive the synthesis of ATP at the chloroplast ATP synthase, but the ΔpH component also plays a key role in regulating photosynthesis, down-regulating the efficiency of light capture by photosynthetic antennae via the q(E) mechanism, and governing electron transfer at the cytochrome b(6)f complex. Differential partitioning of pmf into ΔpH and Δψ has been observed under environmental stresses and proposed as a mechanism for fine-tuning photosynthetic regulation, but the mechanism of this tuning is unknown. We show here that putrescine can alter the partitioning of pmf both in vivo (in Arabidopsis mutant lines and in Nicotiana wild type) and in vitro, suggesting that the endogenous titer of weak bases such as putrescine represents an unrecognized mechanism for regulating photosynthetic responses to the environment.
Collapse
|
10
|
Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F. Role of transgenic plants in agriculture and biopharming. Biotechnol Adv 2011; 30:524-40. [PMID: 21959304 DOI: 10.1016/j.biotechadv.2011.09.006] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 08/23/2011] [Accepted: 09/12/2011] [Indexed: 11/29/2022]
Abstract
At present, environmental degradation and the consistently growing population are two main problems on the planet earth. Fulfilling the needs of this growing population is quite difficult from the limited arable land available on the globe. Although there are legal, social and political barriers to the utilization of biotechnology, advances in this field have substantially improved agriculture and human life to a great extent. One of the vital tools of biotechnology is genetic engineering (GE) which is used to modify plants, animals and microorganisms according to desired needs. In fact, genetic engineering facilitates the transfer of desired characteristics into other plants which is not possible through conventional plant breeding. A variety of crops have been engineered for enhanced resistance to a multitude of stresses such as herbicides, insecticides, viruses and a combination of biotic and abiotic stresses in different crops including rice, mustard, maize, potato, tomato, etc. Apart from the use of GE in agriculture, it is being extensively employed to modify the plants for enhanced production of vaccines, hormones, etc. Vaccines against certain diseases are certainly available in the market, but most of them are very costly. Developing countries cannot afford the disease control through such cost-intensive vaccines. Alternatively, efforts are being made to produce edible vaccines which are cheap and have many advantages over the commercialized vaccines. Transgenic plants generated for this purpose are capable of expressing recombinant proteins including viral and bacterial antigens and antibodies. Common food plants like banana, tomato, rice, carrot, etc. have been used to produce vaccines against certain diseases like hepatitis B, cholera, HIV, etc. Thus, the up- and down-regulation of desired genes which are used for the modification of plants have a marked role in the improvement of genetic crops. In this review, we have comprehensively discussed the role of genetic engineering in generating transgenic lines/cultivars of different crops with improved nutrient quality, biofuel production, enhanced production of vaccines and antibodies, increased resistance against insects, herbicides, diseases and abiotic stresses as well as the safety measures for their commercialization.
Collapse
Affiliation(s)
- Parvaiz Ahmad
- Department of Botany, A.S. College, 190008, University of Kashmir, Srinagar, India.
| | | | | | | | | | | | | |
Collapse
|
11
|
Profiling the aminopropyltransferases in plants: their structure, expression and manipulation. Amino Acids 2011; 42:813-30. [PMID: 21861167 DOI: 10.1007/s00726-011-0998-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
Polyamines are organic polycations that are involved in a wide range of cellular activities related to growth, development, and stress response in plants. Higher polyamines spermidine and spermine are synthesized in plants and animals by a class of enzymes called aminopropyltransferases that transfer aminopropyl moieties (derived from decarboxylated S-adenosylmethionine) to putrescine and spermidine to produce spermidine and spermine, respectively. The higher polyamines show a much tighter homeostatic regulation of their metabolism than the diamine putrescine in most plants; therefore, the aminopropyltransferases are of high significance. We present here a comprehensive summary of the current literature on plant aminopropyltransferases including their distribution, biochemical properties, genomic organization, pattern of expression during development, and their responses to abiotic stresses, and manipulation of their cellular activity through chemical inhibitors, mutations, and genetic engineering. This minireview complements several recent reviews on the overall biosynthetic pathway of polyamines and their physiological roles in plants and animals. It is concluded that (1) plants often have two copies of the common aminopropyltransferase genes which exhibit redundancy of function, (2) their genomic organization is highly conserved, (3) direct enzyme activity data on biochemical properties of these enzymes are scant, (4) often there is a poor correlation among transcripts, enzyme activity and cellular contents of the respective polyamine, and (5) transgenic work mostly confirms the tight regulation of cellular contents of spermidine and spermine. An understanding of expression and regulation of aminopropyltransferases at the metabolic level will help us in effective use of genetic engineering approaches for the improvement in nutritional value and stress responses of plants.
Collapse
|
12
|
Naka Y, Watanabe K, Sagor GHM, Niitsu M, Pillai MA, Kusano T, Takahashi Y. Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:527-33. [PMID: 20137962 DOI: 10.1016/j.plaphy.2010.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 11/21/2009] [Accepted: 01/14/2010] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana was thought to contain two spermine synthase genes, ACAULIS 5 (ACL5) and SPMS. Recent investigations, however, revealed that the ACL5 gene encodes thermospermine synthase. In this study, we have established a simple method to separate two isomers of tetraamine, spermine and thermospermine, in extracts from plant tissues of less than 500 mg. Polyamines (PAs) extracted from plant tissues were benzoylated, and the derivatives were completely resolved by high-performance liquid chromatography on a C18 reverse-phase column, by eluting with 42% (v/v) acetonitrile in water in an isocratic manner at 30 degrees C and monitoring at 254 nm. The relevance of the method was confirmed by co-chromatography with respective PAs and by the PA analysis of the single- and double-mutants of acl5 and spms, which could not synthesize thermospermine and/or spermine, respectively. Furthermore, with this method, we monitored the thermospermine contents in various tissues of A. thaliana and found that stems and flowers contain two- to three-fold more thermospermine compared to whole seedlings and mature leaves. The presence of thermospermine was confirmed in Oryza sativa and Lycopersicon pesculentum. Finally we addressed whether salinity stress changes the contents of PAs including thermospermine in Arabidopsis.
Collapse
Affiliation(s)
- Yukie Naka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Vera-Sirera F, Minguet EG, Singh SK, Ljung K, Tuominen H, Blázquez MA, Carbonell J. Role of polyamines in plant vascular development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:534-9. [PMID: 20137964 DOI: 10.1016/j.plaphy.2010.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/21/2009] [Accepted: 01/14/2010] [Indexed: 05/03/2023]
Abstract
Several pieces of evidence suggest a role for polyamines in the regulation of plant vascular development. For instance, polyamine oxidase gene expression has been shown to be associated with lignification, and downregulation of S-adenosylmethionine decarboxylase causes dwarfism and enlargement of the vasculature. Recent evidence from Arabidopsis thaliana also suggests that the active polyamine in the regulation of vascular development is the tetraamine thermospermine. Thermospermine biosynthesis is catalyzed by the aminopropyl transferase encoded by ACAULIS5, which is specifically expressed in xylem vessel elements. Both genetic and molecular evidence support a fundamental role for thermospermine in preventing premature maturation and death of the xylem vessel elements. This safeguard action of thermospermine has significant impact on xylem cell morphology, cell wall patterning and cell death as well as on plant growth in general. This manuscript reviews recent reports on polyamine function and places polyamines in the context of the known regulatory mechanisms that govern vascular development.
Collapse
Affiliation(s)
- Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), 46022 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Tassoni A, Bagni N, Ferri M, Franceschetti M, Khomutov A, Marques MP, Fiuza SM, Simonian AR, Serafini-Fracassini D. Helianthus tuberosus and polyamine research: past and recent applications of a classical growth model. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:496-505. [PMID: 20172735 DOI: 10.1016/j.plaphy.2010.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Revised: 01/21/2010] [Accepted: 01/27/2010] [Indexed: 05/27/2023]
Abstract
The earliest studies concerning polyamines (PAs) in plants were performed by using in vitro cultured explants of Helianthus tuberosus dormant tuber. This parenchyma tissue was particularly useful due to its susceptibility to several growth substances, including PAs. During tuber dormancy, PA levels are too low to sustain cell division; thus Helianthus represents a natural PA-deficient model. When cultivated in vitro in the presence of auxins, Helianthus tuber dormant parenchyma cells at the G(0) stage start to divide synchronously acquiring meristematic characteristics. The requirement for auxins to induce cell division can be substituted by aliphatic PAs such as putrescine, spermidine or spermine. Cylinders or slices of explanted homogeneous tuber parenchyma were cultured in liquid medium for short-term studies on the cell cycle, or on solid agar medium for long-term experiments. Morphological and physiological modifications of synchronously dividing cells were studied during the different phases of the cell cycle in relation to PAs biosynthesis and oxidation. Long-term experiments led to the identification of the PAs as plant growth regulators, as the sole nitrogen source, as tuber storage substances and as essential factors for morphogenetic processes and cell homeostasis. More recently this system was used to study the effects on plant cell proliferation of platinum- or palladium-derived drugs (cisplatin and platinum or palladium bi-substituted spermine) that are used in human cancer cell lines as antiproliferative and cytotoxic agents. Cisplatin was the most active both in cell proliferation inhibition and on PA metabolism. Similar experiments were performed using three agmatine analogous. Different effects of these compounds were observed on cell proliferation, free PA levels and enzyme activities, leading to a hypothesis of a correlation between their chemical structure and the agmatine metabolism in plants.
Collapse
Affiliation(s)
- Annalisa Tassoni
- Department of Experimental Evolutionary Biology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:547-52. [PMID: 20206537 DOI: 10.1016/j.plaphy.2010.02.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 01/27/2010] [Accepted: 02/02/2010] [Indexed: 05/18/2023]
Abstract
In Arabidopsis, a model genus missing a functional ornithine decarboxylase pathway, most of the key genes involved in polyamine biosynthesis are duplicated. This gene redundancy has been related to the involvement of certain gene isoforms in the response to specific environmental stimuli. We have previously shown that drought stress induces Arginine decarboxlase 2 expression, while transcript levels for Arginine decarboxlase 1 remain constant. Accumulation of putrescine and increased arginine decarboxlase activity (EC 4.1.1.19) levels in response to different abiotic stresses have been reported in many different plant systems, but the biological meaning of this increase remains unclear. To get a new insight into these questions, we have studied the response to drought of transgenic Arabidopsis thaliana lines constitutively expressing the homologous Arginine decarboxlase 2 gene. These lines contain high levels of putrescine with no changes in spermidine and spermine content even under drought stress. Drought tolerance experiments indicate that the different degree of resistance to dehydration correlates with Put content. Although no significant differences were observed in the number of stomata between wild-type and transgenic plants, a reduction in transpiration rate and stomata conductance was observed in the ADC2 over-expressor lines. These results indicate that one of the mechanisms involved in the drought tolerance of transgenic plants over-producing Put is related to a reduction of water loss by transpiration.
Collapse
Affiliation(s)
- Rubén Alcázar
- Unitat de Fisiologia Vegetal, Facultat de Farmàcia, Universitat de Barcelona, Diagonal 643, 08028-Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ohe M, Sasaki H, Niitsu M, Bagni N, Tassoni A, Matsuzaki S. Cadaverine turnover in soybean seedlings using 15N-labelled lysine and cadaverine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:591-5. [PMID: 20153659 DOI: 10.1016/j.plaphy.2010.01.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/18/2010] [Accepted: 01/20/2010] [Indexed: 05/12/2023]
Abstract
The synthesis and translocation of the diamine cadaverine during soybean (Glycine max L. Meer cv. Sakai) germination were studied using 15N-labelled lysine (the cadaverine precursor) and 15N-labelled cadaverine, both under light/dark (12 h/12 h) and total dark germinating conditions. 15N-cadaverine and non-labelled polyamines were simultaneously detected using ionspray ionization-mass spectrometry. Both 15N-cadaverine and 15N-lysine were taken up by soybean. 15N-lysine was transported to the shoot and root and converted into 15N-cadaverine, whereas relatively little 15N-cadaverine was formed from 15N-lysine in the cotyledon. The acropetal translocation of 15N-cadaverine from the cotyledon to the shoot seemed to predominate over basipetal transport to the root. Although no other 15N-derivatised polyamines were found, supplying exogenous 15N-lysine seemed to indirectly affect the metabolism of 14N putrescine, spermidine and spermine, while no significant effect was detected after supplying 15N-cadaverine.
Collapse
Affiliation(s)
- Masato Ohe
- Department of Biochemistry, Dokkyo University School of Medicine, Tochigi, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ohe M, Scoccianti V, Bagni N, Tassoni A, Matsuzaki S. Putative occurrence of lysine decarboxylase isoforms in soybean (Glycine max) seedlings. Amino Acids 2009; 36:65-70. [PMID: 18227970 DOI: 10.1007/s00726-008-0029-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 01/14/2008] [Indexed: 11/30/2022]
Abstract
The activity of lysine decarboxylase was studied in 3-day-old soybean (Glycine max (L.) Meer cv. Sakai) seedlings also in relation to light conditions. Lysine decarboxylase activity was mainly localized in the roots and to a lesser extent in the hypocotyls and was detectable in both the soluble and particulate fractions. The enzyme activity levels were similar during germination under light and dark conditions. With respect to lysine concentration, the initial decarboxylation rate of the soluble fraction showed a saturating curve. Conversely, the initial decarboxylation rate of the particulate fraction showed a sigmoidal curve. These results could suggest that at least two isoforms of lysine decarboxylase are present in different organs of soybean seedlings. In the root soluble fraction, the suicide inhibitor alpha-difluoromethyl-lysine suppressed the activity of lysine decarboxylase and of ornithine decarboxylase to the same extent, but had no effect on arginine decarboxylase activity.
Collapse
Affiliation(s)
- M Ohe
- Department of Biochemistry, Dokkyo University School of Medicine, Mibu, Tochigi, 321-0293, Japan
| | | | | | | | | |
Collapse
|
18
|
Tassoni A, Franceschetti M, Bagni N. Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:607-13. [PMID: 18434176 DOI: 10.1016/j.plaphy.2008.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Indexed: 05/18/2023]
Abstract
In the present study we analysed polyamine metabolism in Arabidopsis thaliana (ecotype Columbia) flowers and stalks collected from plants germinated and grown under increasing salt-stress conditions (0-75 mM NaCl). The expression level of the different isoforms of polyamine biosynthetic enzymes was analysed by reverse transcriptase-polymerase chain reaction (RT-PCR). Spermidine synthase enzyme activity determined both in supernatant and pellet fractions, together with RT-PCR results, led us to hypothesize a different intracellular compartmentation of the isoforms of these enzymes. Free and conjugated polyamines (perchloric acid-soluble and -insoluble) were measured. Free spermidine was the most abundant polyamine and its levels, such as those of free spermine, increased with salt concentration, supporting the hypothesis for a specific role of those polyamines in the response and tolerance to salt stress of Arabidopsis thaliana flowers.
Collapse
Affiliation(s)
- Annalisa Tassoni
- Department of Biology and Interdepartmental Centre for Biotechnology, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | | | | |
Collapse
|
19
|
Silva ECC, Masui DC, Furriel RPM, Mantelatto FLM, McNamara JC, Barrabin H, Leone FA, Scofano HM, Fontes CFL. Regulation by the exogenous polyamine spermidine of Na,K-ATPase activity from the gills of the euryhaline swimming crab Callinectes danae (Brachyura, Portunidae). Comp Biochem Physiol B Biochem Mol Biol 2008; 149:622-9. [PMID: 18272416 DOI: 10.1016/j.cbpb.2007.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/28/2007] [Accepted: 12/28/2007] [Indexed: 11/25/2022]
Abstract
Euryhaline crustaceans rarely hyporegulates and employ the driving force of the Na,K-ATPase, located at the basal surface of the gill epithelium, to maintain their hemolymph osmolality within a range compatible with cell function during hyper-regulation. Since polyamine levels increase during the adaptation of crustaceans to hyperosmotic media, we investigate the effect of exogenous polyamines on Na,K-ATPase activity in the posterior gills of Callinectes danae, a euryhaline swimming crab. Polyamine inhibition was dependent on cation concentration, charge and size in the following order: spermine>spermidine>putrescine. Spermidine affected K(0.5) values for Na(+) with minor alterations in K(0.5) values for K(+) and NH(4)(+), causing a decrease in maximal velocities under saturating Na(+), K(+) and NH(4)(+) concentrations. Phosphorylation measurements in the presence of 20 microM ATP revealed that the Na,K-ATPase possesses a high affinity site for this substrate. In the presence of 10 mM Na(+), both spermidine and spermine inhibited formation of the phosphoenzyme; however, in the presence of 100 mM Na(+), the addition of these polyamines allowed accumulation of the phosphoenzyme. The polyamines inhibited pumping activity, both by competing with Na(+) at the Na(+)-binding site, and by inhibiting enzyme dephosphorylation. These findings suggest that polyamine-induced inhibition of Na,K-ATPase activity may be physiologically relevant during migration to fully marine environments.
Collapse
Affiliation(s)
- E C C Silva
- Instituto de Bioquímica Médica, Laboratório de Estrutura e Regulação de Proteínas e ATPases, Programa de Biologia Estrutural, CCS, Bloco H, 2 andar, sala 26, 21941-590, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Shabala S, Cuin TA, Pottosin I. Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 2007; 581:1993-9. [PMID: 17467698 DOI: 10.1016/j.febslet.2007.04.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/12/2007] [Accepted: 04/13/2007] [Indexed: 10/23/2022]
Abstract
Despite numerous reports implicating polyamines in plant salinity responses, the specific ionic mechanisms of polyamine-mediated adaptation to salt-stress remain elusive. In this work, we show that micromolar concentrations of polyamines are efficient in preventing NaCl-induced K(+) efflux from the leaf mesophyll, and that this effect can be attributed to the inhibition of non-selective cation channels in mesophyll. The inhibition by externally applied polyamines developed slowly over time, suggesting a cytosolic mode of action. Overall, we suggest that elevated levels of cellular polyamine may modulate the activity of plasma membrane ion channels, improving ionic relations and assisting in a plant's adaptation to salinity.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Hobart, Tas 7001, Australia.
| | | | | |
Collapse
|