1
|
Marc L, Unkelbach J. Optimal use of limited proton resources for liver cancer patients in combined proton-photon treatments. Phys Med Biol 2025; 70:025020. [PMID: 39569865 DOI: 10.1088/1361-6560/ad94c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
Objective. Liver cancer patients may benefit from proton therapy through increase of the tumor control probability (TCP). However, proton therapy is a limited resource and may not be available for all patients. We consider combined proton-photon liver SBRT treatments (CPPT) where only some fractions are delivered with protons. It is investigated how limited proton fractions can be used best for individual patients and optimally allocated within a patient group.Approach. Photon and proton treatment plans were created for five liver cancer patients. In CPPT, limited proton fractions may be optimally exploited by increasing the fraction dose compared to the photon fraction dose. To determine a patient's optimal proton and photon fraction doses, we maximize the target biologically effective dose (BED) while constraining the mean normal liver BED, which leads to an up- or downscaling of the proton and photon plan, respectively. The resulting CPPT balances the benefits of fractionation in the normal liver versus exploiting the superior proton dose distributions. After converting the target BED to TCP, the optimal number of proton fractions per patient is determined by maximizing the overall TCP of the patient group.Main results. For the individual patient, a CPPT treatment that delivers a higher fraction dose with protons than photons allows for dose escalation in the target compared to delivering the same proton and photon fraction dose. On the level of a patient group, CPPT may allow to distribute limited proton slots over several patients. Through an optimal use and allocation of proton fractions, CPPT may increase the average patient group TCP compared to a proton patient selection strategy where patients receive single-modality proton or photon treatments.Significance. Limited proton resources can be optimally exploited via CPPT by increasing the target dose in proton fractions and allocating available proton slots to patients with the highest TCP increase.
Collapse
Affiliation(s)
- Louise Marc
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Torelli N, Bicker Y, Marc L, Fabiano S, Unkelbach J. A new approach to combined proton-photon therapy for metastatic cancer patients. Phys Med Biol 2024; 69:145008. [PMID: 38942008 DOI: 10.1088/1361-6560/ad5d48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.Proton therapy is a limited resource and is typically not available to metastatic cancer patients. Combined proton-photon therapy (CPPT), where most fractions are delivered with photons and only few with protons, represents an approach to distribute proton resources over a larger patient population. In this study, we consider stereotactic radiotherapy of multiple brain or liver metastases, and develop an approach to optimally take advantage of a single proton fraction by optimizing the proton and photon dose contributions to each individual metastasis.Approach.CPPT treatments must balance two competing goals: (1) deliver a larger dose in the proton fractions to reduce integral dose, and (2) fractionate the dose in the normal tissue between metastases, which requires using the photon fractions. Such CPPT treatments are generated by simultaneously optimizing intensity modulated proton therapy (IMPT) and intensity modulated radiotherapy (IMRT) plans based on their cumulative biologically effective dose (BEDα/β). The dose contributions of the proton and photon fractions to each individual metastasis are handled as additional optimization variables in the optimization problem. The method is demonstrated for two patients with 29 and 30 brain metastases, and two patients with 4 and 3 liver metastases.Main results.Optimized CPPT plans increase the proton dose contribution to most of the metastases, while using photons to fractionate the dose around metastases which are large or located close to critical structures. On average, the optimized CPPT plans reduce the mean brain BED2by 29% and the mean liver BED4by 42% compared to IMRT-only plans. Thereby, the CPPT plans approach the dosimetric quality of IMPT-only plans, for which the mean brain BED2and mean liver BED4are reduced by 28% and 58%, respectively, compared to IMRT-only plans.Significance.CPPT with optimized proton and photon dose contributions to individual metastases may benefit selected metastatic cancer patients without tying up major proton resources.
Collapse
Affiliation(s)
- Nathan Torelli
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yves Bicker
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Louise Marc
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Ostapenko E, Nixdorf L, Devyatko Y, Exner R, Wimmer K, Fitzal F. The Impact of Adjuvant Radiotherapy on Immediate Prepectoral Implant-Based Breast Reconstruction. Aesthetic Plast Surg 2024; 48:2432-2438. [PMID: 37737875 DOI: 10.1007/s00266-023-03661-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Immediate prepectoral implant-based breast reconstruction (IBBR) rates have increased in recent years owing to improved cosmetic and psychological benefits. However, there is a lack of studies regarding complications rates following adjuvant radiotherapy (RT) among patients undergoing immediate prepectoral IBBR. METHODS We conducted a retrospective monocentric analysis of a cohort of consecutively treated patients who underwent NSM following immediate prepectoral IBBR at our institution between March 2017 and November 2021. Patient demographics, quality of life, complication rates, and oncological safety were evaluated in the RT and non-RT groups. Data analysis was performed using IBM SPSS Version 24 (IMB Corp., Armonk, NY, USA). RESULTS A total of 98 patients were examined: 70 were assigned to have prepectoral IBBR without RT and 28 to the group who had prepectoral IBBR with RT. There was a statistically significant difference in overall capsular contracture rate between the RT and non-RT group (18% vs. 4.3%, p=0.04). The total implant loss in the cohort was 4% (10.7% vs. 1.4%, p=0.05). We obtained a high percentages of all BREAST-Q categories in both groups; however, satisfaction with the breast and sexual well-being was higher in the non-RT group. The three-year overall survivals were 97.4% in the RT group and 98.5% in the non-RT group. CONCLUSION Our findings showed that patients in the RT group had a higher rate of capsular contracture and implant loss than those in the non-RT group. However, complication rates were within acceptable range and with accurate preoperative information patients have more benefits from immediate reconstruction showing excellent overall quality of life irrespectively of radiation. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Edvin Ostapenko
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Larissa Nixdorf
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Yelena Devyatko
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ruth Exner
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kerstin Wimmer
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Florian Fitzal
- Department of Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Atomos Klinik Währing, Vienna, Austria
| |
Collapse
|
4
|
Li W, Lin Y, Li HH, Shen X, Chen RC, Gao H. Biological optimization for hybrid proton-photon radiotherapy. Phys Med Biol 2024; 69:10.1088/1361-6560/ad4d51. [PMID: 38759678 PMCID: PMC11260294 DOI: 10.1088/1361-6560/ad4d51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
Objective.Hybrid proton-photon radiotherapy (RT) is a cancer treatment option to broaden access to proton RT. Additionally, with a refined treatment planning method, hybrid RT has the potential to offer superior plan quality compared to proton-only or photon-only RT, particularly in terms of target coverage and sparing organs-at-risk (OARs), when considering robustness to setup and range uncertainties. However, there is a concern regarding the underestimation of the biological effect of protons on OARs, especially those in close proximity to targets. This study seeks to develop a hybrid treatment planning method with biological dose optimization, suitable for clinical implementation on existing proton and photon machines, with each photon or proton treatment fraction delivering a uniform target dose.Approach.The proposed hybrid biological dose optimization method optimized proton and photon plan variables, along with the number of fractions for each modality, minimizing biological dose to the OARs and surrounding normal tissues. To mitigate underestimation of hot biological dose spots, proton biological dose was minimized within a ring structure surrounding the target. Hybrid plans were designed to be deliverable separately and robustly on existing proton and photon machines, with enforced uniform target dose constraints for the proton and photon fraction doses. A probabilistic formulation was utilized for robust optimization of setup and range uncertainties for protons and photons. The nonconvex optimization problem, arising from minimum monitor unit constraint and dose-volume histogram constraints, was solved using an iterative convex relaxation method.Main results.Hybrid planning with biological dose optimization effectively eliminated hot spots of biological dose, particularly in normal tissues surrounding the target, outperforming proton-only planning. It also provided superior overall plan quality and OAR sparing compared to proton-only or photon-only planning strategies.Significance.This study presents a novel hybrid biological treatment planning method capable of generating plans with reduced biological hot spots, superior plan quality to proton-only or photon-only plans, and clinical deliverability on existing proton and photon machines, separately and robustly.
Collapse
Affiliation(s)
- Wangyao Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Yuting Lin
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Harold H Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Xinglei Shen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Ronald C Chen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| | - Hao Gao
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, United States of America
| |
Collapse
|
5
|
Penfold SN, Santos AMC, Penfold M, Shierlaw E, Crain R. Single high-energy arc proton therapy with Bragg peak boost (SHARP). J Med Radiat Sci 2024; 71 Suppl 2:27-36. [PMID: 38400611 PMCID: PMC11011576 DOI: 10.1002/jmrs.769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Because of the co-location of critical organs at risk, base of skull tumours require steep dose gradients to achieve the prescribed dosimetric criteria. When available, proton beam therapy (PBT) is often considered a desirable modality for these cases, but in many instances, compromises in target coverage are still required to achieve critical organ at risk (OAR) tolerance doses. A number of techniques have been proposed to further improve the penumbra of PBT. In the current study, we propose a novel, collimator-free treatment planning technique that combines high-energy shoot-through proton beams with conventional Bragg peak spot placement. The small spot size of the high-energy pencil beams provides a sharp penumbra at the target boundary, and the Bragg peak spots provide a higher linear energy transfer (LET) boost to the target centre. METHODS Three base of skull chordoma patients were retrospectively planned with three different PBT treatment planning techniques: (1) conventional intensity-modulated proton therapy (IMPT); (2) high-energy proton arc therapy (HE-PAT); and (3) the novel technique combining HE-PAT and IMPT, referred to as single high-energy arc with Bragg peak boost (SHARP). The Monaco 6 treatment planning system was used. RESULTS SHARP was found to improve the PBT penumbra in the plane perpendicular to the HE-PAT beams. Minimal penumbra differences were observed in the plane of the HE-PAT beams. SHARP reduced dose-averaged LET to surrounding organs at risk. CONCLUSION A novel PBT treatment planning technique was successfully implemented. Initial results indicate the potential for SHARP to improve the penumbra of PBT treatments for base of skull tumours.
Collapse
Affiliation(s)
- Scott N. Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
| | - Alexandre M. C. Santos
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Department of PhysicsUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Melanie Penfold
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
| | - Emma Shierlaw
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| | - Rosanna Crain
- Australian Bragg Centre for Proton Therapy and ResearchAdelaideSouth AustraliaAustralia
- Radiation OncologyCentral Adelaide Local Health NetworkAdelaideSouth AustraliaAustralia
| |
Collapse
|
6
|
Amstutz F, Krcek R, Bachtiary B, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Treatment planning comparison for head and neck cancer between photon, proton, and combined proton-photon therapy - From a fixed beam line to an arc. Radiother Oncol 2024; 190:109973. [PMID: 37913953 DOI: 10.1016/j.radonc.2023.109973] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/25/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND AND PURPOSE This study investigates whether combined proton-photon therapy (CPPT) improves treatment plan quality compared to single-modality intensity-modulated radiation therapy (IMRT) or intensity-modulated proton therapy (IMPT) for head and neck cancer (HNC) patients. Different proton beam arrangements for CPPT and IMPT are compared, which could be of specific interest concerning potential future upright-positioned treatments. Furthermore, it is evaluated if CPPT benefits remain under inter-fractional anatomical changes for HNC treatments. MATERIAL AND METHODS Five HNC patients with a planning CT and multiple (4-7) repeated CTs were studied. CPPT with simultaneously optimized photon and proton fluence, single-modality IMPT, and IMRT treatment plans were optimized on the planning CT and then recalculated and reoptimized on each repeated CT. For CPPT and IMPT, plans with different degrees of freedom for the proton beams were optimized. Fixed horizontal proton beam line (FHB), gantry-like, and arc-like plans were compared. RESULTS The target coverage for CPPT without adaptation is insufficient (average V95%=88.4 %), while adapted plans can recover the initial treatment plan quality for target (average V95%=95.5 %) and organs-at-risk. CPPT with increased proton beam flexibility increases plan quality and reduces normal tissue complication probability of Xerostomia and Dysphagia. On average, Xerostomia NTCP reductions compared to IMRT are -2.7 %/-3.4 %/-5.0 % for CPPT FHB/CPPT Gantry/CPPT Arc. The differences for IMPT FHB/IMPT Gantry/IMPT Arc are + 0.8 %/-0.9 %/-4.3 %. CONCLUSION CPPT for HNC needs adaptive treatments. Increasing proton beam flexibility in CPPT, either by using a gantry or an upright-positioned patient, improves treatment plan quality. However, the photon component is substantially reduced, therefore, the balance between improved plan quality and costs must be further determined.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Reinhardt Krcek
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | | | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Radiation Oncology, University Hospital Zurich, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland; Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.
| |
Collapse
|
7
|
Han Y, Geng C, Altieri S, Bortolussi S, Liu Y, Wahl N, Tang X. Combined BNCT-CIRT treatment planning for glioblastoma using the effect-based optimization. Phys Med Biol 2023; 69:015024. [PMID: 38048635 DOI: 10.1088/1361-6560/ad120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
Objective. Boron neutron capture therapy (BNCT) and carbon ion radiotherapy (CIRT) are emerging treatment modalities for glioblastoma. In this study, we investigated the methodology and feasibility to combine BNCT and CIRT treatments. The combined treatment plan illustrated how the synergistic utilization of BNCT's biological targeting and CIRT's intensity modulation capabilities could lead to optimized treatment outcomes.Approach. The Monte Carlo toolkit, TOPAS, was employed to calculate the dose distribution for BNCT, while matRad was utilized for the optimization of CIRT. The biological effect-based approach, instead of the dose-based approach, was adopted to develop the combined BNCT-CIRT treatment plans for six patients diagnosed with glioblastoma, considering the different radiosensitivity and fraction. Five optional combined treatment plans with specific BNCT effect proportions for each patient were evaluated to identify the optimal treatment that minimizes damage on normal tissue.Main results. Individual BNCT exhibits a significant effect gradient along with the beam direction in the large tumor, while combined BNCT-CIRT treatments can achieve uniform effect delivery within the clinical target volume (CTV) through the effect filling with reversed gradient by the CIRT part. In addition, the increasing BNCT effect proportion in combined treatments can reduce damage in the normal brain tissue near the CTV. Besides, the combined treatments effectively minimize damage to the skin compared to individual BNCT treatments.Significance. The initial endeavor to combine BNCT and CIRT treatment plans is achieved by the effect-based optimization. The observed advantages of the combined treatment suggest its potential applicability for tumors characterized by pleomorphic, infiltrative, radioresistant and voluminous features.
Collapse
Affiliation(s)
- Yang Han
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Department of Physics, University of Pavia, Pavia, Italy
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| | - Saverio Altieri
- Department of Physics, University of Pavia, Pavia, Italy
- National Institute of Nuclear Physics, Unit of Pavia, Pavia, Italy
| | - Silva Bortolussi
- Department of Physics, University of Pavia, Pavia, Italy
- National Institute of Nuclear Physics, Unit of Pavia, Pavia, Italy
| | - Yuanhao Liu
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
- Neuboron Medtech. Ltd, Nanjing, People's Republic of China
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Xiaobin Tang
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, People's Republic of China
| |
Collapse
|
8
|
Wu X, Amstutz F, Weber DC, Unkelbach J, Lomax AJ, Zhang Y. Patient-specific quality assurance for deformable IMRT/IMPT dose accumulation: Proposition and validation of energy conservation based validation criterion. Med Phys 2023; 50:7130-7138. [PMID: 37345380 DOI: 10.1002/mp.16564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Deformable image registration (DIR)-based dose accumulation (DDA) is regularly used in adaptive radiotherapy research. However, the applicability and reliability of DDA for direct clinical usage are still being debated. One primary concern is the validity of DDA, particularly for scenarios with substantial anatomical changes, for which energy-conservation problems were observed in conceptual studies. PURPOSE We present and validate an energy-conservation (EC)-based DDA validation workflow and further investigate its usefulness for actual patient data, specifically for lung cancer cases. METHODS For five non-small cell lung cancer (NSCLC) patients, DDA based on five selective DIR methods were calculated for five different treatment plans, which include one intensity-modulated photon therapy (IMRT), two intensity-modulated proton therapy (IMPT), and two combined proton-photon therapy (CPPT) plans. All plans were optimized on the planning CT (planCT) acquired in deep inspiration breath-hold (DIBH) and were re-optimized on the repeated DIBH CTs of three later fractions. The resulting fractional doses were warped back to the planCT using each DIR. An EC-based validation of the accumulation process was implemented and applied to all DDA results. Correlations between relative organ mass/volume variations and the extent of EC violation were then studied using Bayesian linear regression (BLR). RESULTS For most OARs, EC violation within 10% is observed. However, for the PTVs and GTVs with substantial regression, severe overestimation of the fractional energy was found regardless of treatment type and applied DIR method. BLR results show that EC violation is linearly correlated to the relative mass variation (R^2 > 0.95) and volume variation (R^2 > 0.60). CONCLUSION DDA results should be used with caution in regions with high mass/volume variation for intensity-based DIRs. EC-based validation is a useful approach to provide patient-specific quality assurance of the validity of DDA in radiotherapy.
Collapse
Affiliation(s)
- Xin Wu
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Information Technology & Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
9
|
Guerra Liberal FDC, Thompson SJ, Prise KM, McMahon SJ. High-LET radiation induces large amounts of rapidly-repaired sublethal damage. Sci Rep 2023; 13:11198. [PMID: 37433844 PMCID: PMC10336062 DOI: 10.1038/s41598-023-38295-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023] Open
Abstract
There is agreement that high-LET radiation has a high Relative Biological Effectiveness (RBE) when delivered as a single treatment, but how it interacts with radiations of different qualities, such as X-rays, is less clear. We sought to clarify these effects by quantifying and modelling responses to X-ray and alpha particle combinations. Cells were exposed to X-rays, alpha particles, or combinations, with different doses and temporal separations. DNA damage was assessed by 53BP1 immunofluorescence, and radiosensitivity assessed using the clonogenic assay. Mechanistic models were then applied to understand trends in repair and survival. 53BP1 foci yields were significantly reduced in alpha particle exposures compared to X-rays, but these foci were slow to repair. Although alpha particles alone showed no inter-track interactions, substantial interactions were seen between X-rays and alpha particles. Mechanistic modelling suggested that sublethal damage (SLD) repair was independent of radiation quality, but that alpha particles generated substantially more sublethal damage than a similar dose of X-rays, [Formula: see text]. This high RBE may lead to unexpected synergies for combinations of different radiation qualities which must be taken into account in treatment design, and the rapid repair of this damage may impact on mechanistic modelling of radiation responses to high LETs.
Collapse
Affiliation(s)
- Francisco D C Guerra Liberal
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Shannon J Thompson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Kevin M Prise
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, UK.
| |
Collapse
|
10
|
Yan S, Ngoma TA, Ngwa W, Bortfeld TR. Global democratisation of proton radiotherapy. Lancet Oncol 2023; 24:e245-e254. [PMID: 37269856 DOI: 10.1016/s1470-2045(23)00184-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 06/05/2023]
Abstract
Proton radiotherapy is an advanced treatment option compared with conventional x-ray treatment, delivering much lower doses of radiation to healthy tissues surrounding the tumour. However, proton therapy is currently not widely available. In this Review, we summarise the evolution of proton therapy to date, together with the benefits to patients and society. These developments have led to an exponential growth in the number of hospitals using proton radiotherapy worldwide. However, the gap between the number of patients who should be treated with proton radiotherapy and those who have access to it remains large. We summarise the ongoing research and development that is contributing to closing this gap, including the improvement of treatment efficiency and efficacy, and advances in fixed-beam treatments that do not require an enormously large, heavy, and costly gantry. The ultimate goal of decreasing the size of proton therapy machines to fit into standard treatment rooms appears to be within reach, and we discuss future research and development opportunities to achieve this goal.
Collapse
Affiliation(s)
- Susu Yan
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Twalib A Ngoma
- Department Clinical Oncology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Wilfred Ngwa
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Information and Sciences, ICT University, Yaoundé, Cameroon
| | - Thomas R Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Li W, Zhang W, Lin Y, Chen RC, Gao H. Fraction optimization for hybrid proton-photon treatment planning. Med Phys 2023. [PMID: 36786202 DOI: 10.1002/mp.16297] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Hybrid proton-photon radiotherapy (RT) can provide better plan quality than proton or photon only RT, in terms of robustness of target coverage and sparing of organs-at-risk (OAR). PURPOSE This work develops a hybrid treatment planning method that can optimize the number of proton and photon fractions as well as proton and photon plan variables, so that the hybrid plans can be clinically delivered day-to-day using either proton or photon machine. METHODS In the new hybrid treatment planning method, the total dose distribution (sum of proton dose and photon dose) is optimized for robust target coverage and optimal OAR sparing, by jointly optimizing proton spots and photon fluences, while the target dose uniformity is also enforced individually on both proton dose and photon dose, so that the hybrid plans can be separately and robustly delivered on proton or photon machine. To ensure the target dose uniformity for proton and photon plans, the number of proton and photon fractions is explicitly modeled and optimized, so that the target dose for proton and photon dose components is constrained to be a constant fraction of the total prescription dose while the plan quality based on total dose is optimized. The feasibility of hybrid planning using the proposed method is validated with representative clinical cases including abdomen, lung, head-and-neck (HN), and brain. RESULTS For all cases, hybrid plans provided better overall plan quality and OAR sparing than proton-only or photon-only plans, better target dose uniformity and robustness than proton-only plans, quantified by treatment planning objectives and dosimetric parameters. Moreover, for HN and brain cases, hybrid plans also had better target coverage than photon-only plans. CONCLUSIONS We have developed a new hybrid treatment planning method that optimizes number of proton and photon fractions as well as proton spots and photon fluences, for generating hybrid plans that can be separately and robustly delivered on proton or photon machines. Preliminary results have demonstrated that hybrid plans generated by the new method have better plan quality than proton-only or photon-only plans.
Collapse
Affiliation(s)
- Wangyao Li
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Weijie Zhang
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
12
|
Mueller S, Guyer G, Volken W, Frei D, Torelli N, Aebersold DM, Manser P, Fix MK. Efficiency enhancements of a Monte Carlo beamlet based treatment planning process: implementation and parameter study. Phys Med Biol 2023; 68. [PMID: 36655485 DOI: 10.1088/1361-6560/acb480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Objective.The computational effort to perform beamlet calculation, plan optimization and final dose calculation of a treatment planning process (TPP) generating intensity modulated treatment plans is enormous, especially if Monte Carlo (MC) simulations are used for dose calculation. The goal of this work is to improve the computational efficiency of a fully MC based TPP for static and dynamic photon, electron and mixed photon-electron treatment techniques by implementing multiple methods and studying the influence of their parameters.Approach.A framework is implemented calculating MC beamlets efficiently in parallel on each available CPU core. The user can specify the desired statistical uncertainty of the beamlets, a fractional sparse dose threshold to save beamlets in a sparse format and minimal distances to the PTV surface from which 2 × 2 × 2 = 8 (medium) or even 4 × 4 × 4 = 64 (large) voxels are merged. The compromise between final plan quality and computational efficiency of beamlet calculation and optimization is studied for several parameter values to find a reasonable trade-off. For this purpose, four clinical and one academic case are considered with different treatment techniques.Main results.Setting the statistical uncertainty to 5% (photon beamlets) and 15% (electron beamlets), the fractional sparse dose threshold relative to the maximal beamlet dose to 0.1% and minimal distances for medium and large voxels to the PTV to 1 cm and 2 cm, respectively, does not lead to substantial degradation in final plan quality compared to using 2.5% (photon beamlets) and 5% (electron beamlets) statistical uncertainty and no sparse format nor voxel merging. Only OAR sparing is slightly degraded. Furthermore, computation times are reduced by about 58% (photon beamlets), 88% (electron beamlets) and 96% (optimization).Significance.Several methods are implemented improving computational efficiency of beamlet calculation and plan optimization of a fully MC based TPP without substantial degradation in final plan quality.
Collapse
Affiliation(s)
- S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - N Torelli
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - D M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| |
Collapse
|
13
|
Fabiano S, Torelli N, Papp D, Unkelbach J. A novel stochastic optimization method for handling misalignments of proton and photon doses in combined treatments. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/29/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Combined proton–photon treatments, where most fractions are delivered with photons and only a few are delivered with protons, may represent a practical approach to optimally use limited proton resources. It has been shown that, when organs at risk (OARs) are located within or near the tumor, the optimal multi-modality treatment uses protons to hypofractionate parts of the target volume and photons to achieve near-uniform fractionation in dose-limiting healthy tissues, thus exploiting the fractionation effect. These plans may be sensitive to range and setup errors, especially misalignments between proton and photon doses. Thus, we developed a novel stochastic optimization method to directly incorporate these uncertainties into the biologically effective dose (BED)-based simultaneous optimization of proton and photon plans. Approach. The method considers the expected value
E
b
and standard deviation
σ
b
of the cumulative BED
b
in every voxel of a structure. For the target, a piecewise quadratic penalty function of the form
b
min
−
E
b
−
2
σ
b
+
2
is minimized, aiming for plans in which the expected BED minus two times the standard deviation exceeds the prescribed BED
b
min
.
Analogously,
E
b
+
2
σ
b
−
b
max
+
2
is considered for OARs. Main results. Using a spinal metastasis case and a liver cancer patient, it is demonstrated that the novel stochastic optimization method yields robust combined treatment plans. Tumor coverage and a good sparing of the main OARs are maintained despite range and setup errors, and especially misalignments between proton and photon doses. This is achieved without explicitly considering all combinations of proton and photon error scenarios. Significance. Concerns about range and setup errors for safe clinical implementation of optimized proton–photon radiotherapy can be addressed through an appropriate stochastic planning method.
Collapse
|
14
|
Amstutz F, Fabiano S, Marc L, Weber DC, Lomax AJ, Unkelbach J, Zhang Y. Combined proton-photon therapy for non-small cell lung cancer. Med Phys 2022; 49:5374-5386. [PMID: 35561077 PMCID: PMC9544482 DOI: 10.1002/mp.15715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/18/2022] [Accepted: 05/08/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Advanced non-small cell lung cancer (NSCLC) is still a challenging indication for conventional photon radiotherapy. Proton therapy has the potential to improve outcomes, but proton treatment slots remain a limited resource despite an increasing number of proton therapy facilities. This work investigates the potential benefits of optimally combined proton-photon therapy delivered using a fixed horizontal proton beam line in combination with a photon Linac, which could increase accessibility to proton therapy for such a patient cohort. MATERIALS AND METHODS A treatment planning study has been conducted on a patient cohort of seven advanced NSCLC patients. Each patient had a planning CT and multiple repeated CTs from three different days and for different breath-holds on each day. Treatment plans for combined proton-photon therapy (CPPT) were calculated for individual patients by optimizing the combined cumulative dose on the initial planning CT only (non-adapted) as well as on each daily CT respectively (adapted). The impact of inter-fractional changes and/or breath-hold variability was then assessed on the repeat breath-hold CTs. Results were compared to plans for IMRT or IMPT alone, as well as against combined treatments assuming a proton gantry. Plan quality was assessed in terms of dosimetric, robustness and NTCP metrics. RESULTS Combined treatment plans improved plan quality compared to IMRT treatments, especially in regard to reductions of low and medium doses to organs at risk (OARs), which translated into lower NTCP estimates for three side effects. For most patients, combined treatments achieved results close to IMPT-only plans. Inter-fractional changes impact mainly the target coverage of combined and IMPT treatments, while OARs doses were less affected by these changes. With plan adaptation however, target coverage of combined treatments remained high even when taking variability between breath-holds into account. CONCLUSIONS Optimally combined proton-photon plans improve treatment plan quality compared to IMRT only, potentially reducing the risk of toxicity while also allowing to potentially increase accessibility to proton therapy for NSCLC patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Florian Amstutz
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Louise Marc
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland.,Department of Radiation Oncology, University Hospital Bern, Bern, Switzerland
| | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.,Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Zurich, Switzerland
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
15
|
Gordon K, Gulidov I, Koryakin S, Smyk D, Makeenkova T, Gogolin D, Lepilina O, Golovanova O, Semenov A, Dujenko S, Medvedeva K, Mardynsky Y. Proton therapy with a fixed beamline for skull-base chordomas and chondrosarcomas: outcomes and toxicity. Radiat Oncol 2021; 16:238. [PMID: 34930352 PMCID: PMC8686536 DOI: 10.1186/s13014-021-01961-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/05/2021] [Indexed: 11/21/2022] Open
Abstract
Aim This study presents an analysis (efficacy and toxicity) of outcomes in patients with skull-base chordomas or chondrosarcomas treated with a fixed horizontal pencil proton beam. Background Chordomas (CAs) and chondrosarcomas (CSAs) are rare tumours that are usually located near the base of the skull and very close to the brain's most critical structures. Proton therapy (PT) is often considered the best radiation treatment for these diseases, but it is still a limited resource. Active scanning PT delivered via a fixed pencil beamline might be a promising option. Methods This is a single-centre experience describing the results of proton therapy for 31 patients with CA (n = 23) or CSA (n = 8) located near the base of the skull. Proton therapy was utilized by a fixed pencil beamline with a chair to position the patient between May 2016 and November 2020. Ten patients underwent resection (32.2%), 15 patients (48.4%) underwent R2 resection, and 6 patients had unresectable tumours (19.4%). In 4 cases, the tumours had been previously irradiated. The median PT dose was 70 GyRBE (relative biological efficacy, 1.1) [range, 60 to 74] with 2.0 GyRBE per fraction. The mean GTV volume was 25.6 cm3 [range, 4.2–115.6]. Patient demographics, pathology, treatment parameters, and toxicity were collected and analysed. Radiation-induced reactions were assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) v 4.0. Results The median follow-up time was 21 months [range, 4 to 52]. The median overall survival (OS) was 40 months. The 1- and 2-year OS was 100%, and the 3-year OS was 66.3%. Four patients died due to non-cancer-related reasons, 1 patient died due to tumour progression, and 1 patient died due to treatment-related injuries. The 1-year local control (LC) rate was 100%, the 2-year LC rate was 93.7%, and the 3-year LC rate was 85.3%. Two patients with CSA exhibited progression in the neck lymph nodes and lungs. All patients tolerated PT well without any treatment interruptions. We observed 2 cases of ≥ grade 3 toxicity, with 1 case of grade 3 myelitis and 1 case of grade 5 brainstem injury. Conclusion Treatment with a fixed proton beam shows promising disease control and an acceptable toxicity rate, even the difficult-to-treat subpopulation of patients with skull-base chordomas or chondrosarcomas requiring dose escalation.
Collapse
|
16
|
Marc L, Fabiano S, Wahl N, Linsenmeier C, Lomax AJ, Unkelbach J. Combined proton-photon treatment for breast cancer. Phys Med Biol 2021; 66. [PMID: 34736246 DOI: 10.1088/1361-6560/ac36a3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proton therapy remains a limited resource due to gantry size and its cost. Recently, a new design without a gantry has been suggested. It may enable combined proton-photon therapy (CPPT) in conventional bunkers and allow the widespread use of protons. In this work, we explore this concept for breast cancer.Methods.The treatment room consists of a LINAC for intensity modulated radiation therapy (IMRT), a fixed proton beamline (FBL) with beam scanning and a motorized couch for treatments in lying positions with accurate patient setup. Thereby, proton and photon beams are delivered in the same fraction. Treatment planning is performed by simultaneously optimizing IMRT and IMPT plans based on the cumulative dose. The concept is investigated for three breast cancers where the goal is to minimize mean dose to the heart and lung while delivering 40.05 Gy in 15 fractions to the PTV with a SIB of 48 Gy to the tumor bed. The probabilistic approach is applied to mitigate the sensitivity to range uncertainties.Results. CPPT is particularly advantageous for irradiating concave target volumes that wrap around a curved chest wall. There, protons may deliver dose to the peripheral and medial parts of the target volume including lymph nodes. Thereby, the mean dose in normal tissues is reduced compared to single-modality IMRT. However, tangential photon beams may treat parts of the target volume near the interface to the lung. To ensure target coverage for range undershoot in an IMPT plan, proton beams have to deliberately overshoot into the lung tissue-a problem that can be mitigated via the photon component which ensures plan conformity and robustness.Conclusion.CPPT using an FBL may represent a realistic approach to make protons available to more patients. In addition, CPPT may generally improve treatment quality compared to both single-modality proton and photon treatments.
Collapse
Affiliation(s)
- Louise Marc
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center DKFZ, Heidelberg, Germany
| | | | - Antony J Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Switzerland.,Department of Physics, ETH Zurich, Switzerland
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| |
Collapse
|
17
|
Loizeau N, Fabiano S, Papp D, Stützer K, Jakobi A, Bandurska-Luque A, Troost EGC, Richter C, Unkelbach J. Optimal Allocation of Proton Therapy Slots in Combined Proton-Photon Radiation Therapy. Int J Radiat Oncol Biol Phys 2021; 111:196-207. [PMID: 33848609 DOI: 10.1016/j.ijrobp.2021.03.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
PURPOSE Proton therapy is a limited resource that is not available to all patients who may benefit from it. We investigated combined proton-photon treatments, in which some fractions are delivered with protons and the remaining fractions with photons, as an approach to maximize the benefit of limited proton therapy resources at a population level. METHODS AND MATERIALS To quantify differences in normal-tissue complication probability (NTCP) between protons and photons, we considered a cohort of 45 patients with head and neck cancer for whom intensity modulated radiation therapy and intensity modulated proton therapy plans were previously created, in combination with NTCP models for xerostomia and dysphagia considered in the Netherlands for proton patient selection. Assuming limited availability of proton slots, we developed methods to optimally assign proton fractions in combined proton-photon treatments to minimize the average NTCP on a population level. The combined treatments were compared with patient selection strategies in which patients are assigned to single-modality proton or photon treatments. RESULTS There is a benefit of combined proton-photon treatments compared with patient selection, owing to the nonlinearity of NTCP functions; that is, the initial proton fractions are the most beneficial, whereas additional proton fractions have a decreasing benefit when a flatter part of the NTCP curve is reached. This effect was small for the patient cohort and NTCP models considered, but it may be larger if dose-response relationships are better known. In addition, when proton slots are limited, patient selection methods face a trade-off between leaving slots unused and blocking slots for future patients who may have a larger benefit. Combined proton-photon treatments with flexible proton slot assignment provide a method to make optimal use of all available resources. CONCLUSIONS Combined proton-photon treatments allow for better use of limited proton therapy resources. The benefit over patient selection schemes depends on the NTCP models and the dose differences between protons and photons.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Physics Institute, University of Zürich, Zürich, Switzerland; Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland.
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| | - Dávid Papp
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| | - Kristin Stützer
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany
| | - Annika Jakobi
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Anna Bandurska-Luque
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Christian Richter
- OncoRay-National Center for Radiation Research in Oncology, Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz Association / Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Bennan ABA, Unkelbach J, Wahl N, Salome P, Bangert M. Joint Optimization of Photon-Carbon Ion Treatments for Glioblastoma. Int J Radiat Oncol Biol Phys 2021; 111:559-572. [PMID: 34058258 DOI: 10.1016/j.ijrobp.2021.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Carbon ions are radiobiologically more effective than photons and are beneficial for treating radioresistant gross tumor volumes (GTV). However, owing to a reduced fractionation effect, they may be disadvantageous for treating infiltrative tumors, in which healthy tissue inside the clinical target volume (CTV) must be protected through fractionation. This work addresses the question: What is the ideal combined photon-carbon ion fluence distribution for treating infiltrative tumors given a specific fraction allocation between photons and carbon ions? METHODS AND MATERIALS We present a method to simultaneously optimize sequentially delivered intensity modulated photon (IMRT) and carbon ion (CIRT) treatments based on cumulative biological effect, incorporating both the variable relative biological effect of carbon ions and the fractionation effect within the linear quadratic model. The method is demonstrated for 6 glioblastoma patients in comparison with the current clinical standard of independently optimized CIRT-IMRT plans. RESULTS Compared with the reference plan, joint optimization strategies yield inhomogeneous photon and carbon ion dose distributions that cumulatively deliver a homogeneous biological effect distribution. In the optimal distributions, the dose to CTV is mostly delivered by photons and carbon ions are restricted to the GTV with variations depending on tumor size and location. Improvements in conformity of high-dose regions are reflected by a mean EQD2 reduction of 3.29 ± 1.22 Gy in a dose fall-off margin around the CTV. Carbon ions may deliver higher doses to the center of the GTV, and photon contributions are increased at interfaces with CTV and critical structures. This results in a mean EQD2 reduction of 8.3 ± 2.28 Gy, in which the brain stem abuts the target volumes. CONCLUSIONS We have developed a biophysical model to optimize combined photon-carbon ion treatments. For 6 glioblastoma patient cases, we show that our approach results in a more targeted application of carbon ions that (1) reduces dose in normal tissues within the target volume, which can only be protected through fractionation; and (2) boosts central target volume regions to reduce integral dose. Joint optimization of IMRT-CIRT treatments enable the exploration of a new spectrum of plans that can better address physical and radiobiological treatment planning challenges.
Collapse
Affiliation(s)
- Amit Ben Antony Bennan
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Patrick Salome
- Medical Faculty, Heidelberg University, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ)
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
19
|
Kueng R, Mueller S, Loebner HA, Frei D, Volken W, Aebersold DM, Stampanoni MFM, Fix MK, Manser P. TriB-RT: Simultaneous optimization of photon, electron and proton beams. Phys Med Biol 2021; 66:045006. [PMID: 32413883 DOI: 10.1088/1361-6560/ab936f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a novel treatment planning process (TPP) with simultaneous optimization of modulated photon, electron and proton beams for improved treatment plan quality in radiotherapy. METHODS A framework for fluence map optimization of Monte Carlo (MC) calculated beamlet dose distributions is developed to generate treatment plans consisting of photon, electron and spot scanning proton fields. Initially, in-house intensity modulated proton therapy (IMPT) plans are compared to proton plans created by a commercial treatment planning system (TPS). A triple beam radiotherapy (TriB-RT) plan is generated for an exemplary academic case and the dose contributions of the three particle types are investigated. To investigate the dosimetric potential, a TriB-RT plan is compared to an in-house IMPT plan for two clinically motivated cases. Benefits of TriB-RT for a fixed proton beam line with a single proton field are investigated. RESULTS In-house optimized IMPT are of at least equal or better quality than TPS-generated proton plans, and MC-based optimization shows dosimetric advantages for inhomogeneous situations. Concerning TriB-RT, for the academic case, the resulting plan shows substantial contribution of all particle types. For the clinically motivated case, improved sparing of organs at risk close to the target volume is achieved compared to IMPT (e.g. myelon and brainstem [Formula: see text] -37%) at cost of an increased low dose bath (healthy tissue V 10% +22%). In the scenario of a fixed proton beam line, TriB-RT plans are able to compensate the loss in degrees of freedom to substantially improve plan quality compared to a single field proton plan. CONCLUSION A novel TPP which simultaneously optimizes photon, electron and proton beams was successfully developed. TriB-RT shows the potential for improved treatment plan quality and is especially promising for cost-effective single-room proton solutions with a fixed beamline in combination with a conventional linac delivering photon and electron fields.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Xu WL, Aikeremu D, Sun JG, Zhang YJ, Xu JB, Zhou WZ, Zhao XB, Wang H, Yuan H. Effect of intensity-modulated radiation therapy on sciatic nerve injury caused by echinococcosis. Neural Regen Res 2021; 16:580-586. [PMID: 32985491 PMCID: PMC7996033 DOI: 10.4103/1673-5374.293153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conventional radiotherapy has a good killing effect on femoral echinococcosis. However, the sciatic nerve around the lesion is irreversibly damaged owing to bystander effects. Although intensity-modulated radiation therapy shows great advantages for precise dose distribution into lesions, it is unknown whether intensity-modulated radiation therapy can perfectly protect the surrounding sciatic nerve on the basis of good killing of femoral echinococcosis foci. Therefore, this study comparatively analyzed differences between intensity-modulated radiation therapy and conventional radiotherapy on the basis of safety to peripheral nerves. Pure-breed Meriones meridiani with bilateral femoral echinococcosis were selected as the research object. Intensity-modulated radiation therapy was used to treat left femoral echinococcosis of Meriones meridianus, while conventional radiotherapy was used to treat right femoral echinococcosis of the same Meriones meridianus. The total radiation dose was 40 Gy. To understand whether intensity-modulated radiation therapy and conventional radiotherapy can kill femoral echinococcosis, trypan blue staining was used to detect pathological changes of bone Echinococcus granulosus and protoscolex death after radiotherapy. Additionally, enzyme histochemical staining was utilized to measure acid phosphatase activity in the protoscolex after radiotherapy. One week after radiotherapy, the overall structure of echinococcosis in bilateral femurs of Meriones meridiani treated by intensity-modulated radiation therapy disappeared. There was no significant difference in the mortality rate of protoscoleces of Echinococcus granulosus between the bilateral femurs of Meriones meridiani. Moreover, there was no significant difference in acid phosphatase activity in the protoscolex of Echinococcus granulosus between bilateral femurs. To understand the injury of sciatic nerve surrounding the foci of femoral echinococcosis caused by intensity-modulated radiation therapy and conventional radiotherapy, the ultrastructure of sciatic nerves after radiotherapy was observed by transmission electron microscopy. Additionally, apoptosis of neurons was examined using a terminal-deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, and expression of Bcl-2 and Bax in sciatic nerve tissue was detected by immunohistochemical staining and western blot assay. Our results showed that most neurons in the left sciatic nerve of Meriones meridiani with echinococcosis treated by intensity-modulated radiation therapy had reversible injury, and there was no obvious apoptosis. Compared with conventional radiotherapy, the number of apoptotic cells and Bax expression in sciatic nerve treated by intensity-modulated radiation therapy were significantly decreased, while Bcl-2 expression was significantly increased. Our findings suggest that intensity-modulated radiation therapy has the same therapeutic effect on echinococcosis as conventional radiotherapy, and can reduce apoptosis of the sciatic nerve around foci caused by radiotherapy. Experiments were approved by the Animal Ethics Committee of People’s Hospital of Xinjiang Uygur Autonomous Region, China (Approval No. 20130301A41) on March 1, 2013.
Collapse
Affiliation(s)
- Wan-Long Xu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Dilimulati Aikeremu
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jun-Gang Sun
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yan-Jun Zhang
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jiang-Bo Xu
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Wen-Zheng Zhou
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xi-Bin Zhao
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hao Wang
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hong Yuan
- Department of Orthopedics, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
21
|
Kueng R, Guyer G, Volken W, Frei D, Stabel F, Stampanoni MFM, Manser P, Fix MK. Development of an extended Macro Monte Carlo method for efficient and accurate dose calculation in magnetic fields. Med Phys 2020; 47:6519-6530. [PMID: 33075168 DOI: 10.1002/mp.14542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/06/2022] Open
Abstract
MOTIVATION Progress in the field of magnetic resonance (MR)-guided radiotherapy has triggered the need for fast and accurate dose calculation in presence of magnetic fields. The aim of this work is to satisfy this need by extending the macro Monte Carlo (MMC) method to enable dose calculation for photon, electron, and proton beams in a magnetic field. METHODS The MMC method is based on the transport of particles in macroscopic steps through an absorber by sampling the relevant physical quantities from a precalculated database containing probability distribution functions. To enable MMC particle transport in a magnetic field, a transformation accounting for the Lorentz force is applied for each macro step by rotating the sampled position and direction around the magnetic field vector. The transformed position and direction distributions on local geometries are validated against full MC for electron and proton pencil beams. To enable photon dose calculation, an in-house MC algorithm is used for photon transport and interaction. Emerging secondary charged particles are passed to MMC for transport and energy deposition. The extended MMC dose calculation accuracy and efficiency is assessed by comparison with EGSnrc (photon and electron beams) and Geant4 (proton beam) calculated dose distributions of different energies and homogeneous magnetic fields for broad beams impinging on water phantoms with bone and lung inhomogeneities. RESULTS The geometric transformation on the local geometries is able to reproduce the results of full MC for all investigated settings (difference in mean value and standard deviation <1%). Macro Monte Carlo calculated dose distributions in a homogeneous magnetic field are in agreement with EGSnrc and Geant4, respectively, with gamma passing rates >99.6% (global 2%, 2 mm and 10% threshold criteria) for all situations. MMC achieves a substantial efficiency gain of up to a factor of 21 (photon beam), 66 (electron beam), and 356 (proton beam) compared to EGSnrc or Geant4. CONCLUSION Efficient and accurate dose calculation in magnetic fields was successfully enabled by utilizing the developed extended MMC transport method for photon, electron, and proton beams.
Collapse
Affiliation(s)
- R Kueng
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - D Frei
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - F Stabel
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M F M Stampanoni
- Institute for Biomedical Engineering, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|