1
|
Al Hujran TA, Magharbeh MK, Habashneh AY, Al-Dmour RS, Aboelela A, Tawfeek HM. Insight into the Inclusion Complexation of Fluconazole with Sulfonatocalix[4]naphthalene in Aqueous Solution, Solid-State, and Its Antimycotic Activity. Molecules 2022; 27:molecules27144425. [PMID: 35889298 PMCID: PMC9317573 DOI: 10.3390/molecules27144425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
The study aims to assess the interaction between fluconazole and sulfonatocalix[4]naphthalene towards enhancing its dissolution performance and antimycotic activity. A solubility study was carried out at different pH conditions, and the results revealed the formation of a 1:1 molar ratio fluconazole-sulfonatocalix[4]naphthalene inclusion complex with an AL type phase solubility diagrams. The solid powder systems of fluconazole-sulfonatocalix[4]naphthalene were prepared using kneaded and co-evaporation techniques and physical mixtures. DCS, PXRD, TGA-DTG, FT-IR, and in vitro dissolution performance characterize the prepared systems. According to physicochemical characterization, the co-evaporation approach produces an amorphous inclusion complex of the drug inside the cavity of sulfonatocalix[4]naphthalene. The co-evaporate product significantly increased the drug dissolution rate up to 93 ± 1.77% within 10 min, unlike other prepared solid powders. The antimycotic activity showed an increase substantially (p ≤ 0.05, t-test) antimycotic activity of fluconazole co-evaporate mixture with sulfonatocalix[4]naphthalene compared with fluconazole alone against clinical strains of Candida albicans and Candida glabrata. In conclusion, sulfonatocalix[4]naphthalene could be considered an efficient complexing agent for fluconazole to enhance its aqueous solubility, dissolution performance, and antimycotic activity.
Collapse
Affiliation(s)
- Tayel A Al Hujran
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Mousa K Magharbeh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Almeqdad Y Habashneh
- The Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Rasha S Al-Dmour
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Ashraf Aboelela
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Hesham M Tawfeek
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
2
|
Pottanam Chali S, Azhdari S, Galstyan A, Gröschel AH, Ravoo BJ. Biodegradable supramolecular micelles via host-guest interaction of cyclodextrin-terminated polypeptides and adamantane-terminated polycaprolactones. Chem Commun (Camb) 2021; 57:9446-9449. [PMID: 34528969 DOI: 10.1039/d1cc03372g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Biodegradable supramolecular micelles were prepared exploiting the host-guest interaction of cyclodextrin and adamantane. Cyclodextrin-initiated polypeptides acted as the hydrophilic corona, whereas adamantane-terminated polycaprolactones served as the hydrophobic core.
Collapse
Affiliation(s)
- Sharafudheen Pottanam Chali
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| | - Suna Azhdari
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Anzhela Galstyan
- Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Busso-Peus-Strasse 10, 48149 Münster, Germany
| | - André H Gröschel
- Physical Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 28, 48149 Münster, Germany
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Centre for Soft Nanoscience Westfälische Wilhelms-Universität Münster, Corrensstrasse 36, 48149 Münster, Germany.
| |
Collapse
|
3
|
Yasen W, Dong R, Aini A, Zhu X. Recent advances in supramolecular block copolymers for biomedical applications. J Mater Chem B 2021; 8:8219-8231. [PMID: 32803207 DOI: 10.1039/d0tb01492c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
Supramolecular block copolymers (SBCs) have received considerable interest in polymer chemistry, materials science, biomedical engineering and nanotechnology owing to their unique structural and functional advantages, such as low cytotoxicity, outstanding biodegradability, smart environmental responsiveness, and so forth. SBCs comprise two or more different homopolymer subunits linked by noncovalent bonds, and these polymers, in particular, combine the dynamically reversible nature of supramolecular polymers with the hierarchical microphase-separated structures of block polymers. A rapidly increasing number of publications on the synthesis and applications of SBCs have been reported in recent years; however, a systematic summary of the design, synthesis, properties and applications of SBCs has not been published. To this end, this review provides a brief overview of the recent advances in SBCs and describes the synthesis strategies, properties and functions, and their widespread applications in drug delivery, gene delivery, protein delivery, bioimaging and so on. In this review, we aim to elucidate the general concepts and structure-property relationships of SBCs, as well as their practical bioapplications, shedding further valuable insights into this emerging research field.
Collapse
Affiliation(s)
- Wumaier Yasen
- School of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China and School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China. and Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Aliya Aini
- School of Foreign Languages, Xinjiang University, Urumqi 830046, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
4
|
Synthesis of cyclodextrin-derived star poly(N-vinylpyrrolidone)/poly(lactic-co-glycolide) supramolecular micelles via host-guest interaction for delivery of doxorubicin. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123243] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022]
|
5
|
Atanasova M, Grancharov G, Petrov PD. Poly(ethylene oxide)‐
block
‐poly(α‐cinnamyl‐ε‐caprolactone‐
co
‐ε‐caprolactone) diblock copolymer nanocarriers for enhanced solubilization of caffeic acid phenethyl ester. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20200706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | - Petar D. Petrov
- Institute of Polymers Bulgarian Academy of Sciences Sofia Bulgaria
| |
Collapse
|
6
|
Tungala K, Kumar K, Sonker E, Krishnamoorthi S. Micellization of amphiphilic host–guest inclusion complexes of polymers based on β–cyclodextrin trimer and adamantane. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
|
7
|
Ramesh K, Mishra AK, Kim JK, Jeong YT, Gal YS, Lim KT. Preparation of Doxorubicin-Loaded Amphiphilic Poly(D,L-Lactide- Co-Glycolide)-b-Poly( N-Acryloylmorpholine) AB 2 Miktoarm Star Block Copolymers for Anticancer Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3713. [PMID: 32842626 PMCID: PMC7504487 DOI: 10.3390/ma13173713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/04/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
Owing to their unique topology and physical properties, micelles based on miktoarm amphiphilic star block copolymers play an important role in the biomedical field for drug delivery. Herein, we developed a series of AB2-type poly(D,L-lactide-co-glycolide)-b-poly(N-acryloyl morpholine) (PLGA-b-PNAM2) miktoarm star block copolymers by reversible addition-fragmentation chain-transfer polymerization and ring-opening copolymerization. The resulting miktoarm star polymers were investigated by 1H NMR spectroscopy and gel permeation chromatography. The critical micellar concentration value of the micelles increases with an increase in PNAM block length. As revealed by transmission electron microscopy and dynamic light scattering, the amphiphilic miktoarm star block copolymers can self-assemble to form spherical micellar aggregates in water. The anticancer drug doxorubicin (DOX) was encapsulated by polymeric micelles; the drug-loading efficiency and drug-loading content of the DOX-loaded micelles were 81.7% and 9.1%, respectively. Acidic environments triggered the dissociation of the polymeric micelles, which led to the more release of DOX in pH 6.4 than pH 7.4. The amphiphilic PLGA-b-PNAM2 miktoarm star block copolymers may have broad application as nanocarriers for controlled drug delivery.
Collapse
Affiliation(s)
- Kalyan Ramesh
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (K.R.); (Y.T.J.)
| | - Avnish Kumar Mishra
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (A.K.M.); (J.K.K.)
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea; (A.K.M.); (J.K.K.)
| | - Yeon Tae Jeong
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (K.R.); (Y.T.J.)
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 34828, Korea;
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (K.R.); (Y.T.J.)
| |
Collapse
|
8
|
|
9
|
Mostovaya OA, Gorbachuk VV, Padnya PL, Vavilova AA, Evtugyn GA, Stoikov II. Modification of Oligo- and Polylactides With Macrocyclic Fragments: Synthesis and Properties. Front Chem 2019; 7:554. [PMID: 31428605 PMCID: PMC6687754 DOI: 10.3389/fchem.2019.00554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Products of lactic acid polycondensation (poly- and oligolactic acids) are widely used as packaging materials, drug delivery agents, implants etc. Variety of their applications is caused by a number of practically important properties, e.g., biocompatibility and biodegradability, non-toxicity, and mechanical durability. Modification of these polymers with different additives allows improving their properties and extending future applications. In this manner, stability toward degradation, recognition of some substrates, extended thermal stability etc. can be improved. Macrocyclic compounds are promising candidates as modifiers. They are able to provide polymer materials with additional binding sites, impart certain orientation to spatial arrangement of polymer chains, change hydrophilic-lipophilic balance, and redox properties. The latter one can be used for assembling various electrochemical sensors and biosensors that combine steric discrimination of the analytes caused by oligolactides and highly sensitive response to their quantities caused by redox labels introduced. Different composite materials based on oligolactides as matrices for such redox labels were described in the assemblies of biosensors for drugs, pesticides, and antioxidants detection. In this mini-review, methods for the synthesis of the lactic acid oligomers and those modified with the macrocyclic fragments (porphyrin, cyclodextrin, and cyclophane) have been described. The effects of modifiers on complexation, thermal, and aggregation properties of materials are described. Analytical performance of oligolactide based sensors and biosensors has been considered with particular emphasis to the mechanism of signal generation.
Collapse
Affiliation(s)
- Olga A. Mostovaya
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Vladimir V. Gorbachuk
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Pavel L. Padnya
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Alena A. Vavilova
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Gennady A. Evtugyn
- Department of Analytical Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| | - Ivan I. Stoikov
- Department of Organic Chemistry, A. M. Butlerov' Chemistry Institute, Kazan Federal University, Kazan, Russia
| |
Collapse
|
10
|
Ramesh K, Thangagiri B, Mishra AK, Ahn BH, Gal YS, Lim KT. AB2-type miktoarm poly(l-lactide)-b-poly(N-acryloylmorpholine) amphiphilic star block copolymers as nanocarriers for drug delivery. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
|