1
|
Taasti VT, Kneepkens E, van der Stoep J, Velders M, Cobben M, Vullings A, Buck J, Visser F, van den Bosch M, Hattu D, Mannens J, 't Ven LI, de Ruysscher D, van Loon J, Peeters S, Unipan M, Rinaldi I. Proton therapy of lung cancer patients - Treatment strategies and clinical experience from a medical physicist's perspective. Phys Med 2025; 130:104890. [PMID: 39799813 DOI: 10.1016/j.ejmp.2024.104890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
PURPOSE Proton therapy of moving targets is considered a challenge. At Maastro, we started treating lung cancer patients with proton therapy in October 2019. In this work, we summarise the developed treatment strategies and gained clinical experience from a physics point of view. METHODS We report on our clinical approaches to treat lung cancer patients with the Mevion Hyperscan S250i proton machine. We classify lung cancer patients as small movers (tumour movement ≤ 5 mm) or large movers (tumour movement > 5 mm). The preferred beam configuration has evolved over the years of clinical treatment, and currently mostly two or three beam directions are used. All patients are treated with robustly optimised plans (5 mm setup and 3% range uncertainty). Small movers are planned based on a clinical target volume (CTV) with a 3 mm isotropic margin expansion to account for motion, while large movers are planned based on an internal target volume (ITV). All patients are treated in free-breathing. RESULTS Between October 2019 and December 2023, 379 lung cancer patients have been treated, of which 130 were large movers. The adaptation rate was 28%. The median treatment time has been reduced from 30 to 23 min. The mean dose to the heart, oesophagus, and lungs was on average 4.3, 15.4, and 11.0 Gy, respectively. CONCLUSIONS Several treatment planning and workflow improvements have been introduced over the years, resulting in an increase of treatment quality and number of treated patients, as well as reduction of planning and treatment time.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Esther Kneepkens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Judith van der Stoep
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Marije Velders
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maud Cobben
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Anouk Vullings
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Janou Buck
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Femke Visser
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Maud van den Bosch
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Djoya Hattu
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Jolein Mannens
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lieke In 't Ven
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Judith van Loon
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Stephanie Peeters
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| |
Collapse
|
2
|
Larsson K, Hein D, Huang R, Collin D, Scotti A, Fredenberg E, Andersson J, Persson M. Deep learning estimation of proton stopping power with photon-counting computed tomography: a virtual study. J Med Imaging (Bellingham) 2024; 11:S12809. [PMID: 39574807 PMCID: PMC11576576 DOI: 10.1117/1.jmi.11.s1.s12809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/06/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Proton radiation therapy may achieve precise dose delivery to the tumor while sparing non-cancerous surrounding tissue, owing to the distinct Bragg peaks of protons. Aligning the high-dose region with the tumor requires accurate estimates of the proton stopping power ratio (SPR) of patient tissues, commonly derived from computed tomography (CT) image data. Photon-counting detectors for CT have demonstrated advantages over their energy-integrating counterparts, such as improved quantitative imaging, higher spatial resolution, and filtering of electronic noise. We assessed the potential of photon-counting computed tomography (PCCT) for improving SPR estimation by training a deep neural network on a domain transform from PCCT images to SPR maps. Approach The XCAT phantom was used to simulate PCCT images of the head with CatSim, as well as to compute corresponding ground truth SPR maps. The tube current was set to 260 mA, tube voltage to 120 kV, and number of view angles to 4000. The CT images and SPR maps were used as input and labels for training a U-Net. Results Prediction of SPR with the network yielded average root mean square errors (RMSE) of 0.26% to 0.41%, which was an improvement on the RMSE for methods based on physical modeling developed for single-energy CT at 0.40% to 1.30% and dual-energy CT at 0.41% to 3.00%, performed on the simulated PCCT data. Conclusions These early results show promise for using a combination of PCCT and deep learning for estimating SPR, which in extension demonstrates potential for reducing the beam range uncertainty in proton therapy.
Collapse
Affiliation(s)
- Karin Larsson
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
- Karolinska University Hospital, MedTechLabs, BioClinicum, Solna, Sweden
| | - Dennis Hein
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
- Karolinska University Hospital, MedTechLabs, BioClinicum, Solna, Sweden
| | - Ruihan Huang
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
- Karolinska University Hospital, MedTechLabs, BioClinicum, Solna, Sweden
| | | | - Andrea Scotti
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
| | - Erik Fredenberg
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
- GE HealthCare, Stockholm, Sweden
| | - Jonas Andersson
- Umeå University, Department of Diagnostics and Intervention, Radiation Physics, Umeå, Sweden
| | - Mats Persson
- KTH Royal Institute of Technology, Department of Physics, Stockholm, Sweden
- Karolinska University Hospital, MedTechLabs, BioClinicum, Solna, Sweden
| |
Collapse
|
3
|
Hernández RM, Muñoz-Noval A, Briz JA, Murias JR, Espinosa-Rodríguez A, Fraile LM, Agulló-Rueda F, Ynsa MD, Tavares de Sousa C, Cortés-Llanos B, López GG, Nácher E, García-Tavora V, Mont I Geli N, Nerio A, Onecha VV, Pallàs M, Tarifeño A, Tengblad O, Silván MM, Viñals S. Iodine-substituted hydroxyapatite nanoparticles and activation of derived ceramics for range verification in proton therapy. J Mater Chem B 2024; 12:12030-12037. [PMID: 39440687 DOI: 10.1039/d4tb01391c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Osteosarcoma is a radioresistant cancer, and proton therapy is a promising radiation alternative for treating cancer with the advantage of a high dose concentration in the tumor area. In this work, we propose the use of iodine-substituted hydroxyapatite (IHAP) nanomaterials to use iodine (127I) as a proton radiation tracer, providing access to range verification studies in mineralized tissues. For this purpose, the nanomaterials were synthesized at four iodine concentrations via hydrothermal synthesis. The materials were characterized via different microstructural techniques to identify an optimal high iodine concentration and pure apatite phase nanomaterial. Finally, such pure IHAP powders were shaped and irradiated with proton beams of 6 and 10 MeV, and their activation was demonstrated through subsequent decay analysis. The materials could be integrated into phantom structures for the verification of doses and ranges of protons prior to animal testing and clinical proton therapy treatments of tumors located deep under combined soft and calcified tissues.
Collapse
Affiliation(s)
- R Magro Hernández
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - A Muñoz-Noval
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- IMDEA Nanociencia, C/Faraday, 9, 28049 Madrid, Spain
| | - J A Briz
- Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - J R Murias
- Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - L M Fraile
- Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Agulló-Rueda
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - M D Ynsa
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - C Tavares de Sousa
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - B Cortés-Llanos
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - G García López
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - E Nácher
- Institut de Física Corpuscular (IFIC), 46980 Valencia, Spain
| | - V García-Tavora
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, 28019 Madrid, Spain
| | - N Mont I Geli
- Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - A Nerio
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, 28019 Madrid, Spain
| | - V V Onecha
- Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - M Pallàs
- Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
| | - A Tarifeño
- Institut de Física Corpuscular (IFIC), 46980 Valencia, Spain
| | - O Tengblad
- Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas, 28019 Madrid, Spain
| | - M Manso Silván
- Centro de Microanálisis de Materiales, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - S Viñals
- Departamento de Física Aplicada e Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Grupo de Física Nuclear, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
4
|
Fogazzi E, Hu G, Bruzzi M, Farace P, Kröncke T, Niepel K, Ricke J, Risch F, Sabel B, Scaringella M, Schwarz F, Tommasino F, Landry G, Civinini C, Parodi K. A direct comparison of multi-energy x-ray and proton CT for imaging and relative stopping power estimation of plastic and ex-vivophantoms. Phys Med Biol 2024; 69:175021. [PMID: 39159669 DOI: 10.1088/1361-6560/ad70ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Objective.Proton therapy administers a highly conformal dose to the tumour region, necessitating accurate prediction of the patient's 3D map of proton relative stopping power (RSP) compared to water. This remains challenging due to inaccuracies inherent in single-energy computed tomography (SECT) calibration. Recent advancements in spectral x-ray CT (xCT) and proton CT (pCT) have shown improved RSP estimation compared to traditional SECT methods. This study aims to provide the first comparison of the imaging and RSP estimation performance among dual-energy CT (DECT) and photon-counting CT (PCCT) scanners, and a pCT system prototype.Approach.Two phantoms were scanned with the three systems for their performance characterisation: a plastic phantom, filled with water and containing four plastic inserts and a wood insert, and a heterogeneous biological phantom, containing a formalin-stabilised bovine specimen. RSP maps were generated by converting CT numbers to RSP using a calibration based on low- and high-energy xCT images, while pCT utilised a distance-driven filtered back projection algorithm for RSP reconstruction. Spatial resolution, noise, and RSP accuracy were compared across the resulting images.Main results.All three systems exhibited similar spatial resolution of around 0.54 lp/mm for the plastic phantom. The PCCT images were less noisy than the DECT images at the same dose level. The lowest mean absolute percentage error (MAPE) of RSP,(0.28±0.07)%, was obtained with the pCT system, compared to MAPE values of(0.51±0.08)%and(0.80±0.08)%for the DECT- and PCCT-based methods, respectively. For the biological phantom, the xCT-based methods resulted in higher RSP values in most of the voxels compared to pCT.Significance.The pCT system yielded the most accurate estimation of RSP values for the plastic materials, and was thus used to benchmark the xCT calibration performance on the biological phantom. This study underlined the potential benefits and constraints of utilising such a novelex-vivophantom for inter-centre surveys in future.
Collapse
Affiliation(s)
- Elena Fogazzi
- Physics Department, University of Trento, Trento, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
| | - Guyue Hu
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
| | - Mara Bruzzi
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
- Physics and Astronomy Department, University of Florence, Sesto Fiorentino, FI, Italy
| | - Paolo Farace
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
- Medical Physics Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Thomas Kröncke
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Katharina Niepel
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Bastian Sabel
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Monica Scaringella
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
| | - Florian Schwarz
- Department of Diagnostic and Interventional Radiology, University Hospital Augsburg, Augsburg, Germany
| | - Francesco Tommasino
- Physics Department, University of Trento, Trento, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), Trento, TN, Italy
| | - Guillaume Landry
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Bavarian Cancer Research Centre (BZKF), Munich, Germany
| | - Carlo Civinini
- Italian National Institute of Nuclear Physics (INFN), Florence section, Sesto Fiorentino, FI, Italy
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, LMU Munich, Garching, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| |
Collapse
|
5
|
Meyer I, Peters N, Tamborino G, Lee H, Bertolet A, Faddegon B, Mille MM, Lee C, Schuemann J, Paganetti H. A framework for in-field and out-of-field patient specific secondary cancer risk estimates from treatment plans using the TOPAS Monte Carlo system. Phys Med Biol 2024; 69:10.1088/1361-6560/ad64b6. [PMID: 39019051 PMCID: PMC11345907 DOI: 10.1088/1361-6560/ad64b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Objective. To allow the estimation of secondary cancer risks from radiation therapy treatment plans in a comprehensive and user-friendly Monte Carlo (MC) framework.Method. Patient planning computed tomography scans were extended superior-inferior using the International Commission on Radiological Protection's Publication 145 computational mesh phantoms and skeletal matching. Dose distributions were calculated with the TOPAS MC system using novel mesh capabilities and the digital imaging and communications in medicine radiotherapy extension interface. Finally, in-field and out-of-field cancer risk was calculated using both sarcoma and carcinoma risk models with two alternative parameter sets.Result. The TOPAS MC framework was extended to facilitate epidemiological studies on radiation-induced cancer risk. The framework is efficient and allows automated analysis of large datasets. Out-of-field organ dose was small compared to in-field dose, but the risk estimates indicate a non-negligible contribution to the total radiation induced cancer risk.Significance. This work equips the TOPAS MC system with anatomical extension, mesh geometry, and cancer risk model capabilities that make state-of-the-art out-of-field dose calculation and risk estimation accessible to a large pool of users. Furthermore, these capabilities will facilitate further refinement of risk models and sensitivity analysis of patient specific treatment options.
Collapse
Affiliation(s)
- Isaac Meyer
- Massachusetts General Hospital
- Harvard Medical School
| | - Nils Peters
- Massachusetts General Hospital
- Harvard Medical School
| | | | - Hoyeon Lee
- Massachusetts General Hospital
- Harvard Medical School
| | | | - Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco
| | - Matthew M. Mille
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH)
| | - Choonsik Lee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health (NIH)
| | - Jan Schuemann
- Massachusetts General Hospital
- Harvard Medical School
| | | |
Collapse
|
6
|
Werner J, Pennazio F, Schmid N, Fiorina E, Bersani D, Cerello P, Kasprzak J, Mosco N, Ranjbar S, Sacchi R, Ferrero V, Rafecas M. Stopping power and range estimations in proton therapy based on prompt gamma timing: motion models and automated parameter optimization. Phys Med Biol 2024; 69:14NT02. [PMID: 38941994 DOI: 10.1088/1361-6560/ad5d4b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Objective.Particle therapy treatments are currently limited by uncertainties of the delivered dose. Verification techniques like Prompt-Gamma-Timing-based Stopping Power Estimation (PGT-SPE) may allow for reduction of safety margins in treatment planning.Approach.From Prompt-Gamma-Timing measurements, we reconstruct the spatiotemporal distribution of prompt gamma emissions, which is linked to the average motion of the primary particles. The stopping power is determined by fitting a model of the average particle motion. Here, we compare a previously published implementation of the particle motion model with an alternative formulation and present two formulations to automatically select the hyperparameters of our procedure. The performance was assessed using Monte-Carlo simulations of proton beams (60 MeV-219 MeV) impinging on a homogeneous PMMA phantom.Main results.The range was successfully determined within a standard deviation of 3 mm for proton beam energies from 70 MeV to 219 MeV. Stopping power estimates showed errors below 5% for beam energies above 160 MeV. At lower energies, the estimation performance degraded to unsatisfactory levels due to the short range of the protons. The new motion model improved the estimation performance by up to 5% for beam energies from 100 MeV to 150 MeV with mean errors ranging from 6% to 18%. The automated hyperparameter optimization matched the average error of previously reported manual selections, while significantly reducing the outliers.Significance.The data-driven hyperparameter optimization allowed for a reproducible and fast evaluation of our method. The updated motion model and evaluation at new beam energies bring us closer to applying PGT-SPE in more complex scenarios. Direct comparison of stopping power estimates between treatment planning and measurements during irradiation would offer a more direct verification than other secondary-particle-based techniques.
Collapse
Affiliation(s)
- Julius Werner
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| | | | - Niklas Schmid
- Automatic Control Laboratory, ETH Zürich, Zürich, Switzerland
| | - Elisa Fiorina
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Davide Bersani
- Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Pisa, Italy
| | | | - Jona Kasprzak
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| | - Nicola Mosco
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Sahar Ranjbar
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - Roberto Sacchi
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
| | - Veronica Ferrero
- Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy
| | - Magdalena Rafecas
- Institute of Medical Engineering, Universität zu Lübeck, Lübeck, Germany
| |
Collapse
|
7
|
Taylor PA, Mirandola A, Ciocca M, Hartzell S, Vai A, Alvarez P, Howell RM, Koay EJ, Peeler CR, Peterson CB, Kry SF. Technical note: Radiological clinical equivalence for phantom materials in carbon ion therapy. Med Phys 2024; 51:5154-5158. [PMID: 38598230 PMCID: PMC11233228 DOI: 10.1002/mp.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
PURPOSE As carbon ion radiotherapy increases in use, there are limited phantom materials for heterogeneous or anthropomorphic phantom measurements. This work characterized the radiological clinical equivalence of several phantom materials in a therapeutic carbon ion beam. METHODS Eight materials were tested for radiological material-equivalence in a carbon ion beam. The materials were computed tomography (CT)-scanned to obtain Hounsfield unit (HU) values, then irradiated in a monoenergetic carbon ion beam to determine relative linear stopping power (RLSP). The corresponding HU and RLSP for each phantom material were compared to clinical carbon ion calibration curves. For absorbed dose comparison, ion chamber measurements were made in the center of a carbon ion spread-out Bragg peak (SOBP) in water and in the phantom material, evaluating whether the material perturbed the absorbed dose measurement beyond what was predicted by the HU-RLSP relationship. RESULTS Polyethylene, solid water (Gammex and Sun Nuclear), Blue Water (Standard Imaging), and Techtron HPV had measured RLSP values that agreed within ±4.2% of RLSP values predicted by the clinical calibration curve. Measured RLSP for acrylic was 7.2% different from predicted. The agreement for balsa wood and cork varied between samples. Ion chamber measurements in the phantom materials were within 0.1% of ion chamber measurements in water for most materials (solid water, Blue Water, polyethylene, and acrylic), and within 1.9% for the rest of the materials (balsa wood, cork, and Techtron HPV). CONCLUSIONS Several phantom materials (Blue Water, polyethylene, solid water [Gammex and Sun Nuclear], and Techtron HPV) are suitable for heterogeneous phantom measurements for carbon ion therapy. Low density materials should be carefully characterized due to inconsistencies between samples.
Collapse
Affiliation(s)
- Paige A Taylor
- Department of Radiation Physics, The University of MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alfredo Mirandola
- Department of Medical Physics, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Mario Ciocca
- Department of Medical Physics, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Shannon Hartzell
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Alessandro Vai
- Department of Medical Physics, Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| | - Paola Alvarez
- Department of Radiation Physics, The University of MD Anderson Cancer Center, Houston, Texas, USA
| | - Rebecca M Howell
- Department of Radiation Physics, The University of MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eugene J Koay
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Gastrointestinal Radiation Oncology, The University of MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher R Peeler
- Department of Radiation Physics, The University of MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christine B Peterson
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biostatistics, The University of MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen F Kry
- Department of Radiation Physics, The University of MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
8
|
Tarp IS, Taasti VT, Jensen MF, Vestergaard A, Jensen K. Benefit of range uncertainty reduction in robust optimisation for proton therapy of brain, head-and-neck and breast cancer patients. Phys Imaging Radiat Oncol 2024; 31:100632. [PMID: 39257572 PMCID: PMC11386293 DOI: 10.1016/j.phro.2024.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024] Open
Abstract
Background and Purpose The primary cause of range uncertainty in proton therapy is inaccuracy in estimating the stopping-power ratio from computed tomography. This study examined the impact on dose-volume metrics by reducing range uncertainty in robust optimisation for a diverse patient cohort and determined the level of range uncertainty that resulted in a relevant reduction in doses to organs-at-risk (OARs). Materials and Methods The effect of reducing range uncertainty on OAR doses was evaluated by robustly optimising six proton plans with varying range uncertainty levels (ranging from 3.5% in the original plan to 1.0%), keeping setup uncertainty fixed. All plans used the initial clinical treatment plan's beam directions and optimisation objectives and were optimised until a clinically acceptable plan was achieved across all setup and range scenarios. The effect of reduced range uncertainty on dose-volume metrics for OARs near the target was evaluated. This study included 30 brain cancer patients, as well as five head-and-neck and five breast cancer patients, investigating the relevance of reducing range uncertainty when different setup uncertainties were used. Results Lowering range uncertainty slightly reduced the nominal dose to surrounding tissue. For body volume receiving 80% of the prescribed dose, reducing range uncertainty from 3.5% to 2.0% resulted in a median decrease of 4 cm3 for the brain, 17 cm3 for head-and-neck, and 27 cm3 for breast cancer patients. Conclusions Reducing range uncertainty in robust optimisation showed a reduction in dose to OARs. The clinical relevance depends on the affected organs and the clinical dose constraints.
Collapse
Affiliation(s)
- Ivanka Sojat Tarp
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Vicki Trier Taasti
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Anne Vestergaard
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Kenneth Jensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Gomà C, Henkner K, Jäkel O, Lorentini S, Magro G, Mirandola A, Placidi L, Togno M, Vidal M, Vilches-Freixas G, Wulff J, Safai S. ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data. Phys Imaging Radiat Oncol 2024; 31:100621. [PMID: 39220113 PMCID: PMC11364130 DOI: 10.1016/j.phro.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam-energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data-integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.
Collapse
Affiliation(s)
- Carles Gomà
- Institute of Cancer and Blood Diseases, Hospital Clínic Barcelona, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Catalan Health Service, Barcelona, Spain
| | - Katrin Henkner
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Ion Beam Therapy Center at the Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefano Lorentini
- Medical Physics Department, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy
| | - Giuseppe Magro
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Alfredo Mirandola
- Medical Physics Unit, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy
| | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Marie Vidal
- Institut Méditerranéen de Protonthérapie - Centre Antoine Lacassagne, Nice, France
| | - Gloria Vilches-Freixas
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany
- University Hospital Essen, Essen, Germany
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
10
|
Fogazzi E, Bruzzi M, D'Amato E, Farace P, Righetto R, Scaringella M, Scarpa M, Tommasino F, Civinini C. Proton CT on biological phantoms for x-ray CT calibration in proton treatment planning. Phys Med Biol 2024; 69:135009. [PMID: 38862001 DOI: 10.1088/1361-6560/ad56f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.To present and characterize a novel method for x-ray computed tomography (xCT) calibration in proton treatment planning, based on proton CT (pCT) measurements on biological phantoms.Approach.A pCT apparatus was used to perform direct measurements of 3D stopping power relative to water (SPR) maps on stabilized, biological phantoms. Two single-energy xCT calibration curves-i.e. tissue substitutes and stoichiometric-were compared to pCT data. Moreover, a new calibration method based on these data was proposed, and verified against intra- and inter-species variability, dependence on stabilization, beam-hardening conditions, and analysis procedures.Main results.Biological phantoms were verified to be stable in time, with a dependence on temperature conditions, especially in the fat region: (-2.5 0.5) HU °C-1. The pCT measurements were compared with standard xCT calibrations, revealing an average SPR discrepancy within ±1.60% for both fat and muscle regions. In the bone region the xCT calibrations overestimated the pCT-measured SPR of the phantom, with a maximum discrepancy of about +3%. As a result, a new cross-calibration curve was directly extracted from the pCT data. Overall, the SPR uncertainty margin associated with this curve was below 3%; fluctuations in the uncertainty values were observed across the HU range. Cross-calibration curves obtained with phantoms made of different animal species and anatomical parts were reproducible with SPR discrepancies within 3%. Moreover, the stabilization procedure did not affect the resulting curve within a 2.2% SPR deviation. Finally, the cross-calibration curve was affected by the beam-hardening conditions on xCTs, especially in the bone region, while dependencies below 2% resulted from the image registration procedure.Significance.Our results showed that pCT measurements on biological phantoms may provide an accurate method for the verification of current xCT calibrations and may represent a tool for the implementation of a new calibration method for proton treatment planning.
Collapse
Affiliation(s)
- Elena Fogazzi
- Physics department, University of Trento, via Sommarive 14, Povo, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), via Sommarive, 14, Povo, TN, Italy
| | - Mara Bruzzi
- Physics and Astronomy Department, University of Florence, via G. Sansone 1, Sesto Fiorentino, FI, Italy
- Italian National Institute of Nuclear Physics (INFN), Florence section, Via G. Sansone 1, Sesto Fiorentino, FI, Italy
| | - Elvira D'Amato
- Physics department, University of Trento, via Sommarive 14, Povo, TN, Italy
| | - Paolo Farace
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), via Sommarive, 14, Povo, TN, Italy
- Medical Physics Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Via Paolo Orsi 1, Trento, Italy
| | - Roberto Righetto
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), via Sommarive, 14, Povo, TN, Italy
- Medical Physics Unit, Hospital of Trento, Azienda Provinciale per i Servizi Sanitari (APSS), Via Paolo Orsi 1, Trento, Italy
| | - Monica Scaringella
- Italian National Institute of Nuclear Physics (INFN), Florence section, Via G. Sansone 1, Sesto Fiorentino, FI, Italy
| | - Marina Scarpa
- Physics department, University of Trento, via Sommarive 14, Povo, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), via Sommarive, 14, Povo, TN, Italy
| | - Francesco Tommasino
- Physics department, University of Trento, via Sommarive 14, Povo, TN, Italy
- Trento Institute for Fundamental Physics and Applications (TIFPA), Italian National Institute of Nuclear Physics (INFN), via Sommarive, 14, Povo, TN, Italy
| | - Carlo Civinini
- Italian National Institute of Nuclear Physics (INFN), Florence section, Via G. Sansone 1, Sesto Fiorentino, FI, Italy
| |
Collapse
|
11
|
Lustermans D, Fonseca GP, Taasti VT, van de Schoot A, Petit S, van Elmpt W, Verhaegen F. Image quality evaluation of a new high-performance ring-gantry cone-beam computed tomography imager. Phys Med Biol 2024; 69:105018. [PMID: 38593826 DOI: 10.1088/1361-6560/ad3cb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively.Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom.Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU).Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.
Collapse
Affiliation(s)
- Didier Lustermans
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Agustinus van de Schoot
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Steven Petit
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
12
|
Koh CWY, Lew KS, Wibawa A, Master Z, Yeap PL, Chua CGA, Lee JCL, Tan HQ, Park SY. First clinical experience following the consensus guide for calibrating a proton stopping power ratio curve in a new proton centre. Phys Med 2024; 120:103341. [PMID: 38554639 DOI: 10.1016/j.ejmp.2024.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND AND PURPOSE This work introduces the first assessment of CT calibration following the ESTRO's consensus guidelines and validating the HLUT through the irradiation of biological material. METHODS Two electron density phantoms were scanned with two CT scanners using two CT scan energies. The stopping power ratio (SPR) and mass density (MD) HLUTs for different CT scan energies were derived using Schneider's and ESTRO's methods. The comparison metric in this work is based on the Water-Equivalent Thickness (WET) difference between the treatment planning system and biological irradiation measurement. The SPR HLUTs were compared between the two calibration methods. To assess the accuracy of using MD HLUT for dose calculation in the treatment planning system, MD vs SPR HLUT was compared. Lastly, the feasibility of using a single SPR HLUT to replace two different energy CT scans was explored. RESULTS The results show a WET difference of less than 3.5% except for the result in the Bone region between Schneider's and ESTRO's methods. Comparing MD and SPR HLUT, the results from MD HLUT show less than a 3.5% difference except for the Bone region. However, the SPR HLUT shows a lower mean absolute percentage difference as compared to MD HLUT between the measured and calculated WET difference. Lastly, it is possible to use a single SPR HLUT for two different CT scan energies since both WET differences are within 3.5%. CONCLUSION This is the first report on calibrating an HLUT following the ESTRO's guidelines. While our result shows incremental improvement in range uncertainty using the ESTRO's guideline, the prescriptional approach of the guideline does promote harmonization of CT calibration protocols between different centres.
Collapse
Affiliation(s)
| | - Kah Seng Lew
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Nanyang Technological University Singapore, Singapore
| | - Andrew Wibawa
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Zubin Master
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Ping Lin Yeap
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Department of Oncology, University of Cambridge, United Kingdom
| | | | - James Cheow Lei Lee
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Nanyang Technological University Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore.
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore
| |
Collapse
|
13
|
Miyasaka Y, Kanai T, Souda H, Yamazawa Y, Lee SH, Chai H, Sato H, Iwai T. Commissioning and Validation of CT Number to SPR Calibration in Carbon Ion Therapy Facility. Int J Part Ther 2024; 11:100011. [PMID: 38757079 PMCID: PMC11095100 DOI: 10.1016/j.ijpt.2024.100011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 05/18/2024] Open
Abstract
Purpose We performed computed tomography (CT)-stopping power ratio (SPR) calibration in a carbon-ion therapy facility and evaluated SPR estimation accuracy. Materials and Methods A polybinary tissue model method was used for the calibration of CT numbers and SPR. As a verification by dose calculation, we created a virtual phantom to which the CT-SPR calibration table was applied. Then, SPR was calculated from the change in the range of the treatment planning beam when changing to 19 different CT numbers, and the accuracy of the treatment planning system (TPS) calculation of SPR values from the CT-SPR calibration table was validated. As a verification by measurement, 5 materials (water, milk, olive oil, ethanol, 40% K2HPO4) were placed in a container, and the SPR was obtained by measurement from the change in the range of the beam that passed through the materials. Results The results of the dose calculations of the TPS showed that the results agreed within 1% for the lower CT numbers up to 1000 HU, but there was a difference of 3.0% in the higher CT number volume. The difference between the SPR calculated by TPS and the SPR caused by the difference in the energy of the incident particles agreed within 0.51%. The accuracy of SPR estimation was measured, and the error was within 2% for all materials tested. Conclusion These results indicate that the SPR estimation errors are within the range of errors that can be expected in particle therapy. From commissioning and verification results, the CT-SPR calibration table obtained during this commissioning process is clinically applicable.
Collapse
Affiliation(s)
- Yuya Miyasaka
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Takayuki Kanai
- Department of Radiation Oncology, Tokyo Women’s Medical University, Shinjuku, Tokyo, Japan
| | - Hikaru Souda
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | | | - Sung Hyun Lee
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hongbo Chai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Hiraku Sato
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Iwai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| |
Collapse
|
14
|
Pettersson E, Thilander-Klang A, Bäck A. Prediction of proton stopping power ratios using dual-energy CT basis material decomposition. Med Phys 2024; 51:881-897. [PMID: 38194501 DOI: 10.1002/mp.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND Proton radiotherapy treatment plans are currently restricted by the range uncertainties originating from the stopping power ratio (SPR) prediction based on single-energy computed tomography (SECT). Various studies have shown that multi-energy CT (MECT) can reduce the range uncertainties due to medical implant materials and age-related variations in tissue composition. None of these has directly applied the basis material density (MD) images produced by projection-based MECT systems for SPR prediction. PURPOSE To present and evaluate a novel proton SPR prediction method based on MD images from dual-energy CT (DECT), which could reduce the range uncertainties currently associated with proton radiotherapy. METHODS A theoretical basis material decomposition into water and iodine material densities was performed for various pediatric and adult human reference tissues, as well as other non-tissue materials, by minimizing the root-mean-square relative attenuation error in the energy interval from 40 to 140 keV. A model (here called MD-SPR) mapping predicted MDs to theoretically calculated reference SPRs was created with locally weighted scatterplot smoothing (LOWESS) data-fitting. The goodness of fit of the MD-SPR model was evaluated for the included reference tissues. MD images of two electron density phantoms, combined to form a head- and an abdomen-sized phantom setup, were acquired with a clinical projection-based fast-kV switching DECT scanner. The MD images were compared to the theoretically predicted MDs of the tissue surrogates and other non-tissue materials in the phantoms, as well as used for input to the MD-SPR model for generation of SPR images. The SPR images were subsequently compared to theoretical reference SPRs of the materials in the phantoms, as well as to SPR images from a commercial algorithm (DirectSPR, Siemens Healthineers, Forchheim, Germany) using image-based consecutive scan DECT for the same phantom setups. RESULTS The predicted SPRs of the tissue surrogates were similar for MD-SPR and DirectSPR, where the adipose and bone tissue surrogates were within 1% difference to the reference SPRs, while other non-adipose soft tissue surrogates (breast, brain, liver, muscle) were all underestimated by between -0.7% and -1.8%. The SPRs of the non-tissue materials (polymethyl methacrylate (PMMA), polyether ether ketone (PEEK), graphite and Teflon) were within 2.8% for MD-SPR images, compared to 6.8% for DirectSPR. CONCLUSIONS The MD-SPR model performed similar compared to other published methods for the human reference tissues. The SPR prediction for tissue surrogates was similar to DirectSPR and showed potential to improve SPR prediction for non-tissue materials.
Collapse
Affiliation(s)
- Erik Pettersson
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Therapeutic Radiation Physics, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anne Thilander-Klang
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Diagnostic Radiation Physics, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Bäck
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Therapeutic Radiation Physics, Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Knäusl B, Belotti G, Bertholet J, Daartz J, Flampouri S, Hoogeman M, Knopf AC, Lin H, Moerman A, Paganelli C, Rucinski A, Schulte R, Shimizu S, Stützer K, Zhang X, Zhang Y, Czerska K. A review of the clinical introduction of 4D particle therapy research concepts. Phys Imaging Radiat Oncol 2024; 29:100535. [PMID: 38298885 PMCID: PMC10828898 DOI: 10.1016/j.phro.2024.100535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Background and purpose Many 4D particle therapy research concepts have been recently translated into clinics, however, remaining substantial differences depend on the indication and institute-related aspects. This work aims to summarise current state-of-the-art 4D particle therapy technology and outline a roadmap for future research and developments. Material and methods This review focused on the clinical implementation of 4D approaches for imaging, treatment planning, delivery and evaluation based on the 2021 and 2022 4D Treatment Workshops for Particle Therapy as well as a review of the most recent surveys, guidelines and scientific papers dedicated to this topic. Results Available technological capabilities for motion surveillance and compensation determined the course of each 4D particle treatment. 4D motion management, delivery techniques and strategies including imaging were diverse and depended on many factors. These included aspects of motion amplitude, tumour location, as well as accelerator technology driving the necessity of centre-specific dosimetric validation. Novel methodologies for X-ray based image processing and MRI for real-time tumour tracking and motion management were shown to have a large potential for online and offline adaptation schemes compensating for potential anatomical changes over the treatment course. The latest research developments were dominated by particle imaging, artificial intelligence methods and FLASH adding another level of complexity but also opportunities in the context of 4D treatments. Conclusion This review showed that the rapid technological advances in radiation oncology together with the available intrafractional motion management and adaptive strategies paved the way towards clinical implementation.
Collapse
Affiliation(s)
- Barbara Knäusl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Belotti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mischa Hoogeman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Antje C Knopf
- Institut für Medizintechnik und Medizininformatik Hochschule für Life Sciences FHNW, Muttenz, Switzerland
| | - Haibo Lin
- New York Proton Center, New York, NY, USA
| | - Astrid Moerman
- Department of Medical Physics & Informatics, HollandPTC, Delft, The Netherlands
| | - Chiara Paganelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, School of Medicine, Loma Linda University
| | - Shing Shimizu
- Department of Carbon Ion Radiotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kristin Stützer
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden – Rossendorf, Institute of Radiooncology – OncoRay, Dresden, Germany
| | - Xiaodong Zhang
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Katarzyna Czerska
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| |
Collapse
|
16
|
Peters N, Taasti VT, Ackermann B, Bolsi A, Dahlgren CV, Ellerbrock M, Fracchiolla F, Gomà C, Góra J, Lopes PC, Rinaldi I, Salvo K, Tarp IS, Vai A, Bortfeld T, Lomax A, Richter C, Wohlfahrt P. Response to "Letter regarding Consensus guide on CT-based prediction of stopping-power ratio using a Hounsfield look-up table for proton therapy". Radiother Oncol 2024; 190:109961. [PMID: 37871749 DOI: 10.1016/j.radonc.2023.109961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Affiliation(s)
- Nils Peters
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA.
| | - Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands.
| | - Benjamin Ackermann
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alessandra Bolsi
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | | | - Malte Ellerbrock
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Francesco Fracchiolla
- Azienda Provinciale per i Servizi Sanitari (APSS) Protontherapy Department, Trento, Italy
| | - Carles Gomà
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Joanna Góra
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Ilaria Rinaldi
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Koen Salvo
- AZ Sint-Maarten, Department of Radiotherapy, Mechelen, Belgium
| | - Ivanka Sojat Tarp
- Aarhus University Hospital, Danish Center for Particle Therapy, Aarhus, Denmark
| | - Alessandro Vai
- Radiotherapy Department, Center for National Oncological Hadrontherapy (CNAO), 27100 Pavia, Italy
| | - Thomas Bortfeld
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| | - Antony Lomax
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wohlfahrt
- Massachusetts General Hospital and Harvard Medical School, Department of Radiation Oncology, Boston, MA, USA
| |
Collapse
|
17
|
Taasti VT, Wohlfahrt P. From computed tomography innovation to routine clinical application in radiation oncology - A joint initiative of close collaboration. Phys Imaging Radiat Oncol 2024; 29:100550. [PMID: 38390587 PMCID: PMC10881422 DOI: 10.1016/j.phro.2024.100550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Affiliation(s)
- Vicki Trier Taasti
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Patrick Wohlfahrt
- Siemens Healthineers, Varian, Cancer Therapy Imaging, Forchheim, Germany
| |
Collapse
|
18
|
Bogowicz M, Lustermans D, Taasti VT, Hazelaar C, Verhaegen F, Fonseca GP, van Elmpt W. Evaluation of a cone-beam computed tomography system calibrated for accurate radiotherapy dose calculation. Phys Imaging Radiat Oncol 2024; 29:100566. [PMID: 38487622 PMCID: PMC10937948 DOI: 10.1016/j.phro.2024.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Background and purpose Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.
Collapse
Affiliation(s)
| | - Didier Lustermans
- Corresponding author at: Postbox 3035, 6202 NA Maastricht, The Netherlands.
| | - Vicki Trier Taasti
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Colien Hazelaar
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
19
|
Poludniowski G, Zimmerman J. Letter regarding "Consensus guide on CT-based prediction of stopping-power ratio using a Hounsfield look-up table for proton therapy". Radiother Oncol 2024; 190:109962. [PMID: 37871750 DOI: 10.1016/j.radonc.2023.109962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/09/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Affiliation(s)
- Gavin Poludniowski
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden.
| | - Jens Zimmerman
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden; Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
20
|
Taasti VT, Decabooter E, Eekers D, Compter I, Rinaldi I, Bogowicz M, van der Maas T, Kneepkens E, Schiffelers J, Stultiens C, Hendrix N, Pijls M, Emmah R, Fonseca GP, Unipan M, van Elmpt W. Clinical benefit of range uncertainty reduction in proton treatment planning based on dual-energy CT for neuro-oncological patients. Br J Radiol 2023; 96:20230110. [PMID: 37493227 PMCID: PMC10461272 DOI: 10.1259/bjr.20230110] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/27/2023] Open
Abstract
OBJECTIVE Several studies have shown that dual-energy CT (DECT) can lead to improved accuracy for proton range estimation. This study investigated the clinical benefit of reduced range uncertainty, enabled by DECT, in robust optimisation for neuro-oncological patients. METHODS DECT scans for 27 neuro-oncological patients were included. Commercial software was applied to create stopping-power ratio (SPR) maps based on the DECT scan. Two plans were robustly optimised on the SPR map, keeping the beam and plan settings identical to the clinical plan. One plan was robustly optimised and evaluated with a range uncertainty of 3% (as used clinically; denoted 3%-plan); the second plan applied a range uncertainty of 2% (2%-plan). Both plans were clinical acceptable and optimal. The dose-volume histogram parameters were compared between the two plans. Two experienced neuro-radiation oncologists determined the relevant dose difference for each organ-at-risk (OAR). Moreover, the OAR toxicity levels were assessed. RESULTS For 24 patients, a dose reduction >0.5/1 Gy (relevant dose difference depending on the OAR) was seen in one or more OARs for the 2%-plan; e.g. for brainstem D0.03cc in 10 patients, and hippocampus D40% in 6 patients. Furthermore, 12 patients had a reduction in toxicity level for one or two OARs, showing a clear benefit for the patient. CONCLUSION Robust optimisation with reduced range uncertainty allows for reduction of OAR toxicity, providing a rationale for clinical implementation. Based on these results, we have clinically introduced DECT-based proton treatment planning for neuro-oncological patients, accompanied with a reduced range uncertainty of 2%. ADVANCES IN KNOWLEDGE This study shows the clinical benefit of range uncertainty reduction from 3% to 2% in robustly optimised proton plans. A dose reduction to one or more OARs was seen for 89% of the patients, and 44% of the patients had an expected toxicity level decrease.
Collapse
Affiliation(s)
- Vicki Trier Taasti
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Esther Decabooter
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle Eekers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marta Bogowicz
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Tim van der Maas
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Esther Kneepkens
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jacqueline Schiffelers
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Cissy Stultiens
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nicole Hendrix
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mirthe Pijls
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Rik Emmah
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|