1
|
Sano Y, Toyoda R, Chida K, Yoshii T, Nishihara H, Nishina Y, Asanoma D, Takaishi S, Sugimoto K, Sakamoto R. Ordered Carbonaceous Framework Synthesized from Hexaazatrinaphthylene with Enediyne Groups via Solid-State Bergman Cyclization Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42615-42622. [PMID: 39101798 DOI: 10.1021/acsami.4c06959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Porous materials synthesized through bottom-up approaches, such as metal-organic frameworks and covalent organic frameworks, have attracted attention owing to their design flexibility for functional materials. However, achieving the chemical and thermal stability of these materials for various applications is challenging considering the reversible coordination bonds and irreversible covalent bonds in their frameworks. Thus, ordered carbonaceous frameworks (OCFs) emerge as a promising class of bottom-up materials with good periodicity, thermal and chemical stability, and electrical conductivity. However, a few OCFs have been reported owing to the limited range of precursor molecules. Herein, we designed a hexaazatrinaphthylene-based molecule with enediyne groups as a precursor molecule for synthesizing an OCF. The solid-state Bergman cyclization of enediyne groups at a low temperature formed a microporous polymer and an OCF, exhibiting redox activity and demonstrating their potential for electrochemical applications. The microporous polymer was used as an active material in sodium-ion batteries, while the OCF was used as an electrochemical capacitor. These findings illustrate the utility of the Bergman cyclization reaction for synthesizing microporous polymers and OCFs with a customizable functionality for broad applications.
Collapse
Affiliation(s)
- Yuki Sano
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Koki Chida
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Takeharu Yoshii
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Hirotomo Nishihara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Daisuke Asanoma
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
| | - Kunihisa Sugimoto
- Department of Chemistry, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies at Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Wang Y, An L, Zhang Y, Zhang X, Gao Z, Zhang Y. Improving iodine adsorption performance of porous organic polymers by rational decoration with nitrogen heterocycle. J Appl Polym Sci 2020. [DOI: 10.1002/app.50054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu‐Ting Wang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Lian‐Cai An
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Yun‐Qin Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Xin‐Kun Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Zhu‐Feng Gao
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| | - Ying‐Hui Zhang
- School of Materials Science and Engineering, Tianjin Key Lab on Metal and Molecule‐Based Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Nankai University Tianjin China
| |
Collapse
|
3
|
Han J, Lee H, Kim J, Kim S, Kim H, Kim E, Sung YE, Kim K, Lee JC. Sulfonated poly(arylene ether sulfone) composite membrane having sulfonated polytriazole grafted graphene oxide for high-performance proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Fabrication of magnetic porous organic framework for effective enrichment and assay of nitroimidazoles in chicken meat. Food Chem 2020; 332:127427. [PMID: 32619936 DOI: 10.1016/j.foodchem.2020.127427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 01/14/2023]
Abstract
A magnetic porous organic framework (M-POF) was rationally designed and served as a sorbent for magnetic solid-phase extraction of six nitroimidazoles from chicken meat prior to their assay by high-performance liquid chromatography with diode array detection. The M-POF exhibited good magnetic responsiveness and outstanding affinity to nitroimidazoles with large adsorption capacity up to 36 mg g-1. Under optimal conditions, the developed method offered good linearity (r greater than 0.992) in the range of 1.5-100.0 ng g-1, low limits of detection (S/N = 3) of 0.5-0.8 ng g-1, low limits of quantification of 1.5-2.5 ng g-1 and high enrichment factors of 80-175 for the nitroimidazoles. The method was successfully applied to analyze nitroimidazoles in chicken meat. The recoveries were 80.2-118% with relative standard deviations lower than 12%. The adsorption mechanism was further explored and the results showed that the M-POF exhibited adsorption potential for compounds with strong polar interactions.
Collapse
|
5
|
Li B, Wu Y, Wang Y, Zhang M, Chen H, Li J, Liu R, Ding Y, Hu A. Light-Cross-linked Enediyne Small-Molecule Micelle-Based Drug-Delivery System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8896-8903. [PMID: 30730704 DOI: 10.1021/acsami.8b22516] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Light-cross-linked small-molecule micelles with enediyne units are designed for developing efficient drug-delivery systems. Gemcitabine (GEM) is chosen as a model hydrophilic drug and tethered with a maleimide-based enediyne (EDY) as a hydrophobic tail in the preparation of amphiphilic EDY-GEM. The stable micellar particles are obtained by cross-linking the enediyne moieties via photoinduced Bergman cyclization polymerization in aqueous media. The light-cross-linked spherical micelles with a size of 80 nm are characterized with dynamic light scattering and electron microscopy, showing robust micellar stability, bright fluorescent emission due to their intrinsic conjugated structure, and potential passive tumor-targeting ability through the enhanced permeability and retention effect. The drug-loaded micelles, as an example of light-cross-linked small-molecule micelle-based drug-delivery system, exhibit high drug-loading contents (50%) and greatly improved cytotoxicity toward A549 cells (decreasing the IC50 value of Gemcitabine by 10 times), thanks to the greatly increased cellular uptake of the drug-loaded micelles as confirmed by confocal laser scanning microscopy. The light-cross-linked enediyne-based small-molecule micelles system therefore provides a simple yet efficient drug-delivery platform for cancer chemotherapy.
Collapse
|