1
|
Al-Matouq J, Al-Ghafli H, Alibrahim NN, Alsaffar N, Radwan Z, Ali MD. Unveiling the Interplay Between the Human Microbiome and Gastric Cancer: A Review of the Complex Relationships and Therapeutic Avenues. Cancers (Basel) 2025; 17:226. [PMID: 39858007 PMCID: PMC11763844 DOI: 10.3390/cancers17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The human microbiota plays a crucial role in maintaining overall health and well-being. The gut microbiota has been implicated in developing and progressing various diseases, including cancer. This review highlights the related mechanisms and the compositions that influence cancer pathogenesis with a highlight on gastric cancer. We provide a comprehensive overview of the mechanisms by which the microbiome influences cancer development, progression, and response to treatment, with a focus on identifying potential biomarkers for early detection, prevention strategies, and novel therapeutic interventions that leverage microbiome modulation. This comprehensive review can guide future research and clinical practices in understanding and harnessing the microbiome to optimize gastric cancer therapies.
Collapse
Affiliation(s)
- Jenan Al-Matouq
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Hawra Al-Ghafli
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Noura N. Alibrahim
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Nida Alsaffar
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Zaheda Radwan
- Department of Medical Laboratory Sciences, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia; (H.A.-G.); (N.N.A.); (N.A.); (Z.R.)
| | - Mohammad Daud Ali
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Al Safa, Dammam 34222, Saudi Arabia;
| |
Collapse
|
2
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
3
|
Cao Z, Liu J. Surface nanocoating of bacteria as a versatile platform to develop living therapeutics. Nat Protoc 2024; 19:3162-3190. [PMID: 39044001 DOI: 10.1038/s41596-024-01019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 07/25/2024]
Abstract
Bacteria have been extensively utilized as living therapeutics for disease treatment due to their unique characteristics, such as genetic manipulability, rapid proliferation and specificity to target disease sites. Various in vivo insults can, however, decrease the vitality of dosed bacteria, leading to low overall bioavailability. Additionally, the innate antigens on the bacterial surface and the released toxins and metabolites may cause undesired safety issues. These limitations inevitably result in inadequate treatment outcomes, thereby hindering the clinical transformation of living bacterial therapeutics. Recently, we have developed a versatile platform to prepare advanced living bacterial therapeutics by nanocoating bacteria individually via either chemical decoration or physical encapsulation, which can improve bioavailability and reduce side effects for enhanced microbial therapy. Here we use interfacial self-assembly to prepare lipid membrane-coated bacteria (LCB), exhibiting increased resistance against a variety of harsh environmental conditions owing to the nanocoating's protective capability. Meanwhile, we apply mechanical extrusion to generate cell membrane-coated bacteria (CMCB), displaying improved biocompatibility owing to the nanocoating's shielding effect. We describe their detailed preparation procedures and demonstrate the expected functions of the coated bacteria. We also show that following oral delivery and intravenous injection in mouse models, LCB and CMCB present appealing potential for treating colitis and tumors, respectively. Compared with bioengineering that lacks versatile molecular tools for heterogeneous expression, the surface nanocoating technique is convenient to introduce functional components without restriction on bacterial strain types. Excluding bacterial culture, the fabrication of LCB takes ~2 h, while the preparation of CMCB takes ~5 h.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
4
|
Zhou T, Wu J, Khan A, Hu T, Wang Y, Salama ES, Su S, Han H, Jin W, Li X. A probiotic Limosilactobacillus fermentum GR-3 mitigates colitis-associated tumorigenesis in mice via modulating gut microbiome. NPJ Sci Food 2024; 8:61. [PMID: 39242568 PMCID: PMC11379937 DOI: 10.1038/s41538-024-00307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
Bacterial therapy for colorectal cancer (CRC) represents a burgeoning frontier. The probiotic Limosilactobacillus fermentum GR-3, derived from traditional food "Jiangshui", exhibited superior antioxidant capacity by producing indole derivatives ICA and IPA. In an AOM/DSS-induced CRC mouse model, GR-3 treatment alleviated weight loss, colon shortening, rectal bleeding and intestinal barrier disruption by reducing oxidative stress and inflammation. GR-3 colonization in distant colon induced apoptosis and reduced tumor incidence by 51.2%, outperforming the control strain and vitamin C. The beneficial effect of GR-3 on CRC was associated with gut microbiome modulation, increasing SCFA producer Lachnospiraceae NK4A136 group and suppressing pro-inflammatory strain Bacteroides. Metagenomic and metabolic analyses revealed that GR-3 intervention upregulated antioxidant genes (xseA, ALDH) and butyrate synthesis gene (bcd), while increasing beneficial metabolites (SCFAs, ICA, IPA, VB12 and VD3) and reducing harmful secondary bile acids. Overall, GR-3 emerges as a promising candidate in CRC therapy, offering effective gut microbiome remediation.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Tianxiang Hu
- Georgia Cancer Center, Augusta University, 1410 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu Province, PR China
| | - Shaochen Su
- Healthy Examination & Management Center, First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
5
|
Radford GA, Vrbanac L, de Nys RT, Worthley DL, Wright JA, Hasty J, Woods SL. Towards Understanding Tumour Colonisation by Probiotic Bacterium E. coli Nissle 1917. Cancers (Basel) 2024; 16:2971. [PMID: 39272829 PMCID: PMC11394440 DOI: 10.3390/cancers16172971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The last decade has seen a rapid increase in studies utilising a genetically modified probiotic, Escherichia coli Nissle 1917 (EcN), as a chassis for cancer treatment and detection. This approach relies on the ability of EcN to home to and selectively colonise tumours over normal tissue, a characteristic common to some bacteria that is thought to result from the low-oxygen, nutrient-rich and immune-privileged niche the tumour provides. Pre-clinical studies have used genetically modified EcN to deliver therapeutic payloads that show efficacy in reducing tumour burden as a result of high-tumour and low off-target colonisation. Most recently, the EcN chassis has been expanded into an effective tumour-detection tool. These advances provide strong justification for the movement of genetically modified EcN into clinical oncology trials. What is currently unknown in the field is a deep mechanistic understanding of how EcN distributes to and localises within tumours. This review summarises the existing EcN literature, with the inclusion of research undertaken with other tumour-homing and pathogenic bacteria, to provide insights into possible mechanisms of EcN tumour homing for future validation. Understanding exactly how and why EcN colonises neoplastic tissue will inform the design and testing of the next generation of EcN chassis strains to address biosafety and containment concerns and optimise the detection and treatment of cancer.
Collapse
Affiliation(s)
- Georgette A Radford
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Laura Vrbanac
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Rebekah T de Nys
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | | | - Josephine A Wright
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Jeff Hasty
- Synthetic Biology Institute, University of California, San Diego, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, CA 92093, USA
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, CA 92093, USA
| | - Susan L Woods
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Precision Cancer Medicine, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| |
Collapse
|
6
|
Xu KF, Wu SY, Wang Z, Guo Y, Zhu YX, Li C, Shan BH, Zhang X, Liu X, Wu FG. Hyperbaric oxygen enhances tumor penetration and accumulation of engineered bacteria for synergistic photothermal immunotherapy. Nat Commun 2024; 15:5147. [PMID: 38886343 PMCID: PMC11183253 DOI: 10.1038/s41467-024-49156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/25/2024] [Indexed: 06/20/2024] Open
Abstract
Bacteria-mediated cancer therapeutic strategies have attracted increasing interest due to their intrinsic tumor tropism. However, bacteria-based drugs face several challenges including the large size of bacteria and dense extracellular matrix, limiting their intratumoral delivery efficiency. In this study, we find that hyperbaric oxygen (HBO), a noninvasive therapeutic method, can effectively deplete the dense extracellular matrix and thus enhance the bacterial accumulation within tumors. Inspired by this finding, we modify Escherichia coli Nissle 1917 (EcN) with cypate molecules to yield EcN-cypate for photothermal therapy, which can subsequently induce immunogenic cell death (ICD). Importantly, HBO treatment significantly increases the intratumoral accumulation of EcN-cypate and facilitates the intratumoral infiltration of immune cells to realize desirable tumor eradication through photothermal therapy and ICD-induced immunotherapy. Our work provides a facile and noninvasive strategy to enhance the intratumoral delivery efficiency of natural/engineered bacteria, and may promote the clinical translation of bacteria-mediated synergistic cancer therapy.
Collapse
Affiliation(s)
- Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Shun-Yu Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Zihao Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ya-Xuan Zhu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xinping Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.
| |
Collapse
|
7
|
Decker-Farrell AR, Sastra SA, Harimoto T, Hasselluhn MC, Palermo CF, Ballister ER, Badgley MA, Danino T, Olive KP. "Tumor-selective treatment of metastatic pancreatic cancer with an engineered, probiotic living drug". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592216. [PMID: 38746175 PMCID: PMC11092568 DOI: 10.1101/2024.05.02.592216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges for effective treatment, with systemic chemotherapy often proving inadequate due to poor drug delivery and the tumor's immunosuppressive microenvironment. Engineered bacteria present a novel approach to target PDAC, leveraging their ability to colonize tumors and deliver therapeutic payloads. Here, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce the pore-forming Theta toxin (Nis-Theta) and evaluated its efficacy in a preclinical model of PDAC. Probiotic administration resulted in selective colonization of tumor tissue, leading to improved overall survival compared to standard chemotherapy. Moreover, this strain exhibited cytotoxic effects on both primary and distant tumor lesions while sparing normal tissues. Importantly, treatment also modulated the tumor microenvironment by increasing anti-tumor immune cell populations and reducing immunosuppressive markers. These findings demonstrate the potential of engineered probiotic bacteria as a safe and effective therapeutic approach for PDAC, offering promise for improved patient outcomes.
Collapse
|
8
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
da Silva TF, Glória RDA, de Sousa TJ, Americo MF, Freitas ADS, Viana MVC, de Jesus LCL, da Silva Prado LC, Daniel N, Ménard O, Cochet MF, Dupont D, Jardin J, Borges AD, Fernandes SOA, Cardoso VN, Brenig B, Ferreira E, Profeta R, Aburjaile FF, de Carvalho RDO, Langella P, Le Loir Y, Cherbuy C, Jan G, Azevedo V, Guédon É. Comprehensive probiogenomics analysis of the commensal Escherichia coli CEC15 as a potential probiotic strain. BMC Microbiol 2023; 23:364. [PMID: 38008714 PMCID: PMC10680302 DOI: 10.1186/s12866-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Probiotics have gained attention for their potential maintaining gut and immune homeostasis. They have been found to confer protection against pathogen colonization, possess immunomodulatory effects, enhance gut barrier functionality, and mitigate inflammation. However, a thorough understanding of the unique mechanisms of effects triggered by individual strains is necessary to optimize their therapeutic efficacy. Probiogenomics, involving high-throughput techniques, can help identify uncharacterized strains and aid in the rational selection of new probiotics. This study evaluates the potential of the Escherichia coli CEC15 strain as a probiotic through in silico, in vitro, and in vivo analyses, comparing it to the well-known probiotic reference E. coli Nissle 1917. Genomic analysis was conducted to identify traits with potential beneficial activity and to assess the safety of each strain (genomic islands, bacteriocin production, antibiotic resistance, production of proteins involved in host homeostasis, and proteins with adhesive properties). In vitro studies assessed survival in gastrointestinal simulated conditions and adhesion to cultured human intestinal cells. Safety was evaluated in BALB/c mice, monitoring the impact of E. coli consumption on clinical signs, intestinal architecture, intestinal permeability, and fecal microbiota. Additionally, the protective effects of both strains were assessed in a murine model of 5-FU-induced mucositis. RESULTS CEC15 mitigates inflammation, reinforces intestinal barrier, and modulates intestinal microbiota. In silico analysis revealed fewer pathogenicity-related traits in CEC15, when compared to Nissle 1917, with fewer toxin-associated genes and no gene suggesting the production of colibactin (a genotoxic agent). Most predicted antibiotic-resistance genes were neither associated with actual resistance, nor with transposable elements. The genome of CEC15 strain encodes proteins related to stress tolerance and to adhesion, in line with its better survival during digestion and higher adhesion to intestinal cells, when compared to Nissle 1917. Moreover, CEC15 exhibited beneficial effects on mice and their intestinal microbiota, both in healthy animals and against 5FU-induced intestinal mucositis. CONCLUSIONS These findings suggest that the CEC15 strain holds promise as a probiotic, as it could modulate the intestinal microbiota, providing immunomodulatory and anti-inflammatory effects, and reinforcing the intestinal barrier. These findings may have implications for the treatment of gastrointestinal disorders, particularly some forms of diarrhea.
Collapse
Affiliation(s)
- Tales Fernando da Silva
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rafael de Assis Glória
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Thiago Jesus de Sousa
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Monique Ferrary Americo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andria Dos Santos Freitas
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Marcus Vinicius Canário Viana
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luís Cláudio Lima de Jesus
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Nathalie Daniel
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Olivia Ménard
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Marie-Françoise Cochet
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Didier Dupont
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Julien Jardin
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Amanda Dias Borges
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Simone Odília Antunes Fernandes
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Valbert Nascimento Cardoso
- Department of clinical and toxicological analysis, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Bertram Brenig
- Department of Molecular Biology of Livestock, Institute of Veterinary Medicine, Georg-August Universität Göttingen, Göttingen, Germany
| | - Enio Ferreira
- Department of general pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Profeta
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Flavia Figueira Aburjaile
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Veterinary school, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Philippe Langella
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Yves Le Loir
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Claire Cherbuy
- Université Paris Saclay, INRAE, AgroParisTech, UMR1319, MICALIS, Jouy-en-Josas, France
| | - Gwénaël Jan
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Éric Guédon
- 1INRAE, Institut Agro, STLO, UMR1253, 65 rue de Saint Brieuc, 35042, Rennes, Cedex, France.
| |
Collapse
|
11
|
Fooladi S, Rabiee N, Iravani S. Genetically engineered bacteria: a new frontier in targeted drug delivery. J Mater Chem B 2023; 11:10072-10087. [PMID: 37873584 DOI: 10.1039/d3tb01805a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.
Collapse
Affiliation(s)
- Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| |
Collapse
|
12
|
Song D, Yang X, Chen Y, Hu P, Zhang Y, Zhang Y, Liang N, Xie J, Qiao L, Deng G, Chen F, Zhang J. Advances in anti-tumor based on various anaerobic bacteria and their derivatives as drug vehicles. Front Bioeng Biotechnol 2023; 11:1286502. [PMID: 37854883 PMCID: PMC10579911 DOI: 10.3389/fbioe.2023.1286502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer therapies, such as chemotherapy and radiotherapy, are often unsatisfactory due to several limitations, including drug resistance, inability to cross biological barriers, and toxic side effects on the body. These drawbacks underscore the need for alternative treatments that can overcome these challenges and provide more effective and safer options for cancer patients. In recent years, the use of live bacteria, engineered bacteria, or bacterial derivatives to deliver antitumor drugs to specific tumor sites for controlled release has emerged as a promising therapeutic tool. This approach offers several advantages over traditional cancer therapies, including targeted drug delivery and reduced toxicity to healthy tissues. Ongoing research in this field holds great potential for further developing more efficient and personalized cancer therapies, such as E. coli, Salmonella, Listeria, and bacterial derivatives like outer membrane vesicles (OMVs), which can serve as vehicles for drugs, therapeutic proteins, or antigens. In this review, we describe the advances, challenges, and future directions of research on using live bacteria or OMVs as carriers or components derived from bacteria of delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Daichen Song
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaofan Yang
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yanfei Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Pingping Hu
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yingying Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yan Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ning Liang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jian Xie
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Lili Qiao
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guodong Deng
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Fangjie Chen
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiandong Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Oncology, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
13
|
Triassi AJ, Fields BD, Monahan CE, Means JM, Park Y, Doosthosseini H, Padmakumar JP, Isabella VM, Voigt CA. Redesign of an Escherichia coli Nissle treatment for phenylketonuria using insulated genomic landing pads and genetic circuits to reduce burden. Cell Syst 2023; 14:512-524.e12. [PMID: 37348465 DOI: 10.1016/j.cels.2023.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/18/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
To build therapeutic strains, Escherichia coli Nissle (EcN) have been engineered to express antibiotics, toxin-degrading enzymes, immunoregulators, and anti-cancer chemotherapies. For efficacy, the recombinant genes need to be highly expressed, but this imposes a burden on the cell, and plasmids are difficult to maintain in the body. To address these problems, we have developed landing pads in the EcN genome and genetic circuits to control therapeutic gene expression. These tools were applied to EcN SYNB1618, undergoing clinical trials as a phenylketonuria treatment. The pathway for converting phenylalanine to trans-cinnamic acid was moved to a landing pad under the control of a circuit that keeps the pathway off during storage. The resulting strain (EcN SYN8784) achieved higher activity than EcN SYNB1618, reaching levels near when the pathway is carried on a plasmid. This work demonstrates a simple system for engineering EcN that aids quantitative strain design for therapeutics.
Collapse
Affiliation(s)
- Alexander J Triassi
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brandon D Fields
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | - Yongjin Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jai P Padmakumar
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
14
|
Chow EWL, Mei Pang L, Wang Y. Impact of the host microbiota on fungal infections: new possibilities for intervention? Adv Drug Deliv Rev 2023; 198:114896. [PMID: 37211280 DOI: 10.1016/j.addr.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Many human fungal pathogens are opportunistic. They are primarily benign residents of the human body and only become infectious when the host's immunity and microbiome are compromised. Bacteria dominate the human microbiome, playing an essential role in keeping fungi harmless and acting as the first line of defense against fungal infection. The Human Microbiome Project, launched by NIH in 2007, has stimulated extensive investigation and significantly advanced our understanding of the molecular mechanisms governing the interaction between bacteria and fungi, providing valuable insights for developing future antifungal strategies by exploiting the interaction. This review summarizes recent progress in this field and discusses new possibilities and challenges. We must seize the opportunities presented by researching bacterial-fungal interplay in the human microbiome to address the global spread of drug-resistant fungal pathogens and the drying pipelines of effective antifungal drugs.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li Mei Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore.
| |
Collapse
|
15
|
Alexander LM, van Pijkeren JP. Modes of therapeutic delivery in synthetic microbiology. Trends Microbiol 2023; 31:197-211. [PMID: 36220750 PMCID: PMC9877134 DOI: 10.1016/j.tim.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 02/03/2023]
Abstract
For decades, bacteria have been exploited as vectors for vaccines and therapeutics. However, the bacterial arsenal used has historically been limited to a few strains. Advancements in immunology, combined with the development of genetic tools, have expanded our strategies and capabilities to engineer bacteria using various delivery strategies. Depending on the application, each delivery strategy requires specific considerations, optimization, and safety concerns. Here, we review various modes of therapeutic delivery used to target or vaccinate against a variety of ailments in preclinical models and in clinical trials. We highlight modes of bacteria-derived delivery best suited for different applications. Finally, we discuss current obstacles in bacteria-derived therapies and explore potential improvements of the various modes of therapeutic delivery.
Collapse
Affiliation(s)
- Laura M Alexander
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan-Peter van Pijkeren
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA; Food Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Chen H, Lei P, Ji H, Yang Q, Peng B, Ma J, Fang Y, Qu L, Li H, Wu W, Jin L, Sun D. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Mater Today Bio 2023; 18:100543. [PMID: 36647536 PMCID: PMC9840185 DOI: 10.1016/j.mtbio.2023.100543] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
With the in-depth and comprehensive study of bacteria and their related ecosystems in the human body, bacterial-based drug delivery system has become an emerging biomimetic platform that can retain the innate biological functions. Benefiting from its good biocompatibility and ideal targeting ability as a biological carrier, Escherichia coli Nissle 1917 (ECN) has been focused on the treatment strategies of inflammatory bowel disease and tumor. The advantage of a bacterial carrier is that it can express exogenous protein while also acting as a natural capsule by releasing drug slowly as a result of its own colonization impact. In order to survive in harsh environments such as the digestive tract and tumor microenvironment, ECN can be modified or genetically engineered to enhance its function and host adaptability. The adoption of ECN carries or expresses drugs which are essential for accurate diagnosis and treatment. This review briefly describes the properties of ECN, the relationship between ECN and inflammation and tumor, and the strategy of using surface modification and genetic engineering to modify ECN as a delivery carrier for disease treatment.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Hao Ji
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and WenZhouOuTai Medical Laboratory Co.,Ltd Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd., Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| |
Collapse
|
17
|
Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023; 164:198-213. [PMID: 36309208 DOI: 10.1053/j.gastro.2022.10.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Accumulating evidence supports not only the functional role of the gut microbiome in cancer development and progression but also its role in defining the efficacy and toxicity of chemotherapeutic agents (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and immunotherapeutic compounds (anti-programmed death-ligand 1/anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte-associated antigen 4). This evidence is supported in numerous in vitro, animal, and clinical studies that highlight the importance of microbial mechanisms in defining therapeutic responses. The microbiome therefore shapes oncologic outcomes and is now being leveraged for the development of novel personalized therapeutic approaches in cancer treatment. However, if the microbiome is to be successfully translated into next-generation oncologic treatments, a new multimodal model of the oncomicrobiome must be conceptualized that incorporates gut microbial cometabolism of pharmacologic agents into cancer care. The objective of this review is therefore to outline the current knowledge of oncologic pharmacomicrobiomics and to describe how the multiparametric functions of the gut microbiome influence treatment response across cancer types. The secondary objective is to propose innovative approaches for modulating the gut microbiome in clinical environments that improve therapy efficacy and diminish toxic effects derived from antineoplastic agents for patient benefit.
Collapse
Affiliation(s)
- Despoina Chrysostomou
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Julian R Marchesi
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James M Kinross
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Conti G, D’Amico F, Fabbrini M, Brigidi P, Barone M, Turroni S. Pharmacomicrobiomics in Anticancer Therapies: Why the Gut Microbiota Should Be Pointed Out. Genes (Basel) 2022; 14:55. [PMID: 36672796 PMCID: PMC9859289 DOI: 10.3390/genes14010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Anticancer treatments have shown a variable therapeutic outcome that may be partly attributable to the activity of the gut microbiota on the pathology and/or therapies. In recent years, microbiota-drug interactions have been extensively investigated, but most of the underlying molecular mechanisms still remain unclear. In this review, we discuss the relationship between the gut microbiota and some of the most commonly used drugs in oncological diseases. Different strategies for manipulating the gut microbiota layout (i.e., prebiotics, probiotics, antibiotics, and fecal microbiota transplantation) are then explored in order to optimize clinical outcomes in cancer patients. Anticancer technologies that exploit tumor-associated bacteria to target tumors and biotransform drugs are also briefly discussed. In the field of pharmacomicrobiomics, multi-omics strategies coupled with machine and deep learning are urgently needed to bring to light the interaction among gut microbiota, drugs, and host for the development of truly personalized precision therapies.
Collapse
Affiliation(s)
- Gabriele Conti
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Federica D’Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Marco Fabbrini
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
19
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
20
|
Li J, Xia Q, Guo H, Fu Z, Liu Y, Lin S, Liu J. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor-Resident Living Immunotherapeutics. Angew Chem Int Ed Engl 2022; 61:e202202409. [PMID: 35403784 DOI: 10.1002/anie.202202409] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 11/10/2022]
Abstract
An approach of decorating bacteria with triple immune nanoactivators is reported to develop tumor-resident living immunotherapeutics. Under cytocompatible conditions, tumor-specific antigens and checkpoint blocking antibodies are simultaneously conjugated onto bacterial surface and then polydopamine nanoparticles are formed via in situ dopamine polymerization. In addition to serving as a linker, polydopamine with its photothermal effect can repolarize tumor-associated macrophages to a pro-inflammatory phenotype. The linked antigens promote the maturation of dendritic cells and generate tumor-specific immune responses, while the anchored antibodies block immune checkpoints and activate cytotoxic T lymphocytes. Decorated bacteria show spatiotemporal tumor retention and proliferation-dependent drug release, achieving potent antitumor effects in two antigen-overexpressing tumor models. This work provides a versatile platform to prepare multimodal and long-acting therapeutics for cancer immunotherapy.
Collapse
Affiliation(s)
- Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.,School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Qing Xia
- Department of Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiyan Guo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhenzhen Fu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong Liu
- National Center for NanoScience & Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
21
|
Li J, Xia Q, Guo H, Fu Z, Liu Y, Lin S, Liu J. Decorating Bacteria with Triple Immune Nanoactivators Generates Tumor‐Resident Living Immunotherapeutics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juanjuan Li
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
- School of Life Sciences Hainan University Haikou 570228 China
| | - Qing Xia
- Department of Oncology Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Haiyan Guo
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Zhenzhen Fu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Yong Liu
- National Center for NanoScience & Technology Chinese Academy of Sciences Beijing 100190 China
| | - Sisi Lin
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinyao Liu
- State Key Laboratory of Oncogenes and Related Genes Shanghai Cancer Institute Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine Institute of Molecular Medicine Renji Hospital School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
22
|
Pandey M, Choudhury H, Vijayagomaran PA, Lian PNP, Ning TJ, Wai NZ, Xian-Zhuang N, Le Er C, Rahmah NSN, Kamaruzzaman NDB, Mayuren J, Candasamy M, Gorain B, Chawla PA, Amin MCIM. Recent Update on Bacteria as a Delivery Carrier in Cancer Therapy: From Evil to Allies. Pharm Res 2022; 39:1115-1134. [PMID: 35386012 PMCID: PMC8985562 DOI: 10.1007/s11095-022-03240-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/18/2022] [Indexed: 01/19/2023]
Abstract
Cancer is associated with a comprehensive burden that significantly affects patient’s quality of life. Even though patients’ disease condition is improving following conventional therapies, researchers are studying alternative tools that can penetrate solid tumours to deliver the therapeutics due to issues of developing resistance by the cancer cells. Treating cancer is not the only the goal in cancer therapy; it also includes protecting non-cancerous cells from the toxic effects of anti-cancer agents. Thus, various advanced techniques, such as cell-based drug delivery, bacteria-mediated therapy, and nanoparticles, are devised for site-specific delivery of drugs. One of the novel methods that can be targeted to deliver anti-cancer agents is by utilising genetically modified non-pathogenic bacterial species. This is due to the ability of bacterial species to multiply selectively or non-selectively on tumour cells, resulting in biofilms that leads to disruption of metastasis process. In preclinical studies, this technology has shown significant results in terms of efficacy, and some are currently under investigation. Therefore, researchers have conducted studies on bacteria transporting the anti-cancer drug to targeted tumours. Alternatively, bacterial ghosts and bacterial spores are utilised to deliver anti-cancer drugs. Although in vivo studies of bacteria-mediated cancer therapy have shown successful outcome, further research on bacteria, specifically their targeting mechanism, is required to establish a complete clinical approach in cancer treatment. This review has focused on the up-to-date understanding of bacteria as a therapeutic carrier in the treatment of cancer as an emerging field.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | | | - Pauline Ng Poh Lian
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Tan Jing Ning
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ng Zing Wai
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ng Xian-Zhuang
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Chong Le Er
- School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | | | | | - Jayashree Mayuren
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000 Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Ghall Kalan, Punjab, India
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Li L, Pan H, Pang G, Lang H, Shen Y, Sun T, Zhang Y, Liu J, Chang J, Kang J, Zheng H, Wang H. Precise Thermal Regulation of Engineered Bacteria Secretion for Breast Cancer Treatment In Vivo. ACS Synth Biol 2022; 11:1167-1177. [PMID: 35175748 DOI: 10.1021/acssynbio.1c00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
For the biomedical application of engineered bacteria, strictly regulating the function of engineered bacteria has always been the goal pursued. However, the existing regulation methods do not meet the needs of the in vivo application of engineered bacteria. Therefore, the exploration of the precise regulation of engineered bacteria is necessary. Herein, heat-sensitive engineered bacteria that can respond to thermal stimuli within 30 min were constructed, and the precise control of functions was verified in the intestines of various model organisms (including C. elegans, bees, and mice). Subsequently, heat-sensitive engineered bacteria were shown to colonize the mouse tumor microenvironment. Finally, thermal stimulation was proven to control engineered bacteria to produce the therapeutic protein tumor necrosis factor α (TNF-α) in the tumor. After three heat stimulation treatments, the growth of the tumor was significantly inhibited, suggesting that heat can be used as a strategy to precisely control engineered bacteria in vivo.
Collapse
Affiliation(s)
- Lianyue Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Huizhuo Pan
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Gaoju Pang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yue Shen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Tao Sun
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Jing Liu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Jun Kang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin, 300072, China
| |
Collapse
|
24
|
Zhao L, Yin G, Zhang Y, Duan C, Wang Y, Kang Z. A comparative study on the genomes, transcriptomes, and metabolic properties of Escherichia coli strains Nissle 1917, BL21(DE3), and MG1655. ENGINEERING MICROBIOLOGY 2022; 2:100012. [PMID: 39628614 PMCID: PMC11610980 DOI: 10.1016/j.engmic.2022.100012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/06/2024]
Abstract
Escherichia coli is the most well-studied model prokaryote and has become an indispensable host for the biotechnological production of proteins and biochemicals. In particular, the probiotic status of one E. coli strain, E. coli Nissle 1917 (EcN) has helped it become a new favorite amongst synthetic biologists. To broaden its potential applications, here we assemble a comparative study on the genomes, transcriptomes, and metabolic properties of E. coli strains EcN, BL21(DE3), and MG1655. Comparative genomics data suggests that EcN possesses 1404 unique CDSs. In particular, EcN has additional iron transport systems which endow EcN with a higher tolerance to iron scarcity when compared to two other E. coli strains. EcN transcriptome data demonstrates that E. coli strains EcN, BL21(DE3), and MG1655 all have comparable activities of the central metabolic pathway, however only EcN inherits the arginine deiminase pathway. Additionally, we found that EcN displayed a lower expression of ribosomal proteins compared to BL21(DE3) and MG1655. This comparative study on E. coli strains EcN, BL21(DE3), and MG1655 aims to provide a reference for further engineering EcN as a biotechnological tool.
Collapse
Affiliation(s)
- Linlin Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yonglin Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chaofan Duan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Current clinical translation of microbiome medicines. Trends Pharmacol Sci 2022; 43:281-292. [DOI: 10.1016/j.tips.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
|
26
|
Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. Int J Mol Sci 2022; 23:ijms23020594. [PMID: 35054790 PMCID: PMC8775704 DOI: 10.3390/ijms23020594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.
Collapse
|
27
|
Thomas SC, Madaan T, Kamble NS, Siddiqui NA, Pauletti GM, Kotagiri N. Engineered Bacteria Enhance Immunotherapy and Targeted Therapy through Stromal Remodeling of Tumors. Adv Healthc Mater 2022; 11:e2101487. [PMID: 34738725 PMCID: PMC8770579 DOI: 10.1002/adhm.202101487] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Collapse
Affiliation(s)
- Shindu C. Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Tushar Madaan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nitin S. Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nabil A. Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Giovanni M. Pauletti
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, 1 Pharmacy Place, St. Louis, MO 63110, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
28
|
Marongiu L, Landry JJM, Rausch T, Abba ML, Delecluse S, Delecluse H, Allgayer H. Metagenomic analysis of primary colorectal carcinomas and their metastases identifies potential microbial risk factors. Mol Oncol 2021; 15:3363-3384. [PMID: 34328665 PMCID: PMC8637581 DOI: 10.1002/1878-0261.13070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
The paucity of microbiome studies at intestinal tissues has contributed to a yet limited understanding of potential viral and bacterial cofactors of colorectal cancer (CRC) carcinogenesis or progression. We analysed whole-genome sequences of CRC primary tumours, their corresponding metastases and matched normal tissue for sequences of viral, phage and bacterial species. Bacteriome analysis showed Fusobacterium nucleatum, Streptococcus sanguinis, F. Hwasookii, Anaerococcus mediterraneensis and further species enriched in primary CRCs. The primary CRC of one patient was enriched for F. alocis, S. anginosus, Parvimonas micra and Gemella sp. 948. Enrichment of Escherichia coli strains IAI1, SE11, K-12 and M8 was observed in metastases together with coliphages enterobacteria phage φ80 and Escherichia phage VT2φ_272. Virome analysis showed that phages were the most preponderant viral species (46%), the main families being Myoviridae, Siphoviridae and Podoviridae. Primary CRCs were enriched for bacteriophages, showing five phages (Enterobacteria, Bacillus, Proteus, Streptococcus phages) together with their pathogenic hosts in contrast to normal tissues. The most frequently detected, and Blast-confirmed, viruses included human endogenous retrovirus K113, human herpesviruses 7 and 6B, Megavirus chilensis, cytomegalovirus (CMV) and Epstein-Barr virus (EBV), with one patient showing EBV enrichment in primary tumour and metastases. EBV was PCR-validated in 80 pairs of CRC primary tumour and their corresponding normal tissues; in 21 of these pairs (26.3%), it was detectable in primary tumours only. The number of viral species was increased and bacterial species decreased in CRCs compared with normal tissues, and we could discriminate primary CRCs from metastases and normal tissues by applying the Hutcheson t-test on the Shannon indices based on viral and bacterial species. Taken together, our results descriptively support hypotheses on microorganisms as potential (co)risk factors of CRC and extend putative suggestions on critical microbiome species in CRC metastasis.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| | | | - Tobias Rausch
- Genomics Core FacilityEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Mohammed L. Abba
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| | | | | | - Heike Allgayer
- Department of Experimental Surgery – Cancer MetastasisMedical Faculty MannheimRuprecht‐Karls University of HeidelbergMannheimGermany
| |
Collapse
|
29
|
Jiang T, Yang X, Li G, Zhao X, Sun T, Müller R, Wang H, Li M, Zhang Y. Bacteria-Based Live Vehicle for In Vivo Bioluminescence Imaging. Anal Chem 2021; 93:15687-15695. [PMID: 34783525 DOI: 10.1021/acs.analchem.1c03568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The anticancer therapy strategy mediated by tumor-targeting bacteria needs better visualization tools for imaging and monitoring bacteria in vivo. The probiotic strain Escherichia coli Nissle 1917 (EcN), one of the tumor-targeting bacteria, leads to the potential application for cancer therapy. Here, we report the development and application of a live, EcN-based imageable vehicle for noninvasive in vivo bioluminescence imaging in live mice. Firefly luciferase (Fluc) and luciferin-regenerating enzyme (LRE), an enzyme that contributes to stable bioluminescence, were functionally coexpressed in EcN. The recombinant EcN strain expressing the genomically integrated Fluc-LRE cassette was demonstrated to be a valuable tool for generating robust, continuous, and red-shifted bioluminescence for bacterial tracking in vitro and in vivo, thus providing an optical tumor-targeting system for the in vivo study of bacteria-assisted cancer therapy. Additionally, in vivo imaging of the recombinant EcN strain in the mouse intestinal tract indicated the potential of this strain to be used as a tool in the study of gut.
Collapse
Affiliation(s)
- Tianyu Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China.,Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518000, China
| | - Xingye Yang
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Geng Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Xiaohan Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Tao Sun
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) and Department of Pharmacy, Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| |
Collapse
|
30
|
Mezerova K, Raclavsky V, Stary L. Which bacterial toxins are worthy of validation as markers in colorectal cancer screening? A critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2021; 166:1-11. [PMID: 34747413 DOI: 10.5507/bp.2021.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Appropriate screening of early asymptomatic cases can reduce the disease burden and mortality rate of sporadic colorectal cancer (CRC) significantly. Currently, fecal occult blood testing (FOBT) is able to detect up to 80% of asymptomatic cases in the population aged 50+. Therefore, there is still a demand for new screening tests that would complement FOBT, mainly by detecting at least a part of the FOBT-negative CRC and adenoma cases, or possibly by identifying person at increased risk of sporadic CRC in order to offer them tailored follow-up. Among the potential markers studied, our knowledge has advanced at most in toxigenic gram-negative bacteria. In this review, we assess their potential critically and recommend those best suited for prospective evaluation of their true ability to increase the sensitivity of FOBT when combined during general population screening. In our opinion, colibactin and Bacteroides fragilis toxin are the best candidates, possibly complemented by the cytotoxic necrotizing factor (CNF).
Collapse
Affiliation(s)
- Kristina Mezerova
- Department of Microbiology, Faculty of Medicine & Dentistry, Palacky University Olomouc, Czech Republic
| | - Vladislav Raclavsky
- Department of Microbiology, Faculty of Medicine & Dentistry, Palacky University Olomouc, Czech Republic
| | - Lubomir Stary
- Department of Surgery I, University Hospital Olomouc, Czech Republic
| |
Collapse
|
31
|
Marongiu L, Allgayer H. Viruses in colorectal cancer. Mol Oncol 2021; 16:1423-1450. [PMID: 34514694 PMCID: PMC8978519 DOI: 10.1002/1878-0261.13100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests that microorganisms might represent at least highly interesting cofactors in colorectal cancer (CRC) oncogenesis and progression. Still, associated mechanisms, specifically in colonocytes and their microenvironmental interactions, are still poorly understood. Although, currently, at least seven viruses are being recognized as human carcinogens, only three of these – Epstein–Barr virus (EBV), human papillomavirus (HPV) and John Cunningham virus (JCV) – have been described, with varying levels of evidence, in CRC. In addition, cytomegalovirus (CMV) has been associated with CRC in some publications, albeit not being a fully acknowledged oncovirus. Moreover, recent microbiome studies set increasing grounds for new hypotheses on bacteriophages as interesting additional modulators in CRC carcinogenesis and progression. The present Review summarizes how particular groups of viruses, including bacteriophages, affect cells and the cellular and microbial microenvironment, thereby putatively contributing to foster CRC. This could be achieved, for example, by promoting several processes – such as DNA damage, chromosomal instability, or molecular aspects of cell proliferation, CRC progression and metastasis – not necessarily by direct infection of epithelial cells only, but also by interaction with the microenvironment of infected cells. In this context, there are striking common features of EBV, CMV, HPV and JCV that are able to promote oncogenesis, in terms of establishing latent infections and affecting p53‐/pRb‐driven, epithelial–mesenchymal transition (EMT)‐/EGFR‐associated and especially Wnt/β‐catenin‐driven pathways. We speculate that, at least in part, such viral impacts on particular pathways might be reflected in lasting (e.g. mutational or further genomic) fingerprints of viruses in cells. Also, the complex interplay between several species within the intestinal microbiome, involving a direct or indirect impact on colorectal and microenvironmental cells but also between, for example, phages and bacterial and viral pathogens, and further novel species certainly might, in part, explain ongoing difficulties to establish unequivocal monocausal links between specific viral infections and CRC.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| | - Heike Allgayer
- Department of Experimental Surgery - Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls-University of Heidelberg, Mannheim, Germany
| |
Collapse
|
32
|
Escherichiacoli Nissle 1917 as a Novel Microrobot for Tumor-Targeted Imaging and Therapy. Pharmaceutics 2021; 13:pharmaceutics13081226. [PMID: 34452187 PMCID: PMC8401140 DOI: 10.3390/pharmaceutics13081226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/24/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023] Open
Abstract
Highly efficient drug delivery systems with excellent tumor selectivity and minimal toxicity to normal tissues remain challenging for tumor treatment. Although great effort has been made to prolong the blood circulation and improve the delivery efficiency to tumor sites, nanomedicines are rarely approved for clinical application. Bacteria have the inherent properties of homing to solid tumors, presenting themselves as promising drug delivery systems. Escherichia coli Nissle 1917 (EcN) is a commonly used probiotic in clinical practice. Its facultative anaerobic property drives it to selectively colonize in the hypoxic area of the tumor for survival and reproduction. EcN can be engineered as a bacteria-based microrobot for molecular imaging, drug delivery, and gene delivery. This review summarizes the progress in EcN-mediated tumor imaging and therapy and discusses the prospects and challenges for its clinical application. EcN provides a new idea as a delivery vehicle and will be a powerful weapon against cancer.
Collapse
|
33
|
Renoz F, Foray V, Ambroise J, Baa-Puyoulet P, Bearzatto B, Mendez GL, Grigorescu AS, Mahillon J, Mardulyn P, Gala JL, Calevro F, Hance T. At the Gate of Mutualism: Identification of Genomic Traits Predisposing to Insect-Bacterial Symbiosis in Pathogenic Strains of the Aphid Symbiont Serratia symbiotica. Front Cell Infect Microbiol 2021; 11:660007. [PMID: 34268133 PMCID: PMC8275996 DOI: 10.3389/fcimb.2021.660007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023] Open
Abstract
Mutualistic associations between insects and heritable bacterial symbionts are ubiquitous in nature. The aphid symbiont Serratia symbiotica is a valuable candidate for studying the evolution of bacterial symbiosis in insects because it includes a wide diversity of strains that reflect the diverse relationships in which bacteria can be engaged with insects, from pathogenic interactions to obligate intracellular mutualism. The recent discovery of culturable strains, which are hypothesized to resemble the ancestors of intracellular strains, provide an opportunity to study the mechanisms underlying bacterial symbiosis in its early stages. In this study, we analyzed the genomes of three of these culturable strains that are pathogenic to aphid hosts, and performed comparative genomic analyses including mutualistic host-dependent strains. All three genomes are larger than those of the host-restricted S. symbiotica strains described so far, and show significant enrichment in pseudogenes and mobile elements, suggesting that these three pathogenic strains are in the early stages of the adaptation to their host. Compared to their intracellular mutualistic relatives, the three strains harbor a greater diversity of genes coding for virulence factors and metabolic pathways, suggesting that they are likely adapted to infect new hosts and are a potential source of metabolic innovation for insects. The presence in their genomes of secondary metabolism gene clusters associated with the production of antimicrobial compounds and phytotoxins supports the hypothesis that S. symbiotia symbionts evolved from plant-associated strains and that plants may serve as intermediate hosts. Mutualistic associations between insects and bacteria are the result of independent transitions to endosymbiosis initiated by the acquisition of environmental progenitors. In this context, the genomes of free-living S. symbiotica strains provide a rare opportunity to study the inventory of genes held by bacterial associates of insects that are at the gateway to a host-dependent lifestyle.
Collapse
Affiliation(s)
- François Renoz
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Vincent Foray
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
- Institut de Recherche sur la Biologie de l’insecte, UMR 7261, CNRS, Université de Tours, Tours, France
| | - Jérôme Ambroise
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | | | - Bertrand Bearzatto
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Gipsi Lima Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Patrick Mardulyn
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Luc Gala
- Center for Applied Molecular Technologies, Institute of Experimental and Clinical Research, Université catholique de Louvain (UCLouvain), Woluwe-Saint-Lambert, Belgium
| | - Federica Calevro
- Univ Lyon, INSA-Lyon, INRAE, BF2i, UMR203, F-69621, Villeurbanne, France
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| |
Collapse
|
34
|
Probiotics for the Management of Sepsis: Advances in Animal Models and Intensive Care Unit Environments. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12030039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sepsis frequently leads to multiple organ failure and is a major cause of morbidity and mortality in critically ill patients. Although intensive care protocols and antibiotic therapy have improved sepsis treatment, specific management is lacking with respect to efficient protection from tissue damage and long-term outcomes. Probiotics are live microbes that modulate the immune system and inflammation and colonize the gut. In this narrative review, we have traced the evolution of the administration of probiotics in an animal model of sepsis and treatment alternatives in the intensive care unit setting. First, probiotics are categorized by species before describing their modulation of the microbiota, repair of tissue-specific damage, immune response, and molecular pathways to prevent complications. The impact on therapy for infant and adult patients is also addressed. Finally, we have emphasized the challenges and gaps in current studies as well as future perspectives for further investigation. The present review can open up avenues for new strategies that employ promising probiotic strains for the treatment of sepsis and discusses their ability to prevent disease-associated long-term complications.
Collapse
|
35
|
Jiang F, Yang H, Wang L, Wang Y, Tang Y, Wang D, Wang Q, Zou J. [ Escherichia coli expressing gas vesicles is safe for enhancing the ablation effect of highintensity focused ultrasound in tumor-bearing mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:649-656. [PMID: 34134950 DOI: 10.12122/j.issn.1673-4254.2021.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect and safety of Escherichia coli (E.coli) expressing gas vesicle (GVs) for enhancing the efficacy of tumor ablation by high intensity focused ultrasound (HIFU) in tumor-bearing mice. OBJECTIVE Thirty-two female BALB/c mice were used to establish mouse models bearing 4T1 tumor, which were randomized into GVs group [E.coli BL21 (AI)-PET28a-Arg1] and control group (PBS), and the efficacy of HIFU ablation was evaluated by examining coagulative necrotic volume and pathology of the tumors. Another 104 BALB/c mice were also randomly divided into GVs group and control group, and body weight changes of the mice were recorded on days 1, 4 and 15 after intravenous injection of E.coli containing GVs or PBS. White blood cells, red blood cells, hemoglobin and platelet counts and liver and renal function parameters of the mice were detected, and serum levels of TNF-α and IL-1β were examined using ELISA. The pathological changes in the liver and spleen were evaluated using HE staining to assess the safety of the treatments. OBJECTIVE HIFU ablation resulted in a significantly greater volume of coagulative necrosis and severer tissue damage in GVs group than in the control group (P < 0.001). In the 104 BALB/c mice without tumor cell inoculation, intravenous injection of E.coli expressing GVs, as compared with PBS, did not significantly affect body weight or cause changes in white blood cell, red blood cell and platelet counts or hemoglobin level (P1=0.59, P2=0.27, P3=0.76, P4=0.81). The liver and kidney function parameters (P1=0.12, P2=0.46, P3=0.62, P4=0.86) and serum levels of TNF-α and IL-1β (P1=0.48, P2=0.56) were all comparable between GVs group and control group. No obvious pathological changes were detected in the liver and spleen tissues in either GVs group or the control group. OBJECTIVE E.coli expressing GVs is safe for enhancing the ablation effect of HIFU in tumor-bearing mice.
Collapse
Affiliation(s)
- F Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - H Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - L Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Y Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Y Tang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - D Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Q Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - J Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
36
|
Yao Y, Wang D, Hu J, Yang X. Tumor-targeting inorganic nanomaterials synthesized by living cells. NANOSCALE ADVANCES 2021; 3:2975-2994. [PMID: 36133644 PMCID: PMC9419506 DOI: 10.1039/d1na00155h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/05/2021] [Indexed: 05/09/2023]
Abstract
Inorganic nanomaterials (NMs) have shown potential application in tumor-targeting theranostics, owing to their unique physicochemical properties. Some living cells in nature can absorb surrounding ions in the environment and then convert them into nanomaterials after a series of intracellular/extracellular biochemical reactions. Inspired by that, a variety of living cells have been used as biofactories to produce metallic/metallic alloy NMs, metalloid NMs, oxide NMs and chalcogenide NMs, which are usually automatically capped with biomolecules originating from the living cells, benefitting their tumor-targeting applications. In this review, we summarize the biosynthesis of inorganic nanomaterials in different types of living cells including bacteria, fungi, plant cells and animal cells, accompanied by their application in tumor-targeting theranostics. The mechanisms involving inorganic-ion bioreduction and detoxification as well as biomineralization are emphasized. Based on the mechanisms, we describe the size and morphology control of the products via the modulation of precursor ion concentration, pH, temperature, and incubation time, as well as cell metabolism by a genetic engineering strategy. The strengths and weaknesses of these biosynthetic processes are compared in terms of the controllability, scalability and cooperativity during applications. Future research in this area will add to the diversity of available inorganic nanomaterials as well as their quality and biosafety.
Collapse
Affiliation(s)
- Yuzhu Yao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Dongdong Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jun Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
37
|
Zhu R, Lang T, Yan W, Zhu X, Huang X, Yin Q, Li Y. Gut Microbiota: Influence on Carcinogenesis and Modulation Strategies by Drug Delivery Systems to Improve Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003542. [PMID: 34026439 PMCID: PMC8132165 DOI: 10.1002/advs.202003542] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/05/2021] [Indexed: 05/05/2023]
Abstract
Gut microbiota have close interactions with the host. It can affect cancer progression and the outcomes of cancer therapy, including chemotherapy, immunotherapy, and radiotherapy. Therefore, approaches toward the modulation of gut microbiota will enhance cancer prevention and treatment. Modern drug delivery systems (DDS) are emerging as rational and promising tools for microbiota intervention. These delivery systems have compensated for the obstacles associated with traditional treatments. In this review, the essential roles of gut microbiota in carcinogenesis, cancer progression, and various cancer therapies are first introduced. Next, advances in DDS that are aimed at enhancing the efficacy of cancer therapy by modulating or engineering gut microbiota are highlighted. Finally, the challenges and opportunities associated with the application of DDS targeting gut microbiota for cancer prevention and treatment are briefly discussed.
Collapse
Affiliation(s)
- Runqi Zhu
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianqun Lang
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
| | - Wenlu Yan
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiao Zhu
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xin Huang
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qi Yin
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- School of PharmacyUniversity of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine and Advanced PreparationsYantai Institute of Materia MedicaYantai264000China
- School of PharmacyYantai UniversityYantai264005China
| |
Collapse
|
38
|
Keller-Costa T, Lago-Lestón A, Saraiva JP, Toscan R, Silva SG, Gonçalves J, Cox CJ, Kyrpides N, Nunes da Rocha U, Costa R. Metagenomic insights into the taxonomy, function, and dysbiosis of prokaryotic communities in octocorals. MICROBIOME 2021; 9:72. [PMID: 33766108 PMCID: PMC7993494 DOI: 10.1186/s40168-021-01031-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/08/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND In octocorals (Cnidaria Octocorallia), the functional relationship between host health and its symbiotic consortium has yet to be determined. Here, we employed comparative metagenomics to uncover the distinct functional and phylogenetic features of the microbiomes of healthy Eunicella gazella, Eunicella verrucosa, and Leptogorgia sarmentosa tissues, in contrast with the microbiomes found in seawater and sediments. We further explored how the octocoral microbiome shifts to a pathobiome state in E. gazella. RESULTS Multivariate analyses based on 16S rRNA genes, Clusters of Orthologous Groups of proteins (COGs), Protein families (Pfams), and secondary metabolite-biosynthetic gene clusters annotated from 20 Illumina-sequenced metagenomes each revealed separate clustering of the prokaryotic communities of healthy tissue samples of the three octocoral species from those of necrotic E. gazella tissue and surrounding environments. While the healthy octocoral microbiome was distinguished by so-far uncultivated Endozoicomonadaceae, Oceanospirillales, and Alteromonadales phylotypes in all host species, a pronounced increase of Flavobacteriaceae and Alphaproteobacteria, originating from seawater, was observed in necrotic E. gazella tissue. Increased abundances of eukaryotic-like proteins, exonucleases, restriction endonucleases, CRISPR/Cas proteins, and genes encoding for heat-shock proteins, inorganic ion transport, and iron storage distinguished the prokaryotic communities of healthy octocoral tissue regardless of the host species. An increase of arginase and nitric oxide reductase genes, observed in necrotic E. gazella tissues, suggests the existence of a mechanism for suppression of nitrite oxide production by which octocoral pathogens may overcome the host's immune system. CONCLUSIONS This is the first study to employ primer-less, shotgun metagenome sequencing to unveil the taxonomic, functional, and secondary metabolism features of prokaryotic communities in octocorals. Our analyses reveal that the octocoral microbiome is distinct from those of the environmental surroundings, is host genus (but not species) specific, and undergoes large, complex structural changes in the transition to the dysbiotic state. Host-symbiont recognition, abiotic-stress response, micronutrient acquisition, and an antiviral defense arsenal comprising multiple restriction endonucleases, CRISPR/Cas systems, and phage lysogenization regulators are signatures of prokaryotic communities in octocorals. We argue that these features collectively contribute to the stabilization of symbiosis in the octocoral holobiont and constitute beneficial traits that can guide future studies on coral reef conservation and microbiome therapy. Video Abstract.
Collapse
Affiliation(s)
- T. Keller-Costa
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - A. Lago-Lestón
- División de Biología Experimental y Aplicada (DBEA), Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carr. Ensenada-Tijuana 3918, Zona Playitas, C.P 22860 Ensenada, Baja California Mexico
| | - J. P. Saraiva
- Helmholtz Centre for Environmental Research (UFZ), Leipzig, 04318 Germany
| | - R. Toscan
- Helmholtz Centre for Environmental Research (UFZ), Leipzig, 04318 Germany
| | - S. G. Silva
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
| | - J. Gonçalves
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - C. J. Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - N. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| | - U. Nunes da Rocha
- Helmholtz Centre for Environmental Research (UFZ), Leipzig, 04318 Germany
| | - R. Costa
- Instituto de Bioengenharia e Biociências (iBB), Instituto Superior Técnico (IST), Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
- Department of Energy, Joint Genome Institute, Berkeley, CA 94720 USA
| |
Collapse
|
39
|
Chiang CJ, Huang PH. Metabolic engineering of probiotic Escherichia coli for cytolytic therapy of tumors. Sci Rep 2021; 11:5853. [PMID: 33712706 PMCID: PMC7971005 DOI: 10.1038/s41598-021-85372-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/28/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial cancer therapy was developed using probiotic Escherichia coli Nissle 1917 (EcN) for medical intervention of colorectal cancer. EcN was armed with HlyE, a small cytotoxic protein, under the control of the araBAD promoter (PBAD). The intrinsic limitation of PBAD for the gene expression is known to be negated by glucose and afflicted with all-or-nothing induction in host bacteria. This issue was addressed by metabolic engineering of EcN to uncouple the glucose-mediated control circuit and the L-arabinose transport-induction loop and to block L-arabinose catabolism. As a result, the reprogrammed strain (designated EcNe) enabled efficient expression of HlyE in a temporal control manner. The HlyE production was insensitive to glucose and reached a saturated level in response to L-arabinose at 30-50 μM. Moreover, the administrated EcNe exhibited tumor-specific colonization with the tumor-to-organ ratio of 106:1. Equipped with HlyE, EcNe significantly caused tumor regression in mice xenografted with human colorectal cancer cells. Overall, this study proposes a new strategy for the bacteria-mediated delivery of therapeutic proteins to tumors.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Po-Han Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan
| |
Collapse
|
40
|
Development of a Genome-Scale Metabolic Model and Phenome Analysis of the Probiotic Escherichia coli Strain Nissle 1917. Int J Mol Sci 2021; 22:ijms22042122. [PMID: 33672760 PMCID: PMC7924626 DOI: 10.3390/ijms22042122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
Escherichia coli Nissle 1917 (EcN) is an intestinal probiotic that is effective for the treatment of intestinal disorders, such as inflammatory bowel disease and ulcerative colitis. EcN is a representative Gram-negative probiotic in biomedical research and is an intensively studied probiotic. However, to date, its genome-wide metabolic network model has not been developed. Here, we developed a comprehensive and highly curated EcN metabolic model, referred to as iDK1463, based on genome comparison and phenome analysis. The model was improved and validated by comparing the simulation results with experimental results from phenotype microarray tests. iDK1463 comprises 1463 genes, 1313 unique metabolites, and 2984 metabolic reactions. Phenome data of EcN were compared with those of Escherichia coli intestinal commensal K-12 MG1655. iDK1463 was simulated to identify the genetic determinants responsible for the observed phenotypic differences between EcN and K-12. Further, the model was simulated for gene essentiality analysis and utilization of nutrient sources under anaerobic growth conditions. These analyses provided insights into the metabolic mechanisms by which EcN colonizes and persists in the gut. iDK1463 will contribute to the system-level understanding of the functional capacity of gut microbes and their interactions with microbiota and human hosts, as well as the development of live microbial therapeutics.
Collapse
|
41
|
Alsawaftah N, Farooq A, Dhou S, Majdalawieh AF. Bioluminescence Imaging Applications in Cancer: A Comprehensive Review. IEEE Rev Biomed Eng 2021; 14:307-326. [PMID: 32746363 DOI: 10.1109/rbme.2020.2995124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Bioluminescence imaging (BLI), an optical preclinical imaging modality, is an invaluable imaging modality due to its low-cost, high throughput, fast acquisition times, and functional imaging capabilities. BLI is being extensively used in the field of cancer imaging, especially with the recent developments in genetic-engineering, stem cell, and gene therapy treatments. The purpose of this paper is to provide a comprehensive review of the principles, developments, and current status of BLI in cancer research. This paper covers the fundamental BLI concepts including BLI reporters and enzyme-substrate systems, data acquisition, and image characteristics. It reviews the studies discussing the use of BLI in cancer research such as imaging tumor-characteristic phenomena including tumorigenesis, metastasis, cancer metabolism, apoptosis, hypoxia, and angiogenesis, and response to cancer therapy treatments including chemotherapy, radiotherapy, immunotherapy, gene therapy, and stem cell therapy. The key advantages and disadvantages of BLI compared to other common imaging modalities are also discussed.
Collapse
|
42
|
Davoodvandi A, Marzban H, Goleij P, Sahebkar A, Morshedi K, Rezaei S, Mahjoubin-Tehran M, Tarrahimofrad H, Hamblin MR, Mirzaei H. Effects of therapeutic probiotics on modulation of microRNAs. Cell Commun Signal 2021; 19:4. [PMID: 33430873 PMCID: PMC7798223 DOI: 10.1186/s12964-020-00668-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics are beneficial bacteria that exist within the human gut, and which are also present in different food products and supplements. They have been investigated for some decades, due to their potential beneficial impact on human health. Probiotics compete with pathogenic microorganisms for adhesion sites within the gut, to antagonize them or to regulate the host immune response resulting in preventive and therapeutic effects. Therefore, dysbiosis, defined as an impairment in the gut microbiota, could play a role in various pathological conditions, such as lactose intolerance, gastrointestinal and urogenital infections, various cancers, cystic fibrosis, allergies, inflammatory bowel disease, and can also be caused by antibiotic side effects. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate gene expression in a post-transcriptional manner. miRNAs are biochemical biomarkers that play an important role in almost all cellular signaling pathways in many healthy and disease states. For the first time, the present review summarizes current evidence suggesting that the beneficial properties of probiotics could be explained based on the pivotal role of miRNAs. Video Abstract.
Collapse
Affiliation(s)
| | - Havva Marzban
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology,Sana Institute of Higher Education, Sari, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114 USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
43
|
Sieow BFL, Wun KS, Yong WP, Hwang IY, Chang MW. Tweak to Treat: Reprograming Bacteria for Cancer Treatment. Trends Cancer 2020; 7:447-464. [PMID: 33303401 DOI: 10.1016/j.trecan.2020.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
Recent advancements in cancer biology, microbiology, and bioengineering have spurred the development of engineered live biotherapeutics for targeted cancer therapy. In particular, natural tumor-targeting and probiotic bacteria have been engineered for controlled and sustained delivery of anticancer agents into the tumor microenvironment (TME). Here, we review the latest advancements in the development of engineered bacteria for cancer therapy and additional engineering strategies to potentiate the delivery of therapeutic payloads. We also explore the use of combination therapies comprising both engineered bacteria and conventional anticancer therapies for addressing intratumor heterogeneity. Finally, we discuss prospects for the development and clinical translation of engineered bacteria for cancer prevention and treatment.
Collapse
Affiliation(s)
- Brendan Fu-Long Sieow
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School of Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore
| | - Kwok Soon Wun
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Peng Yong
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore; Cancer Science Institute, National University of Singapore, Singapore
| | - In Young Hwang
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Matthew Wook Chang
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
44
|
Engineering probiotics for therapeutic applications: recent examples and translational outlook. Curr Opin Biotechnol 2020; 65:171-179. [DOI: 10.1016/j.copbio.2020.02.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
|
45
|
Abstract
The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization. Colibactin is a nonribosomal peptide/polyketide hybrid natural product expressed by different members of the Enterobacteriaceae which can be correlated with induction of DNA double-strand breaks and interference with cell cycle progression in eukaryotes. Regulatory features of colibactin expression are only incompletely understood. We used Escherichia coli strain M1/5 as a model to investigate regulation of expression of the colibactin determinant at the transcriptional level and to characterize regulatory elements located within the colibactin pathogenicity island itself. We measured clbR transcription in vitro and observed that cultivation in defined minimal media led to increased colibactin expression relative to rich media. Transcription of clbR directly responds to iron availability. We also characterized structural DNA elements inside the colibactin determinant involved in ClbR-dependent regulation, i.e., ClbR binding sites and a variable number of tandem repeats located upstream of clbR. We investigated the impact of clbR overexpression or deletion at the transcriptome and proteome levels. Moreover, we compared global gene regulation under these conditions with that occurring upon overexpression or deletion of clbQ, which affects the flux of colibactin production. Combining the results of the transcriptome and proteome analyses with indirect measurements of colibactin levels by cell culture assays and an approximate quantification of colibactin via the second product of colibactin cleavage from precolibactin, N-myristoyl-d-asparagine, we demonstrate that the variable number of tandem repeats plays a significant regulatory role in colibactin expression. We identify ClbR as the only transcriptional activator known so far that is specific and essential for efficient regulation of colibactin production. IMPORTANCE The nonribosomal peptide/polyketide hybrid colibactin can be considered a bacterial virulence factor involved in extraintestinal infection and also a procarcinogen. Nevertheless, and despite its genotoxic effect, colibactin expression can also inhibit bacterial or tumor growth and correlates with probiotic anti-inflammatory and analgesic properties. Although the biological function of this natural compound has been studied extensively, our understanding of the regulation of colibactin expression is still far from complete. We investigated in detail the role of regulatory elements involved in colibactin expression and in the growth conditions that promote colibactin expression. In this way, our data shed light on the regulatory mechanisms involved in colibactin expression and may support the expression and purification of this interesting nonribosomal peptide/polyketide hybrid for further molecular characterization.
Collapse
|
46
|
Yu X, Lin C, Yu J, Qi Q, Wang Q. Bioengineered Escherichia coli Nissle 1917 for tumour-targeting therapy. Microb Biotechnol 2020; 13:629-636. [PMID: 31863567 PMCID: PMC7111071 DOI: 10.1111/1751-7915.13523] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022] Open
Abstract
Bacterial vectors, as microscopic living 'robotic factories', can be reprogrammed into microscopic living 'robotic factories', using a top-down bioengineering approach to produce and deliver anticancer agents. Most of the current research has focused on bacterial species such as Salmonella typhimurium or Clostridium novyi. However, Escherichia coli Nissle 1917 (EcN) is another promising candidate with probiotic properties. EcN offers increased applicability for cancer treatment with the development of new molecular biology and complete genome sequencing techniques. In this review, we discuss the genetics and physical properties of EcN. We also summarize and analyse recent studies regarding tumour therapy mediated by EcN. Many challenges remain in the development of more promising strategies for combatting cancer with EcN.
Collapse
Affiliation(s)
- Xiaoli Yu
- School of Public Health and ManagementWeifang Medical UniversityWeifang261053ShandongChina
| | - Changsen Lin
- State Key Laboratory of Microbial TechnologyNational Glycoengineering Research CenterShandong UniversityQingdao266237ShandongChina
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014ShandongChina
| | - Jing Yu
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014ShandongChina
| | - Qingsheng Qi
- State Key Laboratory of Microbial TechnologyNational Glycoengineering Research CenterShandong UniversityQingdao266237ShandongChina
| | - Qian Wang
- State Key Laboratory of Microbial TechnologyNational Glycoengineering Research CenterShandong UniversityQingdao266237ShandongChina
| |
Collapse
|
47
|
Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat Commun 2020; 11:1738. [PMID: 32269218 PMCID: PMC7142098 DOI: 10.1038/s41467-020-15508-1] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/13/2020] [Indexed: 12/29/2022] Open
Abstract
A complex interplay of metabolic and immunological mechanisms underlies many diseases that represent a substantial unmet medical need. There is an increasing appreciation of the role microbes play in human health and disease, and evidence is accumulating that a new class of live biotherapeutics comprised of engineered microbes could address specific mechanisms of disease. Using the tools of synthetic biology, nonpathogenic bacteria can be designed to sense and respond to environmental signals in order to consume harmful compounds and deliver therapeutic effectors. In this perspective, we describe considerations for the design and development of engineered live biotherapeutics to achieve regulatory and patient acceptance. The role microbes play in human health and the ability of synthetic biology to engineer microbial properties opens up new ways of treating disease. In this perspective, the authors describe the design and development of these living therapeutics.
Collapse
|
48
|
Dubbert S, Klinkert B, Schimiczek M, Wassenaar TM, von Bünau R. No Genotoxicity Is Detectable for Escherichia coli Strain Nissle 1917 by Standard In Vitro and In Vivo Tests. Eur J Microbiol Immunol (Bp) 2020; 10:11-19. [PMID: 32363034 PMCID: PMC7182118 DOI: 10.1556/1886.2019.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Probiotic Escherichia coli strain Nissle 1917 (EcN) has a long history of safe use. However, the recently discovered presence of a pks locus in its genome presumably producing colibactin has questioned its safety, as colibactin has been implicated in genotoxicity. Here, we assess the genotoxic potential of EcN. Metabolic products were tested in vitro by the Ames test, a mutagenicity assay developed to detect point mutation-inducing activity. Live EcN were tested by an adapted Ames test. Neither the standard nor the adapted Ames test resulted in increased numbers of revertant colonies, indicating that EcN metabolites or viable cells lacked mutagenic activity. The in vivo Mammalian Alkaline Comet Assay (the gold standard for detecting DNA-strand breaks) was used to determine potentially induced DNA-strand breaks in cells of the gastro-intestinal tract of rats orally administered with viable EcN. Bacteria were given at 109–1011 colony forming units (CFU) per animal by oral gavage on 2 consecutive days and daily for a period of 28 days to 5 rats per group. No significant differences compared to negative controls were found. These results demonstrate that EcN does not induce DNA-strand breaks and does not have any detectable genotoxic potential in the test animals.
Collapse
Affiliation(s)
- Silke Dubbert
- Ardeypharm GmbH, Loerfeldstraße 20, 58313 Herdecke, Germany
| | | | | | - Trudy M. Wassenaar
- Molecular Microbiology and Genomics Consultants, Tannenstraße 7, 55576 Zotzenheim Germany
| | - Rudolf von Bünau
- Ardeypharm GmbH, Loerfeldstraße 20, 58313 Herdecke, Germany
- *Author for correspondence: Ardeypharm GmbH, Loerfeldstrasse 20, 58313 Herdecke; E-mail: .
| |
Collapse
|
49
|
Alizadeh S, Barzegari A, Esmaeili A, Omidi Y. Designing a light-activated recombinant alpha hemolysin for colorectal cancer targeting. BIOIMPACTS : BI 2019; 10:187-193. [PMID: 32793441 PMCID: PMC7416006 DOI: 10.34172/bi.2020.23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/25/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
Introduction: Colorectal cancer (CRC) is one of the main health burden worldwide, which can cause major economic and physiological problems along with relatively high rate of mortality. It is important to develop new methods for the localized delivery of recombinant protein therapeutics, in large part due to the failure of conventional therapies in most cases. Since E. coli Nissle 1917 (EcN) does not produce any virulence factors, here we used these bacteria with the light-activated promoter system to deliver therapeutic agents in the desired location and time. Methods: In this study, Staphylococcus aureus alpha hemolysin (SAH), after codon usage optimization, was cloned into blue light activating vector (pDawn) and transferred to EcN strain. Then, the functionality and cytotoxicity of secreted alpha hemolysin was evaluated in the SW480 colon cancer cell line by using different experiments, including blood agar test, flow cytometry analysis, and DAPI staining. Results: Our findings revealed that EcN can produce functional SAH under the blue light irradiation against SW480 cancer cells. Moreover, cytotoxicity assays confirmed the dose- and time-dependent toxicity of this payload (SAH) against SW480 cancer cells. Conclusion: Based on our results, EcN is proposed as an appropriate light-activated vehicle for delivery of anticancer agents to the target cancer cells/tissues.
Collapse
Affiliation(s)
- Siamak Alizadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Esmaeili
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Yadollah Omidi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|