1
|
Wagenaar D, Mohan V, Langendijk JA, J.H.M. Steenbakkers R, Vogel WV, Both S. Relating proton LETd to biological response of parotid and submandibular glands using PSMA-PET in clinical patients. Clin Transl Radiat Oncol 2025; 52:100910. [PMID: 39925864 PMCID: PMC11803207 DOI: 10.1016/j.ctro.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 12/30/2024] [Indexed: 02/11/2025] Open
Abstract
Background and purpose A recent study investigated the use of PSMA-PET in monitoring loss of secretory cells in salivary glands of head and neck cancer (HNC) patients. Previously, a dose-effect relation has been formulated to the PSMA-PET uptake in salivary glands. The aim of this study was to derive a proton RBE model from the PSMA-PET uptake in salivary glands after proton therapy of HNC patients. Materials and methods Six patients treated with proton therapy were included. These patients received a PET-CT scan using 68Ga (N = 1) or 18F (N = 5) PSMA before treatment (baseline) and one month after the last fraction (follow-up). Physical dose (D), D·LETd and the follow-up PSMA-PET scan were deformed to the baseline PET-CT using deformable image registration. Parotid and submandibular gland delineations were adjusted to include voxels which had an uptake of ≥ 5 g/ml in the baseline PSMA-PET scan. Results The average RBE-LET slope was 0.075 [0.009; 0.125] (keV/μm)-1 (mean [95 %CI]) for parotid and submandibular glands combined. When analyzing parotid or submandibular glands separately the RBE-LET curve slope varies with two and five patients showing a positive RBE-LET slope when only analyzing parotid or submandibular glands respectively. Conclusion Our study did not find clear evidence of an increased RBE in parotid and submandibular glands with increasing LETd. On average an LETd effect was observed, however our sample size was too small to clearly define an RBE-LET relation. A larger cohort scanned at later time intervals could shed more light on this issue.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vineet Mohan
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Roel J.H.M. Steenbakkers
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wouter V. Vogel
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Wei WG, Yu H, Xiao Q, Li ZB, Li J, Zhang XY, Wu YC, Qin TL, Zeng XH, Song Y, Li GJ, Bai S. Comparing the Robustness of Intensity-modulated Proton Therapy and Proton-arc Therapy Against Interplay Effects of 4D Robust-optimised Plans for Lung Stereotactic Body Radiotherapy. Clin Oncol (R Coll Radiol) 2025; 39:103757. [PMID: 39847967 DOI: 10.1016/j.clon.2025.103757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/29/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025]
Abstract
AIMS To assess the robustness of 4D-optimised IMPT and PAT plans against interplay effects in non-small cell lung cancer (NSCLC) patients with respiratory motion over 10 mm, and to provide insights into the use of proton-based stereotactic body radiotherapy (SBRT) for lung cancer with significant tumour movement. MATERIALS AND METHODS Fourteen patients with early-stage NSCLC and tumour motion >10 mm were selected. Three hypofraction regimens were generated using 4D robust optimisation with the IMPT and PAT techniques. The nominal plan qualities for both techniques were compared, and their robustness against setup and range uncertainties was evaluated. 4D dynamic dose and the 4D static dose were generated to calculate ΔIMR(%) for interplay effects. RESULTS PAT plans demonstrated superior target metrics such as D95 and D2, and offered enhanced protection for organs at risk (OARs), particularly in lung metrics, across multiple fractionation schemes (p < 0.05). The robustness of target coverage against setup and range uncertainties was better in PAT plans than IMPT, with average pass rates of 97.8% and 95.4%, respectively (p < 0.01). The interplay effect significantly affected target metrics in single-fraction plans, decreasing with more fractions, while its effect on OAR metrics was minimal. Median values for single-fraction plans were: ΔID98GTV was -3% for IMPT and -0.7% for PAT (p < 0.01); ΔID95GTV was -2.4% for IMPT and -0.6% for PAT (p < 0.01); ΔID2GTV was 3.2% for IMPT and 0.9% for PAT (p < 0.05). The interplay effects resulted in median homogeneity index deviations of 9.1% and 2% for the IMPT and PAT plans, respectively (p < 0.01). Different starting phases affected IMPT more significantly than PAT. CONCLUSION PAT demonstrated greater robustness to interplay effects than IMPT for hypofractionated treatments of early-stage NSCLC, particularly in single-fraction schemes. Additionally, PAT showed good resilience to variations in different starting phases.
Collapse
Affiliation(s)
- W G Wei
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - H Yu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Q Xiao
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Z B Li
- Department of Radiotherapy & Oncology, The First Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou 215006, China
| | - J Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - X Y Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y C Wu
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - T L Qin
- Department of Medical Physics, Brown University, Providence, RI 02912, USA
| | - X H Zeng
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y Song
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - G J Li
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - S Bai
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Department of Radiotherapy Physics & Technology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
3
|
Sevilla-Moreno AC, Puerta-Yepes ME, Wahl N, Benito-Herce R, Cabal-Arango G. Interval Analysis-Based Optimization: A Robust Model for Intensity-Modulated Radiotherapy (IMRT). Cancers (Basel) 2025; 17:504. [PMID: 39941871 PMCID: PMC11816179 DOI: 10.3390/cancers17030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Cancer remains one of the leading causes of mortality worldwide, with radiotherapy playing a crucial role in its treatment. Intensity-modulated radiotherapy (IMRT) enables precise dose delivery to tumors while sparing healthy tissues. However, geometric uncertainties such as patient positioning errors and anatomical deformations can compromise treatment accuracy. Traditional methods use safety margins, which may lead to excessive irradiation of healthy organs or insufficient tumor coverage. Robust optimization techniques, such as minimax approaches, attempt to address these uncertainties but can result in overly conservative treatment plans. This study introduces an interval analysis-based optimization model for IMRT, offering a more flexible approach to uncertainty management. Methods: The proposed model represents geometric uncertainties using interval dose influence matrices and incorporates Bertoluzza's metric to balance tumor coverage and organ-at-risk (OAR) protection. The θ parameter allows controlled robustness modulation. The model was implemented in matRad, an open-source treatment planning system, and evaluated on five prostate cancer cases. Results were compared against traditional Planning Target Volume (PTV) and minimax robust optimization approaches. Results: The interval-based model improved tumor coverage by 5.8% while reducing bladder dose by 4.2% compared to PTV. In contrast, minimax robust optimization improved tumor coverage by 25.8% but increased bladder dose by 23.2%. The interval-based approach provided a better balance between tumor coverage and OAR protection, demonstrating its potential to enhance treatment effectiveness without excessive conservatism. Conclusions: This study presents a novel framework for IMRT planning that improves uncertainty management through interval analysis. By allowing adjustable robustness modulation, the proposed model enables more personalized and clinically adaptable treatment plans. These findings highlight the potential of interval analysis as a powerful tool for optimizing radiotherapy outcomes, balancing treatment efficacy and patient safety.
Collapse
Affiliation(s)
| | | | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Rafael Benito-Herce
- Digital Health and Biomedical Technologies, Vicomtech Foundation, 20009 San Sebastian, Spain;
| | | |
Collapse
|
4
|
Frensch C, Bäcker CM, Jentzen W, Lüvelsmeyer A, Teimoorisichani M, Wulff J, Timmermann B, Bäumer C. Dose distributions of proton therapy plans are robust against lowering the resolution of CTs combined with increasing noise. Med Phys 2025; 52:1293-1304. [PMID: 39607089 PMCID: PMC11788265 DOI: 10.1002/mp.17530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Treatment planning in radiation therapy (RT) is performed on image sets acquired with commercial x-ray computed tomography (CT) scanners. Considering an increased frequency of verification scans for adaptive RT and the advent of alternatives to x-ray CTs, there is a need to review the requirements for image sets used in RT planning. PURPOSE This study aims to derive the required image quality (IQ) for the computation of the dose distribution in proton therapy (PT) regarding spatial resolution and the combination of spatial resolution and noise. The knowledge gained is used to explore the potential for dose reduction in tomography-guided PT. METHODS Mathematical considerations indicate that the required spatial resolution for dose computation is on the scale of the set-up margins fed into the robust optimization. This hypothesis was tested by processing retrospectively 12 clinical PT cases, which reflect a variety of tumor localizations. Image sets were low-pass filtered and were made noisy in a generic manner. Dose distributions on the modified CT scans were computed with a Monte-Carlo dose engine. The similarity of these dose distributions with clinical ones was quantified with the gamma-index (1 mm/1%). The potential reduction of the x-ray exposure compared to the planning CT scan was estimated. RESULTS Dose distributions within the irradiated volume were robust against low-pass filtering of the CTs with kernels up to a full-width-at-half-maximum of 4 mm, that is, the gamma pass rate (1 mm/1%) was ≥ $\ge$ 98%. The limit of the filter width was 6 mm for brain tumors and 8 mm for targets in the abdomen. These pass rates remained approximately unchanged if a limited amount of noise was added to the CT image sets. The estimated potential reductions of the x-ray exposure were at least a factor of 20. CONCLUSIONS The requirements on IQ in terms of spatial resolution in combination with noise for computing the dose in PT are clearly lower than the IQ of current clinical planning. The results apply, for example, to ultra-low dose x-ray CTs, proton CTs with coarse spatial detection, and attenuation images from the joint reconstruction of time-of-flight PET scans.
Collapse
Affiliation(s)
- Carla Frensch
- West German Proton Therapy Centre EssenEssenGermany
- West German Cancer Center (WTZ)University Hospital EssenEssenGermany
- Department of PhysicsTU Dortmund UniversityDortmundGermany
| | - Claus Maximilian Bäcker
- West German Proton Therapy Centre EssenEssenGermany
- West German Cancer Center (WTZ)University Hospital EssenEssenGermany
| | - Walter Jentzen
- Clinic for Nuclear MedicineUniversity Hospital EssenEssenGermany
| | - Ann‐Kristin Lüvelsmeyer
- West German Proton Therapy Centre EssenEssenGermany
- West German Cancer Center (WTZ)University Hospital EssenEssenGermany
- Department of PhysicsTU Dortmund UniversityDortmundGermany
| | | | - Jörg Wulff
- West German Proton Therapy Centre EssenEssenGermany
- West German Cancer Center (WTZ)University Hospital EssenEssenGermany
| | - Beate Timmermann
- West German Proton Therapy Centre EssenEssenGermany
- West German Cancer Center (WTZ)University Hospital EssenEssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- Department of Particle TherapyUniversity Hospital EssenEssenGermany
| | - Christian Bäumer
- West German Proton Therapy Centre EssenEssenGermany
- West German Cancer Center (WTZ)University Hospital EssenEssenGermany
- Department of PhysicsTU Dortmund UniversityDortmundGermany
- German Cancer Consortium (DKTK)EssenGermany
| |
Collapse
|
5
|
Taasti VT, Kneepkens E, van der Stoep J, Velders M, Cobben M, Vullings A, Buck J, Visser F, van den Bosch M, Hattu D, Mannens J, 't Ven LI, de Ruysscher D, van Loon J, Peeters S, Unipan M, Rinaldi I. Proton therapy of lung cancer patients - Treatment strategies and clinical experience from a medical physicist's perspective. Phys Med 2025; 130:104890. [PMID: 39799813 DOI: 10.1016/j.ejmp.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE Proton therapy of moving targets is considered a challenge. At Maastro, we started treating lung cancer patients with proton therapy in October 2019. In this work, we summarise the developed treatment strategies and gained clinical experience from a physics point of view. METHODS We report on our clinical approaches to treat lung cancer patients with the Mevion Hyperscan S250i proton machine. We classify lung cancer patients as small movers (tumour movement ≤ 5 mm) or large movers (tumour movement > 5 mm). The preferred beam configuration has evolved over the years of clinical treatment, and currently mostly two or three beam directions are used. All patients are treated with robustly optimised plans (5 mm setup and 3% range uncertainty). Small movers are planned based on a clinical target volume (CTV) with a 3 mm isotropic margin expansion to account for motion, while large movers are planned based on an internal target volume (ITV). All patients are treated in free-breathing. RESULTS Between October 2019 and December 2023, 379 lung cancer patients have been treated, of which 130 were large movers. The adaptation rate was 28%. The median treatment time has been reduced from 30 to 23 min. The mean dose to the heart, oesophagus, and lungs was on average 4.3, 15.4, and 11.0 Gy, respectively. CONCLUSIONS Several treatment planning and workflow improvements have been introduced over the years, resulting in an increase of treatment quality and number of treated patients, as well as reduction of planning and treatment time.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Judith van der Stoep
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Marije Velders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maud Cobben
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Anouk Vullings
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Janou Buck
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Femke Visser
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maud van den Bosch
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jolein Mannens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lieke In 't Ven
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Frederiks ML, van Etten B, Kelder W, Dieters M, Beukema JC, IJsbrandy C, de Haan JJ, Korevaar EW, Haveman JW, Schuit E, van Luijk P, Langendijk JA, Muijs CT. Proton Radiotherapy Significantly Reduces Pneumonia in Patients With Esophageal Cancer. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00023-9. [PMID: 39800330 DOI: 10.1016/j.ijrobp.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/14/2024] [Accepted: 12/31/2024] [Indexed: 02/05/2025]
Abstract
PURPOSE Neoadjuvant chemoradiation therapy (RT) (nCRT) followed by surgical resection is the current standard of care for patients with esophageal cancer (EC). This treatment is associated with a variety of complications, with pneumonia being the most common. We hypothesized that proton RT (PRT) can significantly reduce the incidence of pneumonia compared with photon RT (PhRT). METHODS AND MATERIALS We performed an analysis on a prospective cohort of patients with EC who completed nCRT with PRT or PhRT and underwent esophagectomy between October 2014 and June 2022. Multivariable logistic regression was used to analyze the effect of the RT technique on pneumonia while correcting for confounders. To access the dose-effect relationships, dose-volume histogram parameters of the lungs and the heart were analyzed using a principal component (PC) analysis. RESULTS We included 313 patients, of whom 28% developed pneumonia. The incidence was lower after PRT compared with PhRT (12% vs 32%, P < .01). PRT was associated with a significant reduction of the incidence of pneumonia (odds ratio [OR], 0.33; 95% CI, 0.14-0.72; P = .01), even when correcting for surgical approach and planning target volume size. Three PCs were identified: PC1: associated with the mean dose in the heart and lungs, PC2: associated with the distribution of dose between the lungs and the heart, and PC3: associated with the volume receiving a low dose (≤20 Gy). If the dose-related variables were replaced by the PCs, PC1 (OR, 1.1; 95% CI, 1.02-1.22) and PC3 (OR, 1.27; 95% CI, 1.06-1.53) were significantly associated with pneumonia. PRT had significantly lower values for both PC1 and PC3, compared with PhRT. CONCLUSIONS PRT significantly reduces the incidence of pneumonia compared with PhRT in patients with EC treated with nCRT followed by surgical resection. The reduction of pneumonia was associated with the lower mean dose and a reduction of the volume irradiated to low doses in the lungs and/or heart.
Collapse
Affiliation(s)
- Mark L Frederiks
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Boudewijn van Etten
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy Kelder
- Department of Surgery, Martini Hospital Groningen, Groningen, The Netherlands
| | - Margriet Dieters
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jannet C Beukema
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charlotte IJsbrandy
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacco J de Haan
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Willem Haveman
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ewoud Schuit
- Department of Epidemiology & Health Economics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter van Luijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Christina T Muijs
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Miladinovic V, van der Wal RJP, Appelman-Dijkstra NM, Navas Cañete A, Peul WC, Bloem JL, Krol ADG. Insufficiency fractures in patients with sacral chordoma treated with high-dose radiation therapy with and without resection. BJR Open 2025; 7:tzaf001. [PMID: 39885921 PMCID: PMC11780842 DOI: 10.1093/bjro/tzaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025] Open
Abstract
Objectives Determine the incidence, location, and features of insufficiency fractures (IFs) in sacral chordoma patients treated with high-dose radiation therapy (HDR) with(out) resection, relative to radiation therapy type and irradiation plans. Methods Clinical data, including details of all surgical procedures and radiotherapies of patients histologically diagnosed with sacral chordoma between 2008 and 2023 available at our database, were retrospectively reviewed. Inclusion criteria were as follows: availability of diagnostic, treatment planning and follow-up magnetic resonance and/or computed tomography scans, and completed treatment. Scans were re-evaluated for the presence and location of IF defined as linear abnormalities with(out) bone marrow oedema (BME)-like changes. Results From 48 included patients (29 male, median age 66, range 27-85), 22 were diagnosed with 56 IF (45.8%). IF occurred 3-266 months following the treatment. All sacral and iliac bone IF had vertical components parallel to the SI joint. Twenty patients had bilateral and 16 unilateral IF. BME-like changes were visible in 46 IF (82.1%, 0.80, P ≤ .001). In 13/56 IF (23.2%), BME-like changes were seen prior to IF diagnosis; in only 1 patient, BME-like changes did not develop into an IF. Thirty-nine IF (84.7%) occurred within low-dose volume and 7 (15.3%) outside of irradiated volume in 16/44 irradiated patients. Six IF occurred in 1 patient treated with surgery only. Conclusions Pelvic IFs are common in sacral chordoma patients treated with definitive or (neo)adjuvant HDR, occurring months to years following treatment. Not all IF occur in the irradiated volume. Advances in knowledge When present, BME-like changes indicate risk of IF developing. IF do not heal over time.
Collapse
Affiliation(s)
- Vesna Miladinovic
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- HollandPTC, Delft 1518 JH, The Netherlands
| | - Robert J P van der Wal
- Department of Orthopedic Surgery, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Natasha M Appelman-Dijkstra
- Department of Internal Medicine division Endocrinology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Ana Navas Cañete
- Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Johan L Bloem
- Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Augustinus D G Krol
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333ZA, The Netherlands
- HollandPTC, Delft 1518 JH, The Netherlands
| |
Collapse
|
8
|
Kwakernaak RC, Brand VJ, Rojo-Santiago J, Froklage FE, Hoogeman MS, Habraken SJ, Milder MT. Neurovascular bundle sparing in hypofractionated radiotherapy maintained with realistic treatment uncertainties. Phys Imaging Radiat Oncol 2025; 33:100714. [PMID: 39981525 PMCID: PMC11840216 DOI: 10.1016/j.phro.2025.100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Accepted: 01/24/2025] [Indexed: 02/22/2025] Open
Abstract
Background and purpose Erectile dysfunction is a common side effect of radiotherapy for prostate cancer. To mitigate this toxicity, it has been suggested to limit the dose to critical nerves and vessels. We investigated the feasibility of sparing the neuro-vascular bundles (NVBs) in stereotactic body radiotherapy under the impact of realistic treatment uncertainties. Materials and methods Non-sparing and sparing NVB treatment plans, delivered in 5 × 7.25 Gy, were automatically generated for 20 patients. Polynomial Chaos Expansion (PCE) was used to fast and accurately model the dose against treatment errors. PCE enabled a robustness evaluation of 100.000 treatment scenarios per plan, allowing to derive scenario distributions of clinically relevant dose volume histogram parameters and population dose histograms. Results An average decrease of 3.7 Gy and 4.4 Gy in the medianD 0.1 c m 3 of the NVB was achieved in the patient population in the presence of realistic treatment uncertainties for non-coplanar (NC) and coplanar (C) plans respectively. Sparing NVBs decreased planning target volume coverage by 2.1 % inV 36.25 G y on average, however clinical target volume (CTV) dose remained adequate. Population dose histograms showed that, while sparing does impact dose volume histogram parameters of organs at risk (OARs), the probability of a scenario exceeding planning constraints was limited. Conclusion NVB sparing was maintained in the presence of treatment uncertainties without compromising CTV coverage or OAR dose. There was no significant difference in the achieved NVB dose between NC and C plans. The clinical impact of the achieved sparing is subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Roel C. Kwakernaak
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| | - Victor J. Brand
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| | - Jesús Rojo-Santiago
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| | - Femke E. Froklage
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| | - Mischa S. Hoogeman
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| | - Steven J.M. Habraken
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| | - Maaike T.W. Milder
- Erasmus MC Cancer Institute University Medical Center Rotterdam Department of Radiotherapy the Netherlands
| |
Collapse
|
9
|
Wagenaar D, Langendijk JA, Both S. Linear approximation of variable relative biological effectiveness models for proton therapy. Phys Imaging Radiat Oncol 2025; 33:100691. [PMID: 39885905 PMCID: PMC11780161 DOI: 10.1016/j.phro.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
The McNamara (MCN) and Wedenberg (WED) RBE weighted dose (DRBE), dose and dose-weighted average LET (LETd) were calculated in twenty brain cancer patients. A linear approximation was made for each RBE model to give best agreement to clinically relevant dosimetric parameters. Additional evaluations were done on twenty head and neck and twenty breast cancer patients.The R2 of the fits was ≥0.94 and ≥0.91 for MCN and WED respectively for α/β values ≥1.0 Gy. The graphs derived in this work can be used to convert RBE-LET slopes derived from clinical data to α/β values in the MCN or WED models.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Wagenaar D, Habraken SJM, Rinaldi I, Eekers DBP, Kramer M, Jaspers JPM, van Gent D, Barazzuol L, Klaver YLB, Zindler J, Coremans I, Compter I, Scandurra D, van der Weide HL, Both S, Hoogeman M, Unipan M, Méndez Romero A. Evaluating and reporting LET and RBE-weighted dose in proton therapy for glioma - The Dutch approach. Radiother Oncol 2025; 202:110653. [PMID: 39603511 DOI: 10.1016/j.radonc.2024.110653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND PURPOSE With proton therapy, the relative biological effectiveness (RBE) accounts for increased DNA damage caused by higher linear energy transfer (LET) compared to photons. However, the LET and hence the RBE varies along the proton range, particularly at the Bragg peak, introducing challenges in proton treatment planning for brain tumors. The aim of this paper is to standardize evaluating and reporting LET and RBE in proton therapy for patients with grade 2 and 3 IDH mutant gliomas among the Dutch proton therapy centers. MATERIALS AND METHODS A working group, comprising experts from three Dutch proton therapy centers, conducted nine meetings between 2020 and 2023. A joint literature review supported the standardized evaluation and reporting of LET and RBE. Questionnaires sent out to the three Dutch proton centers in 2020 and 2023 provided input for discussions on clinical practices. Three clinical examples were chosen to illustrate the application of the recommended methodology in treatment planning. RESULTS Following the literature review, a guideline on evaluation and reporting using the dose averaged LET (LETd) of primary and secondary protons calculated in water normalized to unit density was established. The McNamara variable RBE model with an α/β value of 2 Gy was selected for reporting. CONCLUSION The study presents a harmonization of approaches to evaluating and reporting LET and variable RBE in a guideline for the three Dutch proton therapy centers, providing clarity for future clinical interpretation. Having chosen a single variable RBE model offers practicality, although its accuracy remains a topic of ongoing research.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Steven J M Habraken
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Miranda Kramer
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jaap P M Jaspers
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Dik van Gent
- Department of Molecular Genetics, Erasmus MC, University Medical Center Rotterdam
| | - Lara Barazzuol
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yvonne L B Klaver
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaap Zindler
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Haaglanden MC, The Hague, The Netherlands
| | - Ida Coremans
- HollandPTC, Delft, The Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniel Scandurra
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mischa Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands; HollandPTC, Delft, The Netherlands
| |
Collapse
|
11
|
Kuipers SC, Godart J, Negenman EM, Corbeau A, Zolnay AG, Deuzeman HH, de Boer SM, Nout RA, Hoogeman MS. Margin and robustness settings for a library-of-plans IMPT strategy for locally advanced cervical cancer. Phys Med Biol 2024; 69:245016. [PMID: 39608106 DOI: 10.1088/1361-6560/ad9882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/28/2024] [Indexed: 11/30/2024]
Abstract
Objective.This study aims to determine a margin and robustness setting for treating locally advanced cervical cancer (LACC) with a library-of-plans (LoP) based online-adaptive intensity-modulated proton therapy (IMPT).Approach.We analyzed 13 LACC patients with delineated planning and weekly repeat CT scans (reCTs). For each patient, 120 IMPT treatments of 25 fractions were simulated with a LoPs approach. Six different robustness settings (2-7 mm set-up robustness (SR) plus 3% range robustness (RR)) were used to create those 120 IMPT plans. Each fraction was simulated with a weekly reCT, combined with the sampling of inter- and intrafraction treatment uncertainties. The fraction doses were accumulated to obtain a treatment dose to the target volumes, distinguishing between the low-risk clinical target volume (CTV-T-LR) and the elective CTV (CTV-E). If one of the two targets obtained an adequate coverage for more than 90% of the treatments, different anisotropic margins were sampled on top of the robustness setting to the other target to obtain the Pareto-optimal margin in terms of adequate coverage versus increase in target volume.Main results.The percentage of treatments that reach the dose criterionV42.75Gy> 95% for the CTV-T-LR was 22.3%, 28.5%, 51.2%, 73.1%, 85.3%, and 90.0% for 2, 3, 4, 5, 6, and 7 mm SR plus 3% RR and for the CTV-E, this percentage was 60.4%, 73.8%, 86.5%, 92.3%, 96.9%, and 98.5%. The Pareto-optimal margin combined with a 5 mm/3% robustness setting for the CTV-T-LR with an adequate coverage for >90% of the treatments was given by {0, 1, 0, 3, 3, 0} mm in the left, right, anterior, posterior, cranial, caudal direction.Significance.Our study evaluated combinations of robustness and anisotropic margin settings for IMPT for LACC. With 5 mm SR and 3% RR for CTV-E and CTV-T-LR plus a margin to the CTV-T-LR of {0, 1, 0, 3, 3, 0} mm in left, right, anterior, posterior, cranial, and caudal ensured an adequate coverage for >90% of the simulated IMPT treatments.
Collapse
Affiliation(s)
- Sander C Kuipers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Jérémy Godart
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Eva M Negenman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Anouk Corbeau
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - András G Zolnay
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Heloisa H Deuzeman
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephanie M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| |
Collapse
|
12
|
Miladinovic V, Klaver YLB, Krol ADG, Kroesen M, Verbist BM, Habraken SJM, van Furth WR, Coremans IEM. Robust IMPT and follow-up toxicity in skull base chordoma and chondrosarcoma-a single-institution clinical experience. Strahlenther Onkol 2024; 200:1066-1073. [PMID: 39207463 PMCID: PMC11588961 DOI: 10.1007/s00066-024-02280-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Chordomas and chondrosarcomas of the skull base are rare, slowly growing malignant bone neoplasms. Despite their radioresistant properties, proton therapy has been successfully used as an adjunct to resection or as a definitive treatment. Herewith, we present our experience with robustly optimized intensity-modulated proton therapy (IMPT) and related toxicities in skull base chordoma and chondrosarcoma patients treated at HollandPTC, Delft, the Netherlands. METHODS Clinical data, treatment plans, and acute toxicities of patients treated between July 2019 and August 2021 were reviewed. CT and 3.0T MRI scans for treatment planning were performed in supine position in a thermoplastic mold. In total, 21 dose optimization and 28 dose evaluation scenarios were simulated. Acute toxicity was scored weekly before and during the treatment according to the CTCAE v4.0. Median follow-up was 35 months (range 12-36 months). RESULTS Overall, 9 chordoma and 3 chondrosarcoma patients with 1-3 resections prior to IMPT were included; 4 patients had titanium implants. Brainstem core and surface and spinal cord core and surface were used for nominal plan robust optimization in 11, 10, 8, and 7 patients, respectively. Middle ear inflammation, dry mouth, radiation dermatitis, taste disorder, and/or alopecia of grades 1-3 were noted at the end of treatment among 6 patients without similar complaints at inclusion; symptoms disappeared 3 months following the treatment. CONCLUSION Robustly optimized IMPT is clinically feasible as a postoperative treatment for skull base chordoma and chondrosarcoma patients. We observed acceptable early toxicities (grade 1-3) that disappeared within the first 3 months after irradiation.
Collapse
Affiliation(s)
- Vesna Miladinovic
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- HollandPTC, Delft, The Netherlands.
| | - Yvonne L B Klaver
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - Augustinus D G Krol
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | | | - Berit M Verbist
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - Steven J M Habraken
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
- Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wouter R van Furth
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Ida E M Coremans
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
13
|
Chhabra AM, Snider JW, Kole AJ, Stock M, Holtzman AL, Press R, Wang CJ, Li H, Lin H, Shi C, McDonald M, Soike M, Zhou J, Sabouri P, Mossahebi S, Colaco R, Albertini F, Simone CB. Proton Therapy for Spinal Tumors: A Consensus Statement From the Particle Therapy Cooperative Group. Int J Radiat Oncol Biol Phys 2024; 120:1135-1148. [PMID: 39181272 DOI: 10.1016/j.ijrobp.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 08/27/2024]
Abstract
PURPOSE Proton beam therapy (PBT) plays an important role in the management of primary spine tumors. The purpose of this consensus statement was to summarize safe and optimal delivery of PBT for spinal tumors. METHODS AND MATERIALS The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee consisting of radiation oncologists and medical physicists with specific expertise in spinal irradiation developed expert recommendations discussing treatment planning considerations and current approaches in the treatment of primary spinal tumors. RESULTS Computed tomography simulation: factors that require significant consideration include (1) patient comfort, (2) setup reproducibility and stability, and (3) accessibility of appropriate beam angles. SPINE STABILIZATION HARDWARE If present, hardware should be placed with cross-links well above/below the level of the primary tumor to reduce the metal burden at the level of the tumor bed. New materials that can reduce uncertainties include polyether-ether-ketone and composite polyether-ether-ketone-carbon fiber implants. FIELD ARRANGEMENT Appropriate beam selection is required to ensure robust target coverage and organ at risk sparing. Commonly, 2 to 4 treatment fields, typically from posterior and/or posterior-oblique directions, are used. TREATMENT PLANNING METHODOLOGY Robust optimization is recommended for all pencil beam scanning plans (the preferred treatment modality) and should consider setup uncertainty (between 3 and 7 mm) and range uncertainty (3%-3.5%). In the presence of metal hardware, use of an increased range uncertainty up to 5% is recommended. CONCLUSIONS The Particle Therapy Cooperative Group Skull Base/Central nervous system/Sarcoma Subcommittee has developed recommendations to enable centers to deliver PBT safely and effectively for the management of primary spinal tumors.
Collapse
Affiliation(s)
- Arpit M Chhabra
- Department of Radiation Oncology, New York Proton Center, New York, New York.
| | - James W Snider
- Department of Radiation Oncology, South Florida Proton Therapy Institute, Delray Beach, Florida
| | - Adam J Kole
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Markus Stock
- Department of Medical Physics, EBG MedAustron, Wiener Neustadt, Austria
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida
| | - Robert Press
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - C Jake Wang
- Department of Radiation Oncology, Willis Knighton Cancer Center, Shreveport, Louisiana
| | - Heng Li
- Department of Medical Physics, Johns Hopkins, Baltimore, Maryland
| | - Haibo Lin
- Department of Radiation Oncology, New York Proton Center, New York, New York
| | - Chengyu Shi
- Department of Medical Physics, City of Hope, Irvine, California
| | - Mark McDonald
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Michael Soike
- Department of Radiation Oncology, University of Alabama, Birmingham, Alabama
| | - Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Pouya Sabouri
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sina Mossahebi
- Department of Medical Physics, Maryland Proton Treatment Center, Baltimore, Maryland
| | - Rovel Colaco
- Department of Radiation Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Francesca Albertini
- Department of Medical Physics, Paul Scherrer Institut, Würenlingen, Switzerland
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
14
|
Nomer HAA, Knuth F, van Genderingen J, Nguyen D, Sattler M, Zolnay A, Oelfke U, Jiang S, Rossi L, Heijmen BJM, Breedveld S. Deep learning prediction of scenario doses for direct plan robustness evaluations in IMPT for head-and-neck. Phys Med Biol 2024; 69:225014. [PMID: 39530440 DOI: 10.1088/1361-6560/ad8c95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Objective. Intensity modulated proton therapy (IMPT) is susceptible to uncertainties in patient setup and proton range. Robust optimization is employed in IMPT treatment planning to ensure sufficient coverage of the clinical target volume (CTV) in predefined scenarios, albeit at a price of increased planning times. We investigated a deep learning (DL) strategy for dose predictions in individual error scenarios in head and neck cancer IMPT treatment planning, enabling direct evaluation of plan robustness. The model is able to differentiate between scenarios by using embeddings of the scenario index.Approach. To accommodate resolution disparities in planning CT-scans and accommodate the setup error scenarios, we introduced scenario-specific isocentric distance maps as inputs to the DL models. For 392 H&N cancer patients, high-quality 9-scenario ground truth (GT) robust plans were generated with wish-list driven fully automated multi-criteria optimization. The scenario index is converted to one-hot-vector that is used to derive the scenarios embeddings through the training of the DL model, aiding the model to predict a scenario specific dose distribution.Main results. The model achieved within 1%-point of agreement with the GT the predictedV95%of the voxelwise minimum dose for CTV Low and CTV High for 96% and 75% respectively of the test patients. Considering all robustness scenarios, median differences were 0.035%-point for CTV HighV95%, 0.11%-point for CTV LowV95%, 0.29 GyE for parotidsDmean, 0.7 GyE for submandibular glandsDmeanand 0.9 GyE for oral cavityDmean. Prediction of full 3D dose distributions for all scenarios took around 14 s.Significance. Predicting individual scenarios for robust proton therapy using DL dose prediction is feasible, enabling direct robustness evaluation of the predicted scenario doses.
Collapse
Affiliation(s)
- Hazem A A Nomer
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Franziska Knuth
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Joep van Genderingen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Dan Nguyen
- Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Dallas, TX, United States of America
| | - Margriet Sattler
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - András Zolnay
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Steve Jiang
- Department of Radiation Oncology, UT Southwestern Medical Center, Medical Artificial Intelligence and Automation (MAIA) Laboratory, Dallas, TX, United States of America
| | - Linda Rossi
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ben J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
15
|
Albertini F, Czerska K, Vazquez M, Andaca I, Bachtiary B, Besson R, Bolsi A, Bogaert A, Choulilitsa E, Hrbacek J, Jakobsen S, Leiser D, Matter M, Mayor A, Meier G, Nanz A, Nenoff L, Oxley D, Siewert D, Rohrer Schnidrig BA, Smolders A, Szweda H, Van Heerden M, Winterhalter C, Lomax AJ, Weber DC. First clinical implementation of a highly efficient daily online adapted proton therapy (DAPT) workflow. Phys Med Biol 2024; 69:215030. [PMID: 39293489 DOI: 10.1088/1361-6560/ad7cbd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 09/20/2024]
Abstract
Objective.This study presents the first clinical implementation of an efficient online daily adaptive proton therapy workflow (DAPT).Approach.The DAPT workflow includes apre-treatment phase,where atemplateand afallback planare optimized on the planning computed tomography (CT). In theonline phase, theadapted planis re-optimized on daily images from an in-room CT. Daily structures are rigidly propagated from the planning CT. Automated Quality Assurance (QA) involves geometric, sanity checks and an independent dose calculation from the machine files. Differences from the template plan are analyzed field-by-field, and clinical plan is assessed by reviewing the achieved clinical goals using a traffic light protocol. If the daily adapted plan fails any QA or clinical goals, the fallback plan is used. In theoffline phasethe delivered dose is recalculated from log-files onto the daily CT, and a gamma analysis is performed (3%/3 mm). The DAPT workflow has been applied to selected adult patients treated in rigid anatomy for the last serie of the treatment between October 2023 and April 2024.Main Results.DAPT treatment sessions averaged around 23 min [range: 15-30 min] and did not exceed the typical 30 minute time slot. Treatment adaptation, including QA and clinical plan assessment, averaged just under 7 min [range: 3:30-16 min] per fraction. All plans passed the online QAs steps. In the offline phase a good agreement with the log-files reconstructed dose was achieved (minimum gamma pass rate of 97.5%). The online adapted plan was delivered for >85% of the fractions. In 92% of total fractions, adapted plans exhibited improved individual dose metrics to the targets and/or organs at risk.Significance.This study demonstrates the successful implementation of an online daily DAPT workflow. Notably, the duration of a DAPT session did not exceed the time slot typically allocated for non-DAPT treatment. As far as we are aware, this is a first clinical implementation of daily online adaptive proton therapy.
Collapse
Affiliation(s)
- F Albertini
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - K Czerska
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - M Vazquez
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - I Andaca
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - B Bachtiary
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - R Besson
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Bolsi
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Bogaert
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - E Choulilitsa
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - J Hrbacek
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - S Jakobsen
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - D Leiser
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - M Matter
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Mayor
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - G Meier
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A Nanz
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - L Nenoff
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - D Oxley
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - D Siewert
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | | | - A Smolders
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - H Szweda
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - M Van Heerden
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - C Winterhalter
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
| | - A J Lomax
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - D C Weber
- Center for Proton Therapy- Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| |
Collapse
|
16
|
Chocan MS, Wuyckens S, Dasnoy D, Di Perri D, Borderias Villarruel E, Engwall E, Lee JA, Barragan-Montero AM, Sterpin E. A dosimetric and robustness analysis of proton arc therapy with early energy layer and spot assignment for lung cancer versus conventional intensity modulated proton therapy. Acta Oncol 2024; 63:805-815. [PMID: 39473175 PMCID: PMC11538483 DOI: 10.2340/1651-226x.2024.40549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND PURPOSE Intensity Modulated Proton Therapy (IMPT) faces challenges in lung cancer treatment, like maintaining plan robustness for moving tumors against setup, range errors, and interplay effects. Proton Arc Therapy (PAT) is an alternative to maintain target coverage, potentially improving organ at risk (OAR) sparing, reducing beam delivery time (BDT), and enhancing patient experience. We aim to perform a systematic plan comparison study between IMPT and energy layer (EL) and spot assignment algorithm - Proton Arc Therapy (ELSA-PAT) to assess its potential for lung cancer treatment. MATERIAL AND METHODS A total of 14 Lung ELSA-PAT plans were compared retrospectively with IMPT plans. 4D worst-case minimax robust optimization was performed, including 84 scenarios (3%, 3 mm). Dosimetry assessment included target (clinical tumor volume [CTV]) and important OARs, on nominal and worst-case scenarios. Most relevant normal tissue complication probabilities (NTCP), target coverage robustness against interplay effect, and BDT were evaluated. RESULTS CTV D95% and D98% showed no significant difference in comparison. PAT demonstrated better conformality by 66% (p = 0.00012) but delivered a higher heart mean dose (HMD, 23%). There was a 2% increase in NTCP 2-year mortality risk with PAT. Total BDT was comparable among techniques. IMPT was more robust than PAT against interplay effect, considering both D1% (1.0 ± 0.8 Gy vs 1.1 ± 1.4 Gy) and D98% bandwidths (0.9 ± 0.9 Gy vs 1.1 ± 1.3 Gy). INTERPRETATION Both techniques provide a similar level of dose coverage to the target volume. Although PAT improved dose conformality, higher HMD translated into increased heart toxicity, presumably due to chosen planning methodology and OAR proximity to target. Increased ELs and spots raised PAT BDT, although it could improve daily treatment workflow.
Collapse
Affiliation(s)
- Macarena S Chocan
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium.
| | - Sophie Wuyckens
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Damien Dasnoy
- Université catholique de Louvain, Institute of Information and Communication Technologies (ICTEAM), Louvain-La-Neuve, Belgium
| | - Dario Di Perri
- Department of Radiation Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Elena Borderias Villarruel
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Erik Engwall
- RaySearch Laboratories - Research and Development Department, Stockholm, Sweden
| | - John A Lee
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Ana M Barragan-Montero
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - Edmond Sterpin
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium; KULeuven, Department of Oncology, Laboratory of external radiotherapy, Leuven, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium
| |
Collapse
|
17
|
Chan MKH, Zhang Y. Robust optimization incorporating weekly predicted anatomical CTs in IMPT of nasopharyngeal cancer. Phys Med Biol 2024; 69:215032. [PMID: 39419103 DOI: 10.1088/1361-6560/ad8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Objective.This study proposes a robust optimization (RO) strategy utilizing virtual CTs (vCTs) predicted by an anatomical model in intensity-modulated proton therapy (IMPT) for nasopharyngeal cancer (NPC).Methods and Materials.For ten NPC patients, vCTs capturing anatomical changes at different treatment weeks were generated using a population average anatomy model. Two RO strategies of a 6 beams IMPT with 3 mm setup uncertainty (SU) and 3% range uncertainty (RU) were compared: conventional robust optimization (cRO) based on a single planning CT (pCT), and anatomical RO incorporating 2 and 3 predicted anatomies (aRO2 and aRO3). The robustness of these plans was assessed by recalculating them on weekly CTs (week 2-7) and extracting the voxel wise-minimum and maximum doses with 1 mm SU and 3% RU (voxmin\voxmax1mm3%).Results.The aRO plans demonstrated improved robustness in high-risk CTV1 and low-risk CTV 2 coverage compared to cRO plans. The weekly evaluation showed a lower plan adaptation rate for aRO3 (40%) vs. cRO (70%). The weekly nominal and voxmax1mm3%doses to OARs, especially spinal cord, are better controlled relative to their baseline doses at week 1 with aRO plans. The accumulated dose analysis showed that CTV1&2 had adequate coverage and serial organs (spinal cord and brainstem) were within their dose tolerances in the voxmin\voxmax1mm3%, respectively.Conclusion.Incorporating predicted weekly CTs from a population based average anatomy model in RO improves week-to-week target dose coverage and reduces false plan adaptations without increasing normal tissue doses. This approach enhances IMPT plan robustness, potentially facilitating reduced SU and further lowering OAR doses.
Collapse
Affiliation(s)
- Mark Ka Heng Chan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Orovwighose T, Rhein B, Schramm O, Jäkel O, Batista V. Definition of a framework for volumetric modulated arc therapy plan quality assessment with integration of dose-, complexity-, and robustness metrics. Phys Imaging Radiat Oncol 2024; 32:100685. [PMID: 39717184 PMCID: PMC11663972 DOI: 10.1016/j.phro.2024.100685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Background and purpose Conventionally, the quality of radiotherapy treatment plans is assessed through visual inspection of dose distributions and dose-volume histograms. This study developed a framework to evaluate plan quality using dose, complexity, and robustness metrics. Additionally, a method for predicting plan robustness metrics using dose and complexity metrics was introduced for cases where plan robustness evaluation is unavailable or impractical. Materials and methods The framework and prediction models were developed and validated using 103-bronchial Volumetric Modulated Arc Therapy (VMAT)-plans. The application of the framework was demonstrated using 25-VMAT-plans. To identify significant metrics for plan evaluation, 122-metrics were analysed and narrowed down using multivariate Spearman correlation. Metric limits were set with Statistical process control (SPC). Robustness metrics were predicted using multivariable or single linear regression models based on dose-and complexity-metrics. Results Twenty-five-metrics were selected based on the amount and strength of correlations. R95(dose coverage) and HI95/5(homogeneity index) stood out among the dose-metrics, while the complexity-metrics showed similar correlations. Average scenarios dose at 95 % Clinical Target Volume D95mean(CTV) and Errorbar-based Volume-Histograms (EVH) were notable for robustness metrics. Approximately 99 % of evaluated metrics fell within established SPC limits. The prediction model for D95mean(CTV) showed good performance (adjusted R2 = 0.88, mean squared error (MSE) = 3.84 × 10-6), while the model for EVH demonstrated moderate reliability (adjusted R2 = 0.52, MSE = 0.2). No statistically significant differences were found between the predicted (using dose-and complexity-metrics) and calculated robustness metrics (EVH (p-value = 0.9) and D95mean(CTV) (p-value = 1)). Conclusions The developed framework enables early detection of sub-optimal, complex and non-robust treatment plans. The predictive model can be used when robustness evaluations are impractical.
Collapse
Affiliation(s)
- Tina Orovwighose
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Bernhard Rhein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Schramm
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Dep. Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vania Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| |
Collapse
|
19
|
Rojo-Santiago J, Habraken SJM, Unipan M, Both S, Bosmans G, Perkó Z, Korevaar E, Hoogeman MS. A probabilistic evaluation of the Dutch robustness and model-based selection protocols for Head-and-Neck IMPT: A multi-institutional study. Radiother Oncol 2024; 199:110441. [PMID: 39069084 DOI: 10.1016/j.radonc.2024.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE In the Netherlands, 2 protocols have been standardized for PT among the 3 proton centers: a robustness evaluation (RE) to ensure adequate CTV dose and a model-based selection (MBS) approach for IMPT patient-selection. This multi-institutional study investigates (i) inter-patient and inter-center variation of target dose from the RE protocol and (ii) the robustness of the MBS protocol against treatment errors for a cohort of head-and-neck cancer (HNC) patients treated in the 3 Dutch proton centers. MATERIALS AND METHODS Clinical treatment plans of 100 HNC patients were evaluated. Polynomial Chaos Expansion (PCE) was used to perform a comprehensive robustness evaluation per plan, enabling the probabilistic evaluation of 100,000 complete fractionated treatments. PCE allowed to derive scenario distributions of clinically relevant dosimetric parameters to assess CTV dose (D99.8%/D0.2%, based on a prior photon plan calibration) and tumour control probabilities (TCP) as well as the evaluation of the dose to OARs and normal tissue complication probabilities (NTCP) per center. RESULTS For the CTV70.00, doses from the RE protocol were consistent with the clinical plan evaluation metrics used in the 3 centers. For the CTV54.25, D99.8% were consistent with the clinical plan evaluation metrics at center 1 and 2 while, for center 3, a reduction of 1 GyRBE was found on average. This difference did not impact modelled TCP at center 3. Differences between expected and nominal NTCP were below 0.3 percentage point for most patients. CONCLUSION The standardization of the RE and MBS protocol lead to comparable results in terms of TCP and the NTCPs. Still, significant inter-patient and inter-center variation in dosimetric parameters remained due to clinical practice differences at each institution. The MBS approach is a robust protocol to qualify patients for PT.
Collapse
Affiliation(s)
- Jesús Rojo-Santiago
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands.
| | - Steven J M Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands
| | - Mirko Unipan
- GROW School for Oncology, Maastricht University Medical Center, Department of Radiation Oncology (Maastro), Maastricht, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Geert Bosmans
- GROW School for Oncology, Maastricht University Medical Center, Department of Radiation Oncology (Maastro), Maastricht, the Netherlands
| | - Zoltán Perkó
- Delft University of Technology, Department of Radiation Science and Technology, Delft, the Netherlands
| | - Erik Korevaar
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands
| |
Collapse
|
20
|
Canters R, van der Klugt K, Trier Taasti V, Buijsen J, Ta B, Steenbakkers I, Houben R, Vilches-Freixas G, Berbee M. Robustness of intensity modulated proton treatment of esophageal cancer for anatomical changes and breathing motion. Radiother Oncol 2024; 198:110409. [PMID: 38917884 DOI: 10.1016/j.radonc.2024.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/26/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND AND PURPOSE In this study, we assessed the robustness of intensity modulated proton therapy (IMPT) in esophageal cancer for anatomical variations during treatment. METHODS The first sixty esophageal cancer patients, treated clinically with chemoradiotherapy were included. The treatment planning strategy was based on an internal target volume (ITV) approach, where the ITV was created from the clinical target volumes (CTVs) delineated on all phases of a 4DCT. For optimization, a 3 mm isotropic margin was added to the ITV, combined with robust optimization using 5 mm setup and 3 % range uncertainty. Each patient received weekly repeat CTs (reCTs). Robust plan re-evaluation on all reCTs, and a robust dose summation was performed. To assess the factors influencing ITV coverage, a multivariate linear regression analysis was performed. Additionally, clinical adaptations were evaluated. RESULTS The target coverage was adequate (ITV V94%>98 % on the robust voxel-wise minimum dose) on most reCTs (91 %), and on the summed dose in 92 % of patients. Significant predictors for ITV coverage in the multivariate analysis were diaphragm baseline shift and water equivalent depth (WED) of the ITV in the beam direction. Underdosage of the ITV mainly occurred in week 1 and 4, leading to treatment adaptation of eight patients, all on the first reCT. CONCLUSION Our IMPT treatment of esophageal cancer is robust for anatomical variations. Adaptation appears to be most effective in the first week of treatment. Diaphragm baseline shifts and WED are predictive factors for ITV underdosage, and should be incorporated in an adaptation protocol.
Collapse
Affiliation(s)
- Richard Canters
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Kim van der Klugt
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands; Aarhus University, Danish Centre for Particle Therapy, Denmark
| | - Jeroen Buijsen
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Bastiaan Ta
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Inge Steenbakkers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ruud Houben
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Maaike Berbee
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
21
|
Borderías-Villarroel E, Barragán-Montero A, Sterpin E. Time is NTCP: Should we maximize patient throughput or perform online adaptation on proton therapy systems? Radiother Oncol 2024; 198:110389. [PMID: 38885906 DOI: 10.1016/j.radonc.2024.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Compared to conventional radiotherapy (XT), proton therapy (PT) may improve normal tissue complication probabilities (NTCP). However, PT typically requires higher adaptation rates due to an increased sensitivity to anatomical changes. Systematic online adaptation may address this issue, but it requires additional replanning time, decreasing patient throughput. Therefore, less patients would benefit in such case from PT for a given machine capacity, with results in worse NTCP. AIM To investigate the trade-off between PT patient throughput and NTCP gain as a function of the time needed for adaptation. METHODS A retrospective database of 14 lung patients with two repeated 4DCTs was used to compare NTCP values between XT and PT for NTCP2ym (2-year mortality), NTCPdysphagia and NTCPpneumonitis. Four scenarios were considered for PT: no adaptation using clinical robustness parameters (4D robust optimization, 3 % range error and PTV-equivalent setup errors); systematic online adaptation with clinical robustness parameters; setup errors reduced to 4 mm and to 2 mm. Dose was accumulated on the planning CT. The number of patients treated with PT depended on the extra time needed for adaptation, assuming an 8-hours capacity (assuming 14 patients a day; thus minimum 34.2 min per treatment session if there is no or instantaneous adaptation). RESULTS Baseline NTCP gains (PT against XT without adaptation) equaled 6.9 %, 6.1 %, and 7.7 % for NTCP2ym, NTCPdysphagia and NTCPpneumonitis, respectively. Using instantaneous online adaptation and setup errors of 2 mm, the overall gains were then 10.7 %, 13.6 % and 12.4 %. Taking into account loss of capacity, 13.7 min was the maximum extra-time allowed to complete adaptation and maintain an advantage on all three metrics for the 2-mm setup error scenario. CONCLUSION This study highlights the critical importance of keeping short online adaptation times when using systems with limited capacity like PT.
Collapse
Affiliation(s)
- E Borderías-Villarroel
- UCLouvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - A Barragán-Montero
- UCLouvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium
| | - E Sterpin
- UCLouvain, Institut de recherche expérimentale et clinique, Molecular Imaging and Radiation Oncology (MIRO) Laboratory, Brussels, Belgium; KU Leuven, Department of Oncology, Laboratory of external radiotherapy, Leuven, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium.
| |
Collapse
|
22
|
Kong W, Huiskes M, Habraken SJM, Astreinidou E, Rasch CRN, Heijmen BJM, Breedveld S. Reducing the lateral dose penumbra in IMPT by incorporating transmission pencil beams. Radiother Oncol 2024; 198:110388. [PMID: 38897315 DOI: 10.1016/j.radonc.2024.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE In intensity-modulated proton therapy (IMPT), Bragg peaks result in steep distal dose fall-offs, while the lateral IMPT dose fall-off is often less steep than in photon therapy. High-energy pristine transmission ('shoot through') pencil beams have no Bragg peak in the patient, but show a sharp lateral penumbra at the target level. We investigated whether combining Bragg peaks with Transmission pencil beams ('IMPT&TPB') could improve head-and-neck plans by exploiting the steep lateral dose fall-off of transmission pencil beams. APPROACH Our system for automated multi-criteria IMPT plan optimisation was extended for combined optimisation of BPs and TPBs. The system generates for each patient a Pareto-optimal plan using a generic 'wish-list' with prioritised planning objectives and hard constraints. For eight nasopharynx cancer patients (NPC) and eight oropharynx cancer (OPC) patients, the IMPT&TPB plan was compared to the competing conventional IMPT plan with only Bragg peaks, which was generated with the same optimiser, but without transmission pencil beams. MAIN RESULTS Clinical OAR and target constraints were met in all plans. By allowing transmission pencil beams in the optimisation, on average 14 of the 25 investigated OAR plan parameters significantly improved for NPC, and 9 of the 17 for OPC, while only one OPC parameter showed small but significant deterioration. Non-significant differences were found in the remaining parameters. In NPC, cochlea Dmean reduced by up to 17.5 Gy and optic nerve D2% by up to 11.1 Gy. CONCLUSION Compared to IMPT, IMPT&TPB resulted in comparable target coverage with overall superior OAR sparing, the latter originating from steeper dose fall-offs close to OARs.
Collapse
Affiliation(s)
- W Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - M Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - S J M Habraken
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - C R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, the Netherlands; HollandPTC, Delft, the Netherlands
| | - B J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Bertholet J, Guyer G, Mueller S, Loebner HA, Volken W, Aebersold DM, Manser P, Fix MK. Robust optimization and assessment of dynamic trajectory and mixed-beam arc radiotherapy: a preliminary study. Phys Med Biol 2024; 69:165032. [PMID: 39079553 DOI: 10.1088/1361-6560/ad6950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Objective.Dynamic trajectory radiotherapy (DTRT) and dynamic mixed-beam arc therapy (DYMBARC) exploit non-coplanarity and, for DYMBARC, simultaneously optimized photon and electron beams. Margin concepts to account for set-up uncertainties during delivery are ill-defined for electron fields. We develop robust optimization for DTRT&DYMBARC and compare dosimetric plan quality and robustness for both techniques and both optimization strategies for four cases.Approach.Cases for different treatment sites and clinical target volume (CTV) to planning target volume (PTV) margins,m, were investigated. Dynamic gantry-table-collimator photon paths were optimized to minimize PTV/organ-at-risk (OAR) overlap in beam's-eye-view and minimize potential photon multileaf collimator (MLC) travel. For DYMBARC plans, non-isocentric partial electron arcs or static fields with shortened source-to-surface distance (80 cm) were added. Direct aperture optimization (DAO) was used to simultaneously optimize MLC-based intensity modulation for both photon and electron beams yielding deliverable PTV-based DTRT&DYMBARC plans. Robust-optimized plans used the same paths/arcs/fields. DAO with stochastic programming was used for set-up uncertainties with equal weights in all translational directions and magnitudeδsuch thatm= 0.7δ. Robust analysis considered random errors in all directions with or without an additional systematic error in the worst 3D direction for the adjacent OARs.Main results.Electron contribution was 7%-41% of target dose depending on the case and optimization strategy for DYMBARC. All techniques achieved similar CTV coverage in the nominal (no error) scenario. OAR sparing was overall better in the DYMBARC plans than in the DTRT plans and DYMBARC plans were generally more robust to the considered uncertainties. OAR sparing was better in the PTV-based than in robust-optimized plans for OARs abutting or overlapping with the target volume, but more affected by uncertainties.Significance.Better plan robustness can be achieved with robust optimization than with margins. Combining electron arcs/fields with non-coplanar photon trajectories further improves robustness and OAR sparing.
Collapse
Affiliation(s)
- Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Hannes A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Daniel M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
24
|
Sterpin E, Widesott L, Poels K, Hoogeman M, Korevaar EW, Lowe M, Molinelli S, Fracchiolla F. Robustness evaluation of pencil beam scanning proton therapy treatment planning: A systematic review. Radiother Oncol 2024; 197:110365. [PMID: 38830538 DOI: 10.1016/j.radonc.2024.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Compared to conventional radiotherapy using X-rays, proton therapy, in principle, allows better conformity of the dose distribution to target volumes, at the cost of greater sensitivity to physical, anatomical, and positioning uncertainties. Robust planning, both in terms of plan optimization and evaluation, has gained high visibility in publications on the subject and is part of clinical practice in many centers. However, there is currently no consensus on the methods and parameters to be used for robust optimization or robustness evaluation. We propose to overcome this deficiency by following the modified Delphi consensus method. This method first requires a systematic review of the literature. We performed this review using the PubMed and Web Of Science databases, via two different experts. Potential conflicts were resolved by a third expert. We then explored the different methods before focusing on clinical studies that evaluate robustness on a significant number of patients. Many robustness assessment methods are proposed in the literature. Some are more successful than others and their implementation varies between centers. Moreover, they are not all statistically or mathematically equivalent. The most sophisticated and rigorous methods have seen more limited application due to the difficulty of their implementation and their lack of widespread availability.
Collapse
Affiliation(s)
- E Sterpin
- KU Leuven - Department of Oncology, Laboratory of Experimental Radiotherapy, Leuven, Belgium; UCLouvain - Institution de Recherche Expérimentale et Clinique, Center of Molecular Imaging Radiotherapy and Oncology (MIRO), Brussels, Belgium; Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium.
| | - L Widesott
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - K Poels
- Particle Therapy Interuniversity Center Leuven - PARTICLE, Leuven, Belgium; UZ Leuven, Department of Radiation Oncology, Leuven, Belgium
| | - M Hoogeman
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, the Netherlands; HollandPTC, Delft, the Netherlands
| | - E W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, the Netherlands
| | - M Lowe
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK
| | - S Molinelli
- Fondazione CNAO - Medical Physics Unit, Pavia, Italy
| | - F Fracchiolla
- Proton Therapy Center - UO Fisica Sanitaria, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| |
Collapse
|
25
|
Gambetta V, Fredriksson A, Menkel S, Richter C, Stützer K. The partial adaptation strategy for online-adaptive proton therapy: A proof of concept study in head and neck cancer patients. Med Phys 2024; 51:5572-5581. [PMID: 38837396 DOI: 10.1002/mp.17178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The accuracy of intensity-modulated proton therapy (IMPT) is greatly affected by anatomy variations that might occur during the treatment course. Online plan adaptations have been proposed as a solution to intervene promptly during a treatment session once the anatomy changes are detected. The implementation of online-adaptive proton therapy (OAPT) is still hindered by time-consuming tasks in the workflow. PURPOSE The study introduces the novel concept of partial adaptation and aims at investigating its feasibility as a potential solution to parallelize tasks during an OAPT workflow for saving valuable in-room time. METHODS The proof-of-principle simulation study includes datasets from six head and neck cancer (HNC) patients, each consisting of one planning CT (pCT) and three contoured control CTs (cCTs). Robust 3-field normo-fractionated initial IMPT plans were generated on the pCTs with a standardized field configuration, delivering 66 Gy and 54 Gy to the high-risk and low-risk clinical target volume (CTVHigh and CTVLow), respectively. For each cCT, a dose-mimicking-based partial adaptation was applied: two fields were adapted on the current anatomy taking into account the background dose of the first non-adapted field supposedly delivered in the meantime. Fraction doses on the cCTs resulting from partially adapted plans with different first (non-adapted) field assignments were compared against those from non-adapted and fully adapted plans regarding target coverage and organs at risk (OARs) sparing. The robustness of partially adapted plans was also evaluated. RESULTS Partially adapted plans showed comparable results to fully adapted plans and were superior to non-adapted plans for both target coverage and OAR sparing. Target coverage degradation in the non-adapted plans (median D98%: 95.9% and 97.5% for CTVLow and CTVHigh, respectively) was recovered by both partial (98.0% and 98.5%) and full adaptation (98.2% and 98.7%) in comparison to the initial plans (98.7% and 98.8%). The initial hotspot dose for the CTVHigh (median D2%: 101.8%) increased in the non-adapted plans (102.9%) and was recovered by the adaptive strategies (partial: 102.5%, full: 101.9%). The near-maximum dose (D0.01cc) to brainstem and spinal cord was within clinical constraints for all investigated dose distributions, but clearly increased for no adaptation and improved in the (both partially and fully) adapted plans with respect to the non-adapted ones. The parotids' median doses (D50) were mainly patient-specific depending on the proximity to the target region, but anyway lower for the partially and fully adapted plans compared to the non-adapted ones. OAR sparing was furthermore improved for the partially adapted plans in comparison to full adaptation. Robustness of the target dose metrics was preserved in all evaluated scenarios. CONCLUSIONS For OAPT of HNC patients, partial adaptation is able to generate plans of superior conformity to non-adapted plans and of comparable conformity as fully adapted plans, while having the potential to speed up the online-adaptive workflows. Thus, partial adaptation represents an intermediate approach until fast online adaptation workflows become available. Furthermore, it can be applied in workflows where online treatment verification stops the delivery and triggers an online adaptation for the remaining fraction.
Collapse
Affiliation(s)
- Virginia Gambetta
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | | | - Stefan Menkel
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristin Stützer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| |
Collapse
|
26
|
Staal FH, Janssen J, Krishnapillai S, Langendijk JA, Both S, Brouwer CL, Aluwini S. Target coverage and organs at risk dose in hypofractionated salvage radiotherapy after prostatectomy. Phys Imaging Radiat Oncol 2024; 31:100600. [PMID: 39022396 PMCID: PMC11254181 DOI: 10.1016/j.phro.2024.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Background and purpose Introducing moderately hypofractionated salvage radiotherapy (SRT) following prostatectomy obligates investigation of its effects on clinical target volume (CTV) coverage and organ-at-risk (OAR) doses. This study assessed interfractional volume and dose changes in OARs and CTV in moderately hypofractionated SRT and evaluated the 8-mm planning target volume (PTV) margin. Materials and methods Twenty patients from the PERYTON-trial were included; 10 received conventional SRT (35 × 2 Gy) and 10 hypofractionated SRT (20 × 3 Gy). OARs were delineated on 539 pre-treatment Cone Beam CT (CBCT) scans to compare interfractional OAR volume changes. CTVs for the hypofractionated group were delineated on 199 CBCTs. Dose distributions with 4 and 6 mm PTV margins were generated using voxel-wise minimum robustness evaluation of the original 8-mm PTV plan, and dose changes were assessed. Results Median volume changes for bladder and rectum were -26 % and -10 %, respectively. OAR volume changes were not significantly different between the two treatment schedules. The 8-mm PTV margin ensured optimal coverage for prostate bed and vesicle bed CTV (V95 = 100 % in >97 % fractions). However, bladder V60 <25 % was not achieved in 5 % of fractions, and rectum V60 <5 % was unmet in 33 % of fractions. A 6-mm PTV margin resulted in CTV V95 = 100 % in 92 % of fractions for prostate bed, and in 86 % for vesicle bed CTV. Conclusions Moderately hypofractionated SRT yielded comparable OAR volume changes to conventionally fractionated SRT. Interfractional changes remained acceptable with a PTV margin of 6 mm for prostate bed and 8 mm for vesicle bed.
Collapse
Affiliation(s)
- Floor H.E. Staal
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Jorinde Janssen
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Sajee Krishnapillai
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Johannes A. Langendijk
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Stefan Both
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Charlotte L. Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| | - Shafak Aluwini
- University of Groningen, University Medical Centre Groningen, Department of Radiation Oncology, Hanzeplein 1, Postbus 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
27
|
Hessels AC, Visser S, Both S, Korevaar EW, Langendijk JA, Wijsman R. A planning study of proton therapy dose escalation for non-small cell lung cancer. Phys Imaging Radiat Oncol 2024; 31:100616. [PMID: 39157295 PMCID: PMC11327929 DOI: 10.1016/j.phro.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
In non-small-cell lung cancer (NSCLC), improving local control through radiotherapy dose escalation might improve survival. However, a photon-based RCT showed increased organ at risk dose exposure and worse overall survival in the dose escalation arm. In this study, intensity-modulated proton therapy plans with dose escalation to the primary tumour were created for 20 NSCLC patients. The mediastinal envelope was delineated to spare structures around the heart. It was possible to increase primary tumour dose up to 74.0 Gy without a significant increase in organ at risk doses and predicted toxicity.
Collapse
Affiliation(s)
- Arno C Hessels
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sabine Visser
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik W Korevaar
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robin Wijsman
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Huiskes M, Kong W, Oud M, Crama K, Rasch C, Breedveld S, Heijmen B, Astreinidou E. Validation of Fully Automated Robust Multicriterial Treatment Planning for Head and Neck Cancer IMPT. Int J Radiat Oncol Biol Phys 2024; 119:968-977. [PMID: 38284961 DOI: 10.1016/j.ijrobp.2023.12.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/10/2023] [Accepted: 12/23/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Our purpose was to compare robust intensity modulated proton therapy (IMPT) plans, automatically generated with wish-list-based multicriterial optimization as implemented in Erasmus-iCycle, with manually created robust clinical IMPT plans for patients with head and neck cancer. METHODS AND MATERIALS Thirty-three patients with head and neck cancer were retrospectively included. All patients were previously treated with a manually created IMPT plan with 7000 cGy dose prescription to the primary tumor (clinical target volume [CTV]7000) and 5425 cGy dose prescription to the bilateral elective volumes (CTV5425). Plans had a 4-beam field configuration and were generated with scenario-based robust optimization (21 scenarios, 3-mm setup error, and ±3% density uncertainty for the CTVs). Three clinical plans were used to configure the Erasmus-iCycle wish-list for automated generation of robust IMPT plans for the other 30 included patients, in line with clinical planning requirements. Automatically and manually generated IMPT plans were compared for (robust) target coverage, organ-at-risk (OAR) doses, and normal tissue complication probabilities (NTCP). No manual fine-tuning of automatically generated plans was performed. RESULTS For all automatically generated plans, voxel-wise minimum D98% values for the CTVs were within clinical constraints and similar to manual plans. All investigated OAR parameters were favorable in the automatically generated plans (all P < .001). Median reductions in mean dose to OARs went up to 667 cGy for the inferior pharyngeal constrictor muscle, and median reductions in D0.03cm3 in serial OARs ranged up to 1795 cGy for the spinal cord surface. The observed lower mean dose in parallel OARs resulted in statistically significant lower NTCP for xerostomia (grade ≥2: 34.4% vs 38.0%; grade ≥3: 9.0% vs 10.2%) and dysphagia (grade ≥2: 11.8% vs 15.0%; grade ≥3: 1.8% vs 2.8%). CONCLUSIONS Erasmus-iCycle was able to produce IMPT dose distributions fully automatically with similar (robust) target coverage and improved OAR doses and NTCPs compared with clinical manual planning, with negligible hands-on planning workload.
Collapse
Affiliation(s)
- Merle Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Wens Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Michelle Oud
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Koen Crama
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Coen Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands; HollandPTC, Delft, The Netherlands
| | - Sebastiaan Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Ben Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Eleftheria Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
29
|
Fink TL, Kristiansen C, Hansen TS, Hansen TF, Thing RS. Robust optimization of the Gross Tumor Volume compared to conventional Planning Target Volume-based planning in photon Stereotactic Body Radiation Therapy of lung tumors. Acta Oncol 2024; 63:448-455. [PMID: 38899392 PMCID: PMC11332535 DOI: 10.2340/1651-226x.2024.40049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Robust optimization has been suggested as an approach to reduce the irradiated volume in lung Stereotactic Body Radiation Therapy (SBRT). We performed a retrospective planning study to investigate the potential benefits over Planning Target Volume (PTV)-based planning. MATERIAL AND METHODS Thirty-nine patients had additional plans using robust optimization with 5-mm isocenter shifts of the Gross Tumor Volume (GTV) created in addition to the PTV-based plan used for treatment. The optimization included the mid-position phase and the extreme breathing phases of the 4D-CT planning scan. The plans were compared for tumor coverage, isodose volumes, and doses to Organs At Risk (OAR). Additionally, we evaluated both plans with respect to observed tumor motion using the peak tumor motion seen on the planning scan and cone-beam CTs. RESULTS Statistically significant reductions in irradiated isodose volumes and doses to OAR were achieved with robust optimization, while preserving tumor dose. The reductions were largest for the low-dose volumes and reductions up to 188 ccm was observed. The robust evaluation based on observed peak tumor motion showed comparable target doses between the two planning methods. Accumulated mean GTV-dose was increased by a median of 4.46 Gy and a non-significant increase of 100 Monitor Units (MU) was seen in the robust optimized plans. INTERPRETATION The robust plans required more time to prepare, and while it might not be a feasible planning strategy for all lung SBRT patients, we suggest it might be useful for selected patients.
Collapse
Affiliation(s)
- Thomas L Fink
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Institute for Regional Health Research, University of Southern Denmark, Odense M, Denmark.
| | - Charlotte Kristiansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Torben S Hansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Torben F Hansen
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Institute for Regional Health Research, University of Southern Denmark, Odense M, Denmark
| | - Rune S Thing
- Department of Oncology, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| |
Collapse
|
30
|
Hardt JJ, Pryanichnikov AA, Homolka N, DeJongh EA, DeJongh DF, Cristoforetti R, Jäkel O, Seco J, Wahl N. The potential of mixed carbon-helium beams for online treatment verification: a simulation and treatment planning study. Phys Med Biol 2024; 69:125028. [PMID: 38697212 DOI: 10.1088/1361-6560/ad46db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Objective.Recently, a new and promising approach for range verification was proposed. This method requires the use of two different ion species. Due to their equal magnetic rigidity, fully ionized carbon and helium ions can be simultaneously accelerated in accelerators like synchrotrons. At sufficiently high treatment energies, helium ions can exit the patient distally, reaching approximately three times the range of carbon ions at an equal energy per nucleon. Therefore, the proposal involves adding a small helium fluence to the carbon ion beam and utilizing helium as an online range probe during radiation therapy. This work aims to develop a software framework for treatment planning and motion verification in range-guided radiation therapy using mixed carbon-helium beams.Approach.The developed framework is based on the open-source treatment planning toolkit matRad. Dose distributions and helium radiographs were simulated using the open-source Monte Carlo package TOPAS. Beam delivery system parameters were obtained from the Heidelberg Ion Therapy Center, and imaging detectors along with reconstruction were facilitated by ProtonVDA. Methods for reconstructing the most likely patient positioning error scenarios and the motion phase of 4DCT are presented for prostate and lung cancer sites.Main results.The developed framework provides the capability to calculate and optimize treatment plans for mixed carbon-helium ion therapy. It can simulate the treatment process and generate helium radiographs for simulated patient geometry, including small beam views. Furthermore, motion reconstruction based on these radiographs seems possible with preliminary validation.Significance.The developed framework can be applied for further experimental work with the promising mixed carbon-helium ion implementation of range-guided radiotherapy. It offers opportunities for adaptation in particle therapy, improving dose accumulation, and enabling patient anatomy reconstruction during radiotherapy.
Collapse
Affiliation(s)
- Jennifer J Hardt
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Alexander A Pryanichnikov
- Department of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Noa Homolka
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Medical Faculty of Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Ethan A DeJongh
- ProtonVDA LLC, 1700 Park St Ste 208, Naperville, IL 60563, United States of America
| | - Don F DeJongh
- ProtonVDA LLC, 1700 Park St Ste 208, Naperville, IL 60563, United States of America
| | - Remo Cristoforetti
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Oliver Jäkel
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Germany
| | - Joao Seco
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Department of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
31
|
Kuipers SC, Godart J, Corbeau A, Breedveld S, Mens JWM, de Boer SM, Nout RA, Hoogeman MS. Dosimetric impact of bone marrow sparing for robustly optimized IMPT for locally advanced cervical cancer. Radiother Oncol 2024; 195:110222. [PMID: 38471634 DOI: 10.1016/j.radonc.2024.110222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND AND PURPOSE To investigate the trade-off between bone marrow sparing (BMS) and dose to organs at risk (OARs) for intensity modulated proton therapy (IMPT) for women with locally advanced cervical cancer (LACC). MATERIALS AND METHODS Twenty LACC patients were retrospectively included. IMPT plans were created for each patient using automated treatment planning. These plans progressively reduced bone marrow mean doses by steps of 1 GyRBE, while constraining target coverage and conformality. The relation between bone marrow dose and bladder, small bowel, rectum, and sigmoid doses was evaluated. RESULTS A total of 140 IMPT plans were created. Plans without BMS had an average [range] bone marrow mean dose of 17.3 [14.7-21.6] GyRBE , which reduced to 12.0 [10.0-14.0] GyRBE with maximum BMS. The mean OAR dose [range] increased modestly for 1 GyRBE BMS: 0.2 [0.0 - 0.6] GyRBE for bladder, 0.3 [-0.2 - 0.7] GyRBE for rectum, 0.4 [0.1 - 0.8] GyRBE for small bowel, and 0.2 [-0.2 - 0.4] GyRBE for sigmoid. Moreover, for maximum BMS, mean OAR doses [range] escalated by 3.3 [0.1 - 6.7] GyRBE for bladder, 5.8 [1.8 - 12.4] GyRBE for rectum, 3.9 [1.6 - 5.9] GyRBE for small bowel, and 2.7 [0.6 - 5.9] GyRBE for sigmoid. CONCLUSION Achieving 1 GyRBE BMS for IMPT is feasible for LACC patients with limited dosimetric impact on other OARs. While further bone marrow dose reduction is possible for some patients, it may increase OAR doses substantially for others. Hence, we recommend a personalized approach when introducing BMS into clinical IMPT treatment planning to carefully assess individual patient benefits and risks.
Collapse
Affiliation(s)
- S C Kuipers
- Department of Radiotherapy, Erasmus MC Cancer Institute - University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands.
| | - J Godart
- Department of Radiotherapy, Erasmus MC Cancer Institute - University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| | - A Corbeau
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J W M Mens
- Department of Radiotherapy, Erasmus MC Cancer Institute - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - S M de Boer
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - R A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute - University Medical Center Rotterdam, Rotterdam, The Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| |
Collapse
|
32
|
Wang W, Liu X, Liao Y, Zeng Y, Chen Y, Yu B, Yang Z, Gao H, Qin B. Mixed-size spot scanning with a compact large momentum acceptance superconducting (LMA-SC) gantry beamline for proton therapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad45a6. [PMID: 38688290 PMCID: PMC11265271 DOI: 10.1088/1361-6560/ad45a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Objective. Lowering treatment costs and improving treatment quality are two primary goals for next-generation proton therapy (PT) facilities. This work will design a compact large momentum acceptance superconducting (LMA-SC) gantry beamline to reduce the footprint and expense of the PT facilities, with a novel mixed-size spot scanning method to improve the sparing of organs at risk (OAR).Approach. For the LMA-SC gantry beamline, the movable energy slit is placed in the middle of the last achromatic bending section, and the beam momentum spread of delivered spots can be easily changed during the treatment. Simultaneously, changing the collimator size can provide spots with various lateral spot sizes. Based on the provided large-size and small-size spot models, the treatment planning with mixed spot scanning is optimized: the interior of the target is irradiated with large-size spots (to cover the uniform-dose interior efficiently), while the peripheral of the target is irradiated with small-size spots (to shape the sharp dose falloff at the peripheral accurately).Main results. The treatment plan with mixed-size spot scanning was evaluated and compared with small and large-size spot scanning for thirteen clinical prostate cases. The mixed-size spot plan had superior target dose homogeneities, better protection of OAR, and better plan robustness than the large-size spot plan. Compared to the small-size spot plan, the mixed-size spot plan had comparable plan quality, better plan robustness, and reduced plan delivery time from 65.9 to 40.0 s.Significance. The compact LMA-SC gantry beamline is proposed with mixed-size spot scanning, with demonstrated footprint reduction and improved plan quality compared to the conventional spot scanning method.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xu Liu
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yicheng Liao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiling Zeng
- Department of Medical Physics, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yu Chen
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Benzhaoxia Yu
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, USA
| | - Bin Qin
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
33
|
Mody P, Huiskes M, Chaves-de-Plaza NF, Onderwater A, Lamsma R, Hildebrandt K, Hoekstra N, Astreinidou E, Staring M, Dankers F. Large-scale dose evaluation of deep learning organ contours in head-and-neck radiotherapy by leveraging existing plans. Phys Imaging Radiat Oncol 2024; 30:100572. [PMID: 38633281 PMCID: PMC11021837 DOI: 10.1016/j.phro.2024.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Background and purpose Retrospective dose evaluation for organ-at-risk auto-contours has previously used small cohorts due to additional manual effort required for treatment planning on auto-contours. We aimed to do this at large scale, by a) proposing and assessing an automated plan optimization workflow that used existing clinical plan parameters and b) using it for head-and-neck auto-contour dose evaluation. Materials and methods Our automated workflow emulated our clinic's treatment planning protocol and reused existing clinical plan optimization parameters. This workflow recreated the original clinical plan (P OG ) with manual contours (P MC ) and evaluated the dose effect (P OG - P MC ) on 70 photon and 30 proton plans of head-and-neck patients. As a use-case, the same workflow (and parameters) created a plan using auto-contours (P AC ) of eight head-and-neck organs-at-risk from a commercial tool and evaluated their dose effect (P MC - P AC ). Results For plan recreation (P OG - P MC ), our workflow had a median impact of 1.0% and 1.5% across dose metrics of auto-contours, for photon and proton respectively. Computer time of automated planning was 25% (photon) and 42% (proton) of manual planning time. For auto-contour evaluation (P MC - P AC ), we noticed an impact of 2.0% and 2.6% for photon and proton radiotherapy. All evaluations had a median Δ NTCP (Normal Tissue Complication Probability) less than 0.3%. Conclusions The plan replication capability of our automated program provides a blueprint for other clinics to perform auto-contour dose evaluation with large patient cohorts. Finally, despite geometric differences, auto-contours had a minimal median dose impact, hence inspiring confidence in their utility and facilitating their clinical adoption.
Collapse
Affiliation(s)
- Prerak Mody
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- HollandPTC consortium – Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands
| | - Merle Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Nicolas F. Chaves-de-Plaza
- HollandPTC consortium – Erasmus Medical Center, Rotterdam, Holland Proton Therapy Centre, Delft, Leiden University Medical Center (LUMC), Leiden and Delft University of Technology, Delft, The Netherlands
- Computer Graphics and Visualization Group, EEMCS, TU Delft, Delft 2628 CD, The Netherlands
| | - Alice Onderwater
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Rense Lamsma
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Klaus Hildebrandt
- Computer Graphics and Visualization Group, EEMCS, TU Delft, Delft 2628 CD, The Netherlands
| | - Nienke Hoekstra
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Eleftheria Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Marius Staring
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Frank Dankers
- Department of Radiation Oncology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| |
Collapse
|
34
|
Oud M, Breedveld S, Rojo-Santiago J, Giżyńska MK, Kroesen M, Habraken S, Perkó Z, Heijmen B, Hoogeman M. A fast and robust constraint-based online re-optimization approach for automated online adaptive intensity modulated proton therapy in head and neck cancer. Phys Med Biol 2024; 69:075007. [PMID: 38373350 DOI: 10.1088/1361-6560/ad2a98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Objective. In head-and-neck cancer intensity modulated proton therapy, adaptive radiotherapy is currently restricted to offline re-planning, mitigating the effect of slow changes in patient anatomies. Daily online adaptations can potentially improve dosimetry. Here, a new, fully automated online re-optimization strategy is presented. In a retrospective study, this online re-optimization approach was compared to our trigger-based offline re-planning (offlineTBre-planning) schedule, including extensive robustness analyses.Approach. The online re-optimization method employs automated multi-criterial re-optimization, using robust optimization with 1 mm setup-robustness settings (in contrast to 3 mm for offlineTBre-planning). Hard planning constraints and spot addition are used to enforce adequate target coverage, avoid prohibitively large maximum doses and minimize organ-at-risk doses. For 67 repeat-CTs from 15 patients, fraction doses of the two strategies were compared for the CTVs and organs-at-risk. Per repeat-CT, 10.000 fractions with different setup and range robustness settings were simulated using polynomial chaos expansion for fast and accurate dose calculations.Main results. For 14/67 repeat-CTs, offlineTBre-planning resulted in <50% probability ofD98%≥ 95% of the prescribed dose (Dpres) in one or both CTVs, which never happened with online re-optimization. With offlineTBre-planning, eight repeat-CTs had zero probability of obtainingD98%≥ 95%Dpresfor CTV7000, while the minimum probability with online re-optimization was 81%. Risks of xerostomia and dysphagia grade ≥ II were reduced by 3.5 ± 1.7 and 3.9 ± 2.8 percentage point [mean ± SD] (p< 10-5for both). In online re-optimization, adjustment of spot configuration followed by spot-intensity re-optimization took 3.4 min on average.Significance. The fast online re-optimization strategy always prevented substantial losses of target coverage caused by day-to-day anatomical variations, as opposed to the clinical trigger-based offline re-planning schedule. On top of this, online re-optimization could be performed with smaller setup robustness settings, contributing to improved organs-at-risk sparing.
Collapse
Affiliation(s)
- Michelle Oud
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| | - Sebastiaan Breedveld
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Jesús Rojo-Santiago
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| | | | - Michiel Kroesen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Radiation Oncology, Delft, The Netherlands
| | - Steven Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| | - Zoltán Perkó
- Delft University of Technology, Faculty of Applied Sciences, Department of Radiation Science and Technology, The Netherlands
| | - Ben Heijmen
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Mischa Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Department of Medical Physics & Informatics, Delft, The Netherlands
| |
Collapse
|
35
|
Kong W, Oud M, Habraken SJM, Huiskes M, Astreinidou E, Rasch CRN, Heijmen BJM, Breedveld S. SISS-MCO: large scale sparsity-induced spot selection for fast and fully-automated robust multi-criteria optimisation of proton plans. Phys Med Biol 2024; 69:055035. [PMID: 38224619 DOI: 10.1088/1361-6560/ad1e7a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
Objective.Intensity modulated proton therapy (IMPT) is an emerging treatment modality for cancer. However, treatment planning for IMPT is labour-intensive and time-consuming. We have developed a novel approach for multi-criteria optimisation (MCO) of robust IMPT plans (SISS-MCO) that is fully automated and fast, and we compare it for head and neck, cervix, and prostate tumours to a previously published method for automated robust MCO (IPBR-MCO, van de Water 2013).Approach.In both auto-planning approaches, the applied automated MCO of spot weights was performed with wish-list driven prioritised optimisation (Breedveld 2012). In SISS-MCO, spot weight MCO was applied once for every patient after sparsity-induced spot selection (SISS) for pre-selection of the most relevant spots from a large input set of candidate spots. IPBR-MCO had several iterations of spot re-sampling, each followed by MCO of the weights of the current spots.Main results.Compared to the published IPBR-MCO, the novel SISS-MCO resulted in similar or slightly superior plan quality. Optimisation times were reduced by a factor of 6 i.e. from 287 to 47 min. Numbers of spots and energy layers in the final plans were similar.Significance.The novel SISS-MCO automatically generated high-quality robust IMPT plans. Compared to a published algorithm for automated robust IMPT planning, optimisation times were reduced on average by a factor of 6. Moreover, SISS-MCO is a large scale approach; this enables optimisation of more complex wish-lists, and novel research opportunities in proton therapy.
Collapse
Affiliation(s)
- W Kong
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - M Oud
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - S J M Habraken
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center , Rotterdam, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - M Huiskes
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Astreinidou
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - C R N Rasch
- Department of Radiation Oncology, Leiden University Medical Center, Leiden, The Netherlands
- HollandPTC, Delft, The Netherlands
| | - B J M Heijmen
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center , Rotterdam, The Netherlands
| | - S Breedveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, Erasmus University Medical Center , Rotterdam, The Netherlands
| |
Collapse
|
36
|
Matysiak WP, Landeweerd MC, Bannink A, van der Weide HL, Brouwer CL, Langendijk JA, Both S, Maduro JH. Proton PBS Planning Techniques, Robustness Evaluation, and OAR Sparing for the Whole-Brain Part of Craniospinal Axis Irradiation. Cancers (Basel) 2024; 16:892. [PMID: 38473254 DOI: 10.3390/cancers16050892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Proton therapy is a promising modality for craniospinal irradiation (CSI), offering dosimetric advantages over conventional treatments. While significant attention has been paid to spine fields, for the brain fields, only dose reduction to the lens of the eye has been reported. Hence, the objective of this study is to assess the potential gains and feasibility of adopting different treatment planning techniques for the entire brain within the CSI target. To this end, eight previously treated CSI patients underwent retrospective replanning using various techniques: (1) intensity modulated proton therapy (IMPT) optimization, (2) the modification/addition of field directions, and (3) the pre-optimization removal of superficially placed spots. The target coverage robustness was evaluated and dose comparisons for lenses, cochleae, and scalp were conducted, considering potential biological dose increases. The target coverage robustness was maintained across all plans, with minor reductions when superficial spot removal was utilized. Single- and multifield optimization showed comparable target coverage robustness and organ-at-risk sparing. A significant scalp sparing was achieved in adults but only limited in pediatric cases. Superficial spot removal contributed to scalp V30 Gy reduction at the expense of lower coverage robustness in specific cases. Lens sparing benefits from multiple field directions, while cochlear sparing remains impractical. Based on the results, all investigated plan types are deemed clinically adoptable.
Collapse
Affiliation(s)
- Witold P Matysiak
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Radiotherapy, Mayo Clinic, Rochester, MN 55905, USA
| | - Marieke C Landeweerd
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Agata Bannink
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Hiska L van der Weide
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Charlotte L Brouwer
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Stefan Both
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - John H Maduro
- Department of Radiotherapy, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
37
|
Kennedy AC, Douglass MJJ, Santos AMC. A robust evaluation of 49 high-dose-rate prostate brachytherapy treatment plans including all major uncertainties. J Appl Clin Med Phys 2024; 25:e14182. [PMID: 37837652 PMCID: PMC10860441 DOI: 10.1002/acm2.14182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Uncertainties in radiotherapy cause deviation from the planned dose distribution and may result in delivering a treatment that fails to meet clinical objectives. The impact of uncertainties is unique to the patient anatomy and the needle locations in HDR prostate brachytherapy. Evaluating this impact during treatment planning is not common practice, relying on margins around the target or organs-at-risk to account for uncertainties. PURPOSE A robust evaluation framework for HDR prostate brachytherapy treatment plans was evaluated on 49 patient plans, measuring the range of possible dosimetric outcomes to the patient due to 14 major uncertainties. METHODS Patient plans were evaluated for their robustness to uncertainties by simulating probable uncertainty scenarios. Five-thousand probabilistic and 1943 worst-case scenarios per patient were simulated by changing the position and size of structures and length of dwell times from their nominal values. For each uncertainty scenario, the prostate D90 and maximum doses to the urethra, D0.01cc , and rectum, D0.1cc , were calculated. RESULTS The D90 was an average 1.16 ± 0.51% (mean ± SD) below nominal values for the probabilistic scenarios; the D0.01cc metric was 2.24 ± 0.90% higher; and D0.1cc was greater by 0.48 ± 0.30%. The D0.01cc and D90 metrics were more sensitive to uncertainties than D0.1cc , with a median of 79.0% and 84.9% of probabilistic scenarios passing the constraints, compared to 96.5%. The median pass-rate for scenarios that passed all three metrics simultaneously was 63.4%. CONCLUSIONS Assessing treatment plan robustness improves plan quality assurance, is achievable in less than 1-min, and identifies treatment plans with poor robustness, allowing re-optimization before delivery.
Collapse
Affiliation(s)
| | - Michael John James Douglass
- School of Physical SciencesUniversity of AdelaideAdelaideSAAustralia
- Department of Radiation OncologyRoyal Adelaide HospitalAdelaideSAAustralia
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSAAustralia
| | - Alexandre Manuel Caraça Santos
- School of Physical SciencesUniversity of AdelaideAdelaideSAAustralia
- Department of Radiation OncologyRoyal Adelaide HospitalAdelaideSAAustralia
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSAAustralia
| |
Collapse
|
38
|
Maas JA, McDonald AM, Cardan RA, Snider JW, Fiveash JB, Kole AJ. Characterization of Photon Intensity Modulated Radiation Therapy Robustness in Patients With Prostate Cancer as a Proposed Benchmark for Proton Therapy Robustness Evaluation. Pract Radiat Oncol 2024; 14:e68-e74. [PMID: 37748679 DOI: 10.1016/j.prro.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE Robustness evaluation is increasingly used in particle therapy planning to assess clinical target volume (CTV) coverage in the setting of setup and range uncertainty. However, no clear standard exists as to an acceptable degree of plan robustness. The aim of this study is to quantify x-ray robustness parameters, as this could inform proton planning when held to a similar standard. METHODS AND MATERIALS Consecutive patients with prostate adenocarcinoma treated with definitive x-irradiation to the prostate alone at a single institution in 2019 were retrospectively reviewed. CTV to planned target volume (PTV) margins of 7 mm in all directions, except 4 mm posteriorly, were used in the main cohort. Plans were normalized to PTV V100% ≥ 95%. Patient setup errors were simulated by shifting the isocenter relative to the patient in each of the cardinal directions. The magnitude of each shift equaled the magnitude of the CTV to PTV expansion in that direction. Range uncertainty was set to 0%. RESULTS A total of 27 patients were evaluated. The mean (SD) nominal plan CTV V100% was 99.6% (1.1%). The mean (SD) worst-case shift CTV V100% was 97.2% (2.8%). The mean (SD) nominal and worst-case CTV V95% were 100% (0%) and 99.7% (0.5%), respectively. A worst-case CTV V100% > 90% and a worst-case CTV V95% > 99% were achieved in over 95% of plans. The mean (SD) nominal and worst-case rectal V70 Gy were 2.37 cc (1.00 cc) and 11.60 cc (3.16 cc), respectively. The mean (SD) nominal and worst-case bladder V60 Gy were 7.8% (4.8%) and 14.5% (9.3%), respectively. Paired 2-tailed t tests comparing the nominal to worst-case dose-volume histograms were significant for each dosimetric parameter (P < .01). CONCLUSIONS X-ray planning uses PTV margins to inherently provide robustness to patient setup errors. Although the prostate remains well covered in various setup uncertainty scenarios, organs at risk routinely exceeded nominal treatment plan institutional constraints in the worst-case scenarios. Robustness metrics obtained from x-ray plans could serve as a benchmark for proton therapy robust optimization and evaluation.
Collapse
Affiliation(s)
- Jared A Maas
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Andrew M McDonald
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rex A Cardan
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - James W Snider
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - John B Fiveash
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Adam J Kole
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Lideståhl A, Fredén E, Siegbahn A, Johansson G, Lind PA. Dosimetric Comparison of Conventional Radiotherapy, Volumetric Modulated Arc Therapy, and Proton Beam Therapy for Palliation of Thoracic Spine Metastases Secondary to Breast or Prostate Cancer. Cancers (Basel) 2023; 15:5736. [PMID: 38136282 PMCID: PMC10741915 DOI: 10.3390/cancers15245736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this planning study was to compare the dosimetric outcomes of Volumetric Modulated Arc Therapy (VMAT), Proton Beam Therapy (PBT), and conventional External Beam Radiation Therapy (cEBRT) in the treatment of thoracic spinal metastases originating from breast or prostate cancer. Our study utilized data from 30 different treatment plans and evaluated target coverage and doses to vital organs at risk (OARs), such as the spinal cord, heart, esophagus, and lungs. The results showed that VMAT and PBT achieved superior target coverage and significantly lower doses to the spinal cord compared to cEBRT (target: median PTVD95%: 75.2 for cEBRT vs. 92.9 and 91.7 for VMAT (p < 0.001) and PBT (p < 0.001), respectively; spinal cord: median Dmax%: 105.1 for cEBRT vs. 100.4 and 103.6 for VMAT (p < 0.001) and PBT (p = 0.002), respectively). Specifically, VMAT was notable for its superior target coverage and PBT for significantly lower doses to heart, lungs, and esophagus. However, VMAT resulted in higher lung doses, indicating potential trade-offs among different techniques. The study demonstrated the relative advantages of VMAT and PBT over traditional RT in the palliative treatment of spinal metastases using conventional fractionation. These findings underscore the potential of VMAT and PBT to improve dosimetric outcomes, suggesting that they may be more suitable for certain patient groups for whom the sparing of specific OARs is especially important.
Collapse
Affiliation(s)
- Anders Lideståhl
- Department of Oncology-Pathology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Emil Fredén
- Department of Oncology, Stockholm South General Hospital, 11883 Stockholm, Sweden; (E.F.); (A.S.); (P.A.L.)
| | - Albert Siegbahn
- Department of Oncology, Stockholm South General Hospital, 11883 Stockholm, Sweden; (E.F.); (A.S.); (P.A.L.)
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm South General Hospital, 17177 Stockholm, Sweden
| | - Gracinda Johansson
- Department of Radiotherapy, Uppsala University Hospital, 75185 Uppsala, Sweden;
| | - Pehr A. Lind
- Department of Oncology, Stockholm South General Hospital, 11883 Stockholm, Sweden; (E.F.); (A.S.); (P.A.L.)
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm South General Hospital, 17177 Stockholm, Sweden
| |
Collapse
|
40
|
Willems YCP, Vaassen F, Zegers CML, Postma AA, Jaspers J, Romero AM, Unipan M, Swinnen A, Anten M, Teernstra O, Compter I, van Elmpt W, Eekers DBP. Anatomical changes in resection cavity during brain radiotherapy. J Neurooncol 2023; 165:479-486. [PMID: 38095775 DOI: 10.1007/s11060-023-04505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND PURPOSE Brain tumors are in general treated with a maximal safe resection followed by radiotherapy of remaining tumor including the resection cavity (RC) and chemotherapy. Anatomical changes of the RC during radiotherapy can have impact on the coverage of the target volume. The aim of the current study was to quantify the potential changes of the RC and to identify risk factors for RC changes. MATERIALS AND METHODS Sixteen patients treated with pencil beam scanning proton therapy between October 2019 and April 2020 were retrospectively analyzed. The RC was delineated on pre-treatment computed tomography (CT) and magnetic resonance imaging, and weekly CT-scans during treatment. Isotropic expansions were applied to the pre-treatment RC (1-5 mm). The percentage of volume of the RC during treatment within the expanded pre-treatment volumes was quantified. Potential risk factors (volume of RC, time interval surgery-radiotherapy and relationship of RC to the ventricles) were evaluated using Spearman's rank correlation coefficient. RESULTS The average variation in relative RC volume during treatment was 26.1% (SD 34.6%). An expansion of 4 mm was required to cover > 95% of the RC volume in > 90% of patients. There was a significant relationship between the absolute volume of the pre-treatment RC and the volume changes during treatment (Spearman's ρ = - 0.644; p = 0.007). CONCLUSION RCs are dynamic after surgery. Potentially, an additional margin in brain cancer patients with an RC should be considered, to avoid insufficient target coverage. Future research on local recurrence patterns is recommended.
Collapse
Affiliation(s)
- Yves C P Willems
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jaap Jaspers
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ans Swinnen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Monique Anten
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
41
|
Janson M, Glimelius L, Fredriksson A, Traneus E, Engwall E. Treatment planning of scanned proton beams in RayStation. Med Dosim 2023; 49:2-12. [PMID: 37996354 DOI: 10.1016/j.meddos.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
The use of scanned proton beams in external beam radiation therapy has seen a rapid development over the past decade. This technique places new demands on treatment planning, as compared to conventional photon-based radiation therapy. In this article, several proton specific functions as implemented in the treatment planning system RayStation are presented. We will cover algorithms for energy layer and spot selection, basic optimization including the handling of spot weight limits, optimization of the linear energy transfer (LET) distribution, robust optimization including the special case of 4D optimization, proton arc planning, and automatic planning using deep learning. We will further present the Monte Carlo (MC) proton dose engine in RayStation to some detail, from the material interpretation of the CT data, through the beam model parameterization, to the actual MC transport mechanism. Useful tools for plan evaluation, including robustness evaluation, and the versatile scripting interface are also described. The overall aim of the paper is to give an overview of some of the key proton planning functions in RayStation, with example usages, and at the same time provide the details about the underlying algorithms that previously have not been fully publicly available.
Collapse
|
42
|
Chan RCK, Ng CKC, Hung RHM, Li YTY, Tam YTY, Wong BYL, Yu JCK, Leung VWS. Comparative Study of Plan Robustness for Breast Radiotherapy: Volumetric Modulated Arc Therapy Plans with Robust Optimization versus Manual Flash Approach. Diagnostics (Basel) 2023; 13:3395. [PMID: 37998531 PMCID: PMC10670672 DOI: 10.3390/diagnostics13223395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
A previous study investigated robustness of manual flash (MF) and robust optimized (RO) volumetric modulated arc therapy plans for breast radiotherapy based on five patients in 2020 and indicated that the RO was more robust than the MF, although the MF is still current standard practice. The purpose of this study was to compare their plan robustness in terms of dose variation to clinical target volume (CTV) and organs at risk (OARs) based on a larger sample size. This was a retrospective study involving 34 female patients. Their plan robustness was evaluated based on measured volume/dose difference between nominal and worst scenarios (ΔV/ΔD) for each CTV and OARs parameter, with a smaller difference representing greater robustness. Paired sample t-test was used to compare their robustness values. All parameters (except CTV ΔD98%) of the RO approach had smaller ΔV/ΔD values than those of the MF. Also, the RO approach had statistically significantly smaller ΔV/ΔD values (p < 0.001-0.012) for all CTV parameters except the CTV ΔV95% and ΔD98% and heart ΔDmean. This study's results confirm that the RO approach was more robust than the MF in general. Although both techniques were able to generate clinically acceptable plans for breast radiotherapy, the RO could potentially improve workflow efficiency due to its simpler planning process.
Collapse
Affiliation(s)
- Ray C. K. Chan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Curtise K. C. Ng
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA 6845, Australia;
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Rico H. M. Hung
- Department of Clinical Oncology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China;
| | - Yoyo T. Y. Li
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Yuki T. Y. Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Blossom Y. L. Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Jacky C. K. Yu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| | - Vincent W. S. Leung
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (R.C.K.C.); (Y.T.Y.L.); (Y.T.Y.T.); (B.Y.L.W.); (J.C.K.Y.)
| |
Collapse
|
43
|
Kneepkens E, Wolfs C, Wanders RG, Traneus E, Eekers D, Verhaegen F. Shoot-through proton FLASH irradiation lowers linear energy transfer in organs at risk for neurological tumors and is robust against density variations. Phys Med Biol 2023; 68:215020. [PMID: 37820687 DOI: 10.1088/1361-6560/ad0280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Objective. The goal of the study was to test the hypothesis that shoot-through FLASH proton beams would lead to lower dose-averaged LET (LETD) values in critical organs, while providing at least equal normal tissue sparing as clinical proton therapy plans.Approach. For five neurological tumor patients, pencil beam scanning (PBS) shoot-through plans were made, using the maximum energy of 227 MeV and assuming a hypothetical FLASH protective factor (FPF) of 1.5. The effect of different FPF ranging from 1.2 to 1.8 on the clinical goals were also considered. LETDwas calculated for the clinical plan and the shoot-through plan, applying a 2 Gy total dose threshold (RayStation 8 A/9B and 9A-IonRPG). Robust evaluation was performed considering density uncertainty (±3% throughout entire volume).Main results.Clinical plans showed large LETDvariations compared to shoot-through plans and the maximum LETDin OAR is 1.2-8 times lower for the latter. Although less conformal, shoot-through plans met the same clinical goals as the clinical plans, for FLASH protection factors above 1.4. The FLASH shoot-through plans were more robust to density uncertainties with a maximum OAR D2%increase of 0.6 Gy versus 5.7 Gy in the clinical plans.Significance.Shoot-through proton FLASH beams avoid uncertainties in LETDdistributions and proton range, provide adequate target coverage, meet planning constraints and are robust to density variations.
Collapse
Affiliation(s)
- Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cecile Wolfs
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Roel-Germ Wanders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Erik Traneus
- RaySearch Laboratories AB, SE-103 65, Stockholm, Sweden
| | - Danielle Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
44
|
Koetsier KS, Oud M, de Klerck E, Hensen EF, van Vulpen M, van Linge A, Paul van Benthem P, Slagter C, Habraken SJ, Hoogeman MS, Méndez Romero A. Cochlear-optimized treatment planning in photon and proton radiosurgery for vestibular schwannoma patients. Clin Transl Radiat Oncol 2023; 43:100689. [PMID: 37867612 PMCID: PMC10585330 DOI: 10.1016/j.ctro.2023.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Objective To investigate the potential to reduce the cochlear dose with robotic photon radiosurgery or intensity-modulated proton therapy planning for vestibular schwannomas. Materials and Methods Clinically delivered photon radiosurgery treatment plans were compared to five cochlear-optimized plans: one photon and four proton plans (total of 120). A 1x12 Gy dose was prescribed. Photon plans were generated with Precision (Cyberknife, Accuray) with no PTV margin for set-up errors. Proton plans were generated using an in-house automated multi-criterial planning system with three or nine-beam arrangements, and applying 0 or 3 mm robustness for set-up errors during plan optimization and evaluation (and 3 % range robustness). The sample size was calculated based on a reduction of cochlear Dmean > 1.5 Gy(RBE) from the clinical plans, and resulted in 24 patients. Results Compared to the clinical photon plans, a reduction of cochlear Dmean > 1.5 Gy(RBE) could be achieved in 11/24 cochlear-optimized photon plans, 4/24 and 6/24 cochlear-optimized proton plans without set-up robustness for three and nine-beam arrangement, respectively, and in 0/24 proton plans with set-up robustness. The cochlea could best be spared in cases with a distance between tumor and cochlea. Using nine proton beams resulted in a reduced dose to most organs at risk. Conclusion Cochlear dose reduction is possible in vestibular schwannoma radiosurgery while maintaining tumor coverage, especially when the tumor is not adjacent to the cochlea. With current set-up robustness, proton therapy is capable of providing lower dose to organs at risk located distant to the tumor, but not for organs adjacent to it. Consequently, photon plans provided better cochlear sparing than proton plans.
Collapse
Affiliation(s)
- Kimberley S. Koetsier
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Albinusdreef 2, Leiden, the Netherlands
| | - Michelle Oud
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Erik de Klerck
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
| | - Erik F Hensen
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Albinusdreef 2, Leiden, the Netherlands
| | | | - Anne van Linge
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter Paul van Benthem
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Albinusdreef 2, Leiden, the Netherlands
| | - Cleo Slagter
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Steven J.M. Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Mischa S. Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - A. Méndez Romero
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands
- HollandPTC, Delft, the Netherlands
| |
Collapse
|
45
|
Katsuta T, Murakami Y, Kawahara D, Miyoshi S, Imano N, Hirokawa J, Nishibuchi I, Nagata Y. Novel simulation for dosimetry impact of diaphragm respiratory motion in four-dimensional volumetric modulated arc therapy for esophageal cancer. Radiother Oncol 2023; 187:109849. [PMID: 37562552 DOI: 10.1016/j.radonc.2023.109849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND AND PURPOSE The diaphragm respiratory motion (RM) could impact the target dose robustness in the lower esophageal cancer (EC). We aimed to develop a framework evaluating the impact of different RM patterns quantitatively in one patient, by creating virtual four-dimensional computed-tomography (v4DCT) images, which could lead to tailored treatment for the breathing pattern. We validated virtual 4D radiotherapy (v4DRT) along with exploring the acceptability of free-breathing volumetric modulated arc therapy (FB-VMAT). METHODS AND MATERIALS We assessed 10 patients with superficial EC through their real 4DCT (r4DCT) scans. v4DCT images were derived from the end-inhalation computed tomography (CT) image (reference CT) and the v4DRT dose was accumulated dose over all phases. r4DRT diaphragm shifts were applied with magnitudes derived from r4DCT scans; clinical target volume (CTV) dose of v4DRT was compared with that of r4DRT to validate v4DRT. CTV dosage modifications and planning organ at risk volume (PRV) margins of the spinal cord were examined with the diaphragm movement. The percentage dose differences (ΔDx) were determined between the v4DRT and the dose calculated on the reference CT image. RESULTS The CTV ΔDx between the r4DRT and v4DRT were within 1% in cases with RM ≦ 15 mm. The average ΔD100% and ΔDmean of the CTV ranging from 5 to 15 mm of diaphragm motion was 0.3% to 1.7% and 0.1% to 0.4%, respectively. All CTV index changes were within 3% and ΔD1cc and ΔD2cc of Cord PRV were within 1%. CONCLUSION We postulate a novel method for evaluating the CTV robustness, comparable to the conventional r4DCT method under the diaphragm RM ≦ 15 mm permitting an impact of within 3% in FB-VMAT for EC on the CTV dose distribution.
Collapse
Affiliation(s)
- Tsuyoshi Katsuta
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yuji Murakami
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | - Daisuke Kawahara
- Section of Radiation Therapy, Department of Clinical Practice and Support, Hiroshima University Hospital, Hiroshima 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Shota Miyoshi
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Nobuki Imano
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Junichi Hirokawa
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ikuno Nishibuchi
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| |
Collapse
|
46
|
Sauer TO, Stillkrieg W, Ott OJ, Fietkau R, Bert C. Plan robustness analysis for threshold determination of SGRT-based intrafraction motion control in 3DCRT breast cancer radiation therapy. Radiat Oncol 2023; 18:158. [PMID: 37740237 PMCID: PMC10517562 DOI: 10.1186/s13014-023-02325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE The goal of this study was to obtain maximum allowed shift deviations from planning position in six degrees of freedom (DOF), that can serve as threshold values in surface guided radiation therapy (SGRT) of breast cancer patients. METHODS The robustness of conformal treatment plans of 50 breast cancer patients against 6DOF shifts was investigated. For that, new dose distributions were calculated on shifted computed tomography scans and evaluated with respect to target volume and spinal cord dose. Maximum allowed shift values were identified by imposing dose constraints on the target volume dose coverage for 1DOF, and consecutively, for 6DOF shifts using an iterative approach and random sampling. RESULTS Substantial decreases in target dose coverage and increases of spinal cord dose were observed. Treatment plans showed highly differing robustness for different DOFs or treated area. The sensitivity was particularly high if clavicular lymph nodes were irradiated, for shifts in lateral, vertical, roll or yaw direction, and showed partly pronounced asymmetries. Threshold values showed similar properties with an absolute value range of 0.8 mm to 5 mm and 1.4° to 5°. CONCLUSION The robustness analysis emphasized the necessity of taking differences between DOFs and asymmetrical sensitivities into account when evaluating the dosimetric impact of position deviations. It also highlighted the importance of rotational shifts, especially if clavicular lymph nodes were irradiated. A practical approach of determining 6DOF shift limits was introduced and a set of threshold values applicable for SGRT based patient motion control was identified.
Collapse
Affiliation(s)
- Tim-Oliver Sauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Wilhelm Stillkrieg
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Oliver J. Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054 Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
47
|
Rojo-Santiago J, Korevaar E, Perkó Z, Both S, Habraken SJM, Hoogeman MS. PTV-based VMAT vs. robust IMPT for head-and-neck cancer: A probabilistic uncertainty analysis of clinical plan evaluation with the Dutch model-based selection. Radiother Oncol 2023; 186:109729. [PMID: 37301261 DOI: 10.1016/j.radonc.2023.109729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND PURPOSE In the Netherlands, head-and-neck cancer (HNC) patients are referred for proton therapy (PT) through model-based selection (MBS). However, treatment errors may compromise adequate CTV dose. Our aims are: (i) to derive probabilistic plan evaluation metrics on the CTV consistent with clinical metrics; (ii) to evaluate plan consistency between photon (VMAT) and proton (IMPT) planning in terms of CTV dose iso-effectiveness and (iii) to assess the robustness of the OAR doses and of the risk toxicities involved in the MBS. MATERIALS AND METHODS Sixty HNC plans (30 IMPT/30 VMAT) were included. A robustness evaluation with 100,000 treatment scenarios per plan was performed using Polynomial Chaos Expansion (PCE). PCE was applied to determine scenario distributions of clinically relevant dosimetric parameters, which were compared between the 2 modalities. Finally, PCE-based probabilistic dose parameters were derived and compared to clinical PTV-based photon and voxel-wise proton evaluation metrics. RESULTS Probabilistic dose to near-minimum volume v = 99.8% for the CTV correlated best with clinical PTV-D98% and VWmin-D98%,CTV doses for VMAT and IMPT respectively. IMPT showed slightly higher nominal CTV doses, with an average increase of 0.8 GyRBE in the median of the D99.8%,CTV distribution. Most patients qualified for IMPT through the dysphagia grade II model, for which an average NTCP gain of 10.5 percentages points (%-point) was found. For all complications, uncertainties resulted in moderate NTCP spreads lower than 3 p.p. on average for both modalities. CONCLUSION Despite the differences between photon and proton planning, the comparison between PTV-based VMAT and robust IMPT is consistent. Treatment errors had a moderate impact on NTCPs, showing that the nominal plans are a good estimator to qualify patients for PT.
Collapse
Affiliation(s)
- Jesús Rojo-Santiago
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands.
| | - Erik Korevaar
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zoltán Perkó
- Delft University of Technology, Department of Radiation Science and Technology, Delft, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Steven J M Habraken
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| | - Mischa S Hoogeman
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, the Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| |
Collapse
|
48
|
Taasti VT, Decabooter E, Eekers D, Compter I, Rinaldi I, Bogowicz M, van der Maas T, Kneepkens E, Schiffelers J, Stultiens C, Hendrix N, Pijls M, Emmah R, Fonseca GP, Unipan M, van Elmpt W. Clinical benefit of range uncertainty reduction in proton treatment planning based on dual-energy CT for neuro-oncological patients. Br J Radiol 2023; 96:20230110. [PMID: 37493227 PMCID: PMC10461272 DOI: 10.1259/bjr.20230110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE Several studies have shown that dual-energy CT (DECT) can lead to improved accuracy for proton range estimation. This study investigated the clinical benefit of reduced range uncertainty, enabled by DECT, in robust optimisation for neuro-oncological patients. METHODS DECT scans for 27 neuro-oncological patients were included. Commercial software was applied to create stopping-power ratio (SPR) maps based on the DECT scan. Two plans were robustly optimised on the SPR map, keeping the beam and plan settings identical to the clinical plan. One plan was robustly optimised and evaluated with a range uncertainty of 3% (as used clinically; denoted 3%-plan); the second plan applied a range uncertainty of 2% (2%-plan). Both plans were clinical acceptable and optimal. The dose-volume histogram parameters were compared between the two plans. Two experienced neuro-radiation oncologists determined the relevant dose difference for each organ-at-risk (OAR). Moreover, the OAR toxicity levels were assessed. RESULTS For 24 patients, a dose reduction >0.5/1 Gy (relevant dose difference depending on the OAR) was seen in one or more OARs for the 2%-plan; e.g. for brainstem D0.03cc in 10 patients, and hippocampus D40% in 6 patients. Furthermore, 12 patients had a reduction in toxicity level for one or two OARs, showing a clear benefit for the patient. CONCLUSION Robust optimisation with reduced range uncertainty allows for reduction of OAR toxicity, providing a rationale for clinical implementation. Based on these results, we have clinically introduced DECT-based proton treatment planning for neuro-oncological patients, accompanied with a reduced range uncertainty of 2%. ADVANCES IN KNOWLEDGE This study shows the clinical benefit of range uncertainty reduction from 3% to 2% in robustly optimised proton plans. A dose reduction to one or more OARs was seen for 89% of the patients, and 44% of the patients had an expected toxicity level decrease.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Esther Decabooter
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim van der Maas
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Esther Kneepkens
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacqueline Schiffelers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cissy Stultiens
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nicole Hendrix
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mirthe Pijls
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Rik Emmah
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
49
|
Engwall E, Marthin O, Wase V, Sundström J, Mikhalev V, de Jong BA, Langendijk JA, Melbéus H, Andersson B, Korevaar EW, Both S, Bokrantz R, Glimelius L, Fredriksson A. Partitioning of discrete proton arcs into interlaced subplans can bring proton arc advances to existing proton facilities. Med Phys 2023; 50:5723-5733. [PMID: 37482909 DOI: 10.1002/mp.16617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Proton arcs have shown potential to reduce the dose to organs at risks (OARs) by delivering the protons from many different directions. While most previous studies have been focused on dynamic arcs (delivery during rotation), an alternative approach is discrete arcs, where step-and-shoot delivery is used over a large number of beam directions. The major advantage of discrete arcs is that they can be delivered at existing proton facilities. However, this advantage comes at the expense of longer treatment times. PURPOSE To exploit the dosimetric advantages of proton arcs, while achieving reasonable delivery times, we propose a partitioning approach where discrete arc plans are split into subplans to be delivered over different fractions in the treatment course. METHODS For three oropharyngeal cancer patients, four different arc plans have been created and compared to the corresponding clinical IMPT plan. The treatment plans are all planned to be delivered in 35 fractions, but with different delivery approaches over the fractions. The first arc plan (1×30) has 30 directions to be delivered every fraction, while the others are partitioned into subplans with 10 and 6 beam directions, each to be delivered every third (3×10), fifth fraction (5×6), or seventh fraction (7×10). All plans are assessed with respect to delivery time, target robustness over the treatment course, doses to OARs and NTCP for dysphagia and xerostomia. RESULTS The delivery time (including an additional delay of 30 s between the discrete directions to simulate manual interaction with the treatment control system) is reduced from on average 25.2 min for the 1×30 plan to 9.2 min for the 3×10 and 7×10 plans and 5.7 min for the 5×6 plans. The delivery time for the IMPT plan is 7.9 min. When accounting for the combination of delivery time, target robustness, OAR sparing, and NTCP reduction, the plans with 10 directions in each fraction are the preferred choice. Both the 3×10 and 7×10 plans show improved target robustness compared to the 1×30 plans, while keeping OAR doses and NTCP values at almost as low levels as for the 1×30 plans. For all patients the NTCP values for dysphagia are lower for the partitioned plans with 10 directions compared to the IMPT plans. NTCP reduction for xerostomia compared to IMPT is seen in two of the three patients. The best results are seen for the first patient, where the NTCP reductions for the 7×10 plan are 1.6 p.p. (grade 2 xerostomia) and 1.5 p.p. (grade 2 dysphagia). The corresponding NTCP reductions for the 1×30 plan are 2.7 p.p. (xerostomia, grade 2) and 2.0 p.p. (dysphagia, grade 2). CONCLUSIONS Discrete proton arcs can be implemented at any proton facility with reasonable treatment times using a partitioning approach. The technique also makes the proton arc treatments more robust to changes in the patient anatomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Bas A de Jong
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes A Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | - Erik W Korevaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
50
|
Kennedy AC, Douglass MJJ, Santos AMC. Being certain about uncertainties: a robust evaluation method for high-dose-rate prostate brachytherapy treatment plans including the combination of uncertainties. Phys Eng Sci Med 2023; 46:1115-1130. [PMID: 37249825 PMCID: PMC10480262 DOI: 10.1007/s13246-023-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
In high-dose-rate (HDR) prostate brachytherapy the combined effect of uncertainties cause a range of possible dose distributions deviating from the nominal plan, and which are not considered during treatment plan evaluation. This could lead to dosimetric misses for critical structures and overdosing of organs at risk. A robust evaluation method to assess the combination of uncertainties during plan evaluation is presented and demonstrated on one HDR prostate ultrasound treatment plan retrospectively. A range of uncertainty scenarios are simulated by changing six parameters in the nominal plan and calculating the corresponding dose distribution. Two methods are employed to change the parameters, a probabilistic approach using random number sampling to evaluate the likelihood of variation in dose distributions, and a combination of the most extreme possible values to access the worst-case dosimetric outcomes. One thousand probabilistic scenarios were run on the single treatment plan with 43.2% of scenarios passing seven of the eight clinical objectives. The prostate D90 had a standard deviation of 4.4%, with the worst case decreasing the dose by up to 27.2%. The urethra D10 was up to 29.3% higher than planned in the worst case. All DVH metrics in the probabilistic scenarios were found to be within acceptable clinical constraints for the plan under statistical tests for significance. The clinical significance of the results from the robust evaluation method presented on any individual treatment plan needs to be compared in the context of a historical data set that contains patient outcomes with robustness analysis data to ascertain a baseline acceptance.
Collapse
Affiliation(s)
- Andrew C. Kennedy
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005 Australia
| | - Michael J. J. Douglass
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005 Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
- Australian Bragg Centre for Proton Therapy and Research, North Terrace, Adelaide, SA 5000 Australia
| | - Alexandre M. C. Santos
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005 Australia
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA 5000 Australia
- Australian Bragg Centre for Proton Therapy and Research, North Terrace, Adelaide, SA 5000 Australia
| |
Collapse
|