1
|
Fleury JB, Baulin VA. Aging affects the mechanical interaction between microplastics and lipid bilayers. J Chem Phys 2024; 161:144902. [PMID: 39377336 DOI: 10.1063/5.0232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Plastic pellets, the pre-production form of many plastic products, undergo oxidation and photodegradation upon exposure to oxygen and sunlight, resulting in visible color changes. This study examines the impact of environmental aging on the mechanical interactions between pellet-derived microplastics and lipid bilayers, a critical component of biological membranes. Polyethylene pellets were collected from La Pineda beach near Tarragona, Spain, and categorized by chemical composition and yellowing index, an indicator of aging. The hydrophilicity of these pellets was assessed using contact angle measurements. Microplastics were produced by grinding and filtering these pellets and subsequently dispersed around a free-standing lipid bilayer within a 3D microfluidic chip to investigate their interactions. Our results reveal that aged microplastics exhibit a significantly increased adhesive interaction with lipid bilayers, leading to greater bilayer stretching. Theoretical modeling indicates a linear relationship between the adhesive interaction and the contact angle of the pellets, reflecting their hydrophilicity. These findings emphasize the increased mechanical impact of aged microplastics on biological membranes, which raises concerns about their potential toxicological effects on living organisms. This study highlights the importance of understanding the interactions between environmentally aged microplastics and biological systems to assess their risks, as these may differ significantly from pristine microplastics often studied under laboratory conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Pietrelli L. Fate of the biofilm chips overflowed from a wastewater treatment plant. MARINE POLLUTION BULLETIN 2024; 200:116142. [PMID: 38359476 DOI: 10.1016/j.marpolbul.2024.116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
In February 2018 over 100 millions of polyethylene biofilm chips overflowed from a wastewater treatment plant located at Capaccio Paestum (Italy) and due to the Thyrrhenian Sea currents, in few days they invaded the coasts of Campania, Lazio and Tuscany. During the following months the diffusion involves all the coasts of the western Mediterranean, including Spain, France and Tunisia. Samples of chips were recovered mainly along the Latium coasts (Italy) during the last 6 years. Following the exposure of the biofilm chips to the environmental conditions, the effect of natural weathering on polyethylene have been studied. The following annual decreases were evaluated: thickness 9.5 μm, diameter 18.5 μm and weight 3.7 mg while the average value of the size of all recovered items (n = 60) are: thickness = 2.936 ± 0.0406 mm, diameter = 44.349 ± 0.1266 mm and weight = 1.1593 ± 0.0248 g. Considering the weight loss, it was calculated that the complete mineralization of the disks will occur in 310 years producing about 0.5 tons of microplastics per year. FTIR analysis was used to investigate the change of chemical structure of the polyethylene. The Carbonyl index (CI), Vinyl index (VI) and Hydroxyl normalized absorbance peak were used to evaluate the polymer degradation while Scanning Electron Microscopy (SEM) was used to characterize the surface of the polymer samples. It was observed that erosion/degradation increases with time spent in the environment, above all from the last two years. The static contact angle was always >90° confirming that the surface of the biofilm chip is hydrophilic. The Oxygen/Carbon ratio increase with time: 0.18 and 0.27 has been found for 2018 and 2023 disks respectively confirming the progressive oxidative process. From TGA analysis a slightly reduction of decomposition temperature has been evaluated.
Collapse
Affiliation(s)
- Loris Pietrelli
- Legambiente, Scientific Committee, Via Salaria 403, 00199 Rome, Italy.
| |
Collapse
|
3
|
Acierno D, Graziosi L, Patti A. Puncture Resistance and UV aging of Nanoparticle-Loaded Waterborne Polyurethane-Coated Polyester Textiles. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6844. [PMID: 37959441 PMCID: PMC10650790 DOI: 10.3390/ma16216844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/22/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
The goal of this research was to investigate the effect of different types of nanoparticles on the UV weathering resistance of polyurethane (PU) treatment in polyester-based fabrics. In this regard, zinc oxide nanoparticles (ZnO), hydrophilic silica nanoparticles (SiO2 (200)), hydrophobic silica nanoparticles (SiO2 (R812)), and carbon nanotubes (CNT) were mixed into a waterborne polyurethane dispersion and impregnated into textile samples. The puncturing resistance of the developed specimens was examined before and after UV-accelerated aging. The changes in chemical structure and surface appearance in nanoparticle-containing systems and after UV treatments were documented using microscopic pictures and infrared spectroscopy (in attenuated total reflectance mode). Polyurethane impregnation significantly enhanced the puncturing strength of the neat fabric and reduced the textile's ability to be deformed. However, after UV aging, mechanical performance was reduced both in the neat and PU-impregnated specimens. After UV treatment, the average puncture strength of all nanoparticle-containing systems was always greater than that of aged fabrics impregnated with PU alone. In all cases, infrared spectroscopy revealed some slight differences in the absorbance intensity of characteristic peaks for polyurethane polymer in specimens before and after UV rays, which could be related to probable degradation effects.
Collapse
Affiliation(s)
- Domenico Acierno
- Regional Center of Competence New Technologies for Productive Activities Scarl, Via Nuova Agnano 11, 80125 Naples, Italy;
| | - Lucia Graziosi
- Regional Center of Competence New Technologies for Productive Activities Scarl, Via Nuova Agnano 11, 80125 Naples, Italy;
| | - Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| |
Collapse
|
4
|
Meera G, Sasidharan Pillai IM, Reji PG, Sajithkumar KJ, Priya KL, Chellappan S. Coagulation studies on photodegraded and photocatalytically degraded polystyrene microplastics using polyaluminium chloride. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 170:329-340. [PMID: 37741081 DOI: 10.1016/j.wasman.2023.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/10/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
Microplastics are ubiquitous persistent emerging contaminants, and its presence has been detected even in the most pristine and fragile ecosystems. Advanced oxidation processes are one of the novel degradation technologies used for the elimination of microplastics from the environment. In this study, the effect of ultraviolet C (UV-C, 253.7 nm) and ultraviolet A (UV-A, 365 nm) irradiations on polystyrene (PS) microplastic properties in the presence and absence of titanium dioxide were studied along with their coagulation performances using polyaluminium chloride (PAC). The effects of solar irradiation on the chemical properties of microplastics in aqueous and dry conditions were also investigated. PS microplastics (1.5 g) in three size ranges, 300-150 μm, 150-75 μm, and <75 μm were used during this experiment. After 45 days of irradiation, samples showed discolouration, brittleness, and loss of hydrophobicity. Images obtained from scanning electron microscope revealed smoothening and melting of PS surfaces upon UV exposure. Attenuated total reflectance- Fourier transform infrared spectroscopy and X-ray photon spectroscopy of photoaged samples revealed chemical alterations, bond cleavage and formation of oxygenated functional groups on microplastic surfaces. PAC coagulation of samples before and after UV irradiation showed drastic differences in removal efficiencies, with UV-C irradiated microplastics exhibiting maximum efficiency. Large sized and photocatalytically degraded microplastics showed better removal efficiencies than small sized particles. The 300-150 μm sized PS microplastic, degraded photo catalytically under UV-C irradiation showed approximately 99 % removal efficiency, while PS < 75 μm photodegraded under UV-A irradiation showed only 74.2 % removal efficiency.
Collapse
Affiliation(s)
- G Meera
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| | | | - P G Reji
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| | - K J Sajithkumar
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India; School for Sustainable Development, Amrita Vishwa Vidyapeetham, Kollam, Kerala, India
| | - K L Priya
- Department of Civil Engineering, TKM College of Engineering, Kollam, Kerala, India
| | - Suchith Chellappan
- Environmental Engineering and Management, UKF College of Engineering and Technology, Kollam, Kerala, India
| |
Collapse
|
5
|
Hernández-Fernández J, Cano H, Reyes AF. Valoration of the Synthetic Antioxidant Tris-(Diterbutyl-Phenol)-Phosphite (Irgafos P-168) from Industrial Wastewater and Application in Polypropylene Matrices to Minimize Its Thermal Degradation. Molecules 2023; 28:3163. [PMID: 37049926 PMCID: PMC10096021 DOI: 10.3390/molecules28073163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Industrial wastewater from petrochemical processes is an essential source of the synthetic phenolic phosphite antioxidant (Irgafos P-168), which negatively affects the environment. For the determination and analysis of Irgafos P-168, DSC, HPLC-MS, and FTIR methodologies were used. Solid phase extraction (SPE) proved to be the best technique for extracting Irgafos from wastewater. HPLC-MS and SPE determined the repeatability, reproducibility, and linearity of the method and the SPE of the standards and samples. The relative standard deviations, errors, and correlation coefficients for the repeatability and reproducibility of the calibration curves were less than 4.4% and 4.2% and greater than 0.99955, respectively. The analysis of variance (ANOVA), using the Fisher method with confidence in 95% of the data, did not reveal significant differences between the mentioned parameters. The removal of the antioxidant from the wastewater by SPE showed recovery percentages higher than 91.03%, and the chemical characterization of this antioxidant by FTIR spectroscopy, DSC, TGA, and MS showed it to be structurally the same as the Irgafos P-168 molecule. The recovered Irgafos was added to the polypropylene matrix, significantly improving its oxidation times. An OIT analysis, performed using DSC, showed that the recovered Irgafos-blended polypropylene (PP) demonstrated oxidative degradation at 8 min. With the addition of the Irgafos, the oxidation time was 13 min. This increases the polypropylene's useful life and minimizes the environmental impact of the wastewater.
Collapse
Affiliation(s)
- Joaquín Hernández-Fernández
- Chemistry Program, Department of Natural and Exact Sciences, San Pablo Campus, University of Cartagena, Cartagena 130015, Colombia
- Chemical Engineering Program, School of Engineering, Universidad Tecnológica de Bolivar, Parque Industrial y Tecnológico Carlos Vélez Pombo, Km 1 Vía Turbaco, Turbaco 130001, Colombia
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla 30300, Colombia
| | - Heidis Cano
- Department of Civil and Environmental, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Ana Fonseca Reyes
- Department of Mechanical Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| |
Collapse
|
6
|
Processing Stabilization of Polyethylene with Grape Peel Extract: Effect of Extraction Technology and Composition. Molecules 2023; 28:molecules28031011. [PMID: 36770676 PMCID: PMC9918917 DOI: 10.3390/molecules28031011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Dry grape peel powder was extracted by three different techniques, stirred tank reactor, Soxhlet and ultrasound extraction. The composition, physical and chemical structure and inherent stability of the extracts were characterized by various methods. The extracts and reference compounds were added to polyethylene and their stabilization efficiency was determined in multiple extrusion experiments. The composition of the extracts was quite similar. Ten main compounds were identified in the extracts, which contained a considerable number of polyphenols, but only small amounts of quercetin and trans-resveratrol. The extracts proved to be more efficient processing stabilizers than trans-resveratrol and the commercial stabilizer, Irganox 1010, irrespective of the extraction technology used. In spite of their good processing stabilization effect, polymers containing the extracts had poor residual stability. The differences in processing and long-term stabilization must be related to the different structures of the polyphenols contained by the extracts and the reference compounds. The results clearly prove that the IC50 value determined by the DPPH assay is not suitable for the estimation of the efficiency of a compound as a stabilizer for polymers.
Collapse
|
7
|
Zaharescu T, Banciu C. Packaging Materials Based on Styrene-Isoprene-Styrene Triblock Copolymer Modified with Graphene. Polymers (Basel) 2023; 15:polym15020353. [PMID: 36679234 PMCID: PMC9863306 DOI: 10.3390/polym15020353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
This study presents the improved stabilization effects of graphene on a polymer substrate, namely a styrene-isoprene-styrene triblock copolymer (SIS) which creates opportunities for long-term applications and radiation processing. The added graphene has a remarkable activity on the protection of polymer against their oxidation due to the penetration of free macroradical fragments into the free interlayer space. The chemiluminescence procedure used for the evaluation of the progress of oxidation reveals the delaying effect of oxidative degradation by the doubling extension of oxidation induction time, when the material formulation containing graphene is oxidized at 130 °C. The pristine polymer that is thermally aged requires an activation energy of 142 kJ mol-1, while the modified material needs 148, 158 and 169 kJ mol-1, for the oxidative degradation in the presence of 1, 2 and, respectively, 3 wt% of graphene. The contribution of graphene content (1 wt%) on the stability improvement of SIS is demonstrated by the increase of onset oxidation temperature from 190 °C for neat polymer to 196 °C in the presence of graphene and to 205 °C for the polymer stabilized with graphene and rosemary extract. The addition of graphene into the polymer formulations is a successful method for enlarging durability instead of the modification of receipt with synthesis antioxidants. The presumable applications of these studied materials cover the areas of medical wear, food packaging, commodities, sealing gaskets and others that may also be included through the products for nuclear power plants.
Collapse
|
8
|
Gijsman P, Fiorio R. Long term thermo-oxidative degradation and stabilization of polypropylene (PP) and the implications for its recyclability. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
|
9
|
Godinho B, Gama N, Ferreira A. Different methods of synthesizing poly(glycerol sebacate) (PGS): A review. Front Bioeng Biotechnol 2022; 10:1033827. [PMID: 36532580 PMCID: PMC9748623 DOI: 10.3389/fbioe.2022.1033827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Accepted: 11/10/2022] [Indexed: 08/24/2023] Open
Abstract
Poly(glycerol sebacate) (PGS) is a biodegradable elastomer that has attracted increasing attention as a potential material for applications in biological tissue engineering. The conventional method of synthesis, first described in 2002, is based on the polycondensation of glycerol and sebacic acid, but it is a time-consuming and energy-intensive process. In recent years, new approaches for producing PGS, PGS blends, and PGS copolymers have been reported to not only reduce the time and energy required to obtain the final material but also to adjust the properties and processability of the PGS-based materials based on the desired applications. This review compiles more than 20 years of PGS synthesis reports, reported inconsistencies, and proposed alternatives to more rapidly produce PGS polymer structures or PGS derivatives with tailor-made properties. Synthesis conditions such as temperature, reaction time, reagent ratio, atmosphere, catalysts, microwave-assisted synthesis, and PGS modifications (urethane and acrylate groups, blends, and copolymers) were revisited to present and discuss the diverse alternatives to produce and adapt PGS.
Collapse
Affiliation(s)
- Bruno Godinho
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Nuno Gama
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
| | - Artur Ferreira
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal
- ESTGA-Águeda School of Technology and Management, Águeda, Portugal
| |
Collapse
|
10
|
|