1
|
Sørensen L, Zammite C, Igartua A, Christensen MM, Haraldsvik M, Creese M, Gomes T, Booth AM. Towards realism in hazard assessment of plastic and rubber leachates - Methodological considerations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136383. [PMID: 39504771 DOI: 10.1016/j.jhazmat.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/28/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
While plastic chemicals are key drivers of observed effects to aquatic species, there remains a lack of standardized and fit-for-purpose approaches for experimentally deconvoluting the effects of plastic chemicals from particle effects. This study investigated differences in chemical composition determined using two different organic solvents for extractions (dichloromethane-ethyl acetate, methanol) and by thermal desorption applied to 51 thermoplastic and elastomer products. The composition of natural water leachates of four select elastomers was also investigated. The number of chemical features in each material varied according to the extraction method, with solvent extracts exhibiting the most chemicals, and only 19 compounds commonly identified by all three methods. The number of chemical features in leachates was generally similar to the corresponding chemical extracts, but strong differences in relative composition were detected. While turbulence had minimal impact on leachate composition, particle loading strongly influenced leachate composition, temperature and salinity influenced the leachate concentration for some chemicals, and leaching time depended upon chemical mobility. Leachate composition cannot be readily predicted from particle characterization and multiple parameters are drivers of compositional variance in aquatic leachates. Recommendations for performing leaching studies that are relevant for hazard characterization in a realistic aquatic environment risk assessment scenario are suggested, with a particular focus on particle loading.
Collapse
Affiliation(s)
| | | | | | | | - Martin Haraldsvik
- Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - Tânia Gomes
- Norwegian Institute of Water Research (NIVA), Oslo, Norway
| | | |
Collapse
|
2
|
Pedersen AF, Bayen S, Liu L, Dietz R, Sonne C, Rosing-Asvid A, Ferguson SH, McKinney MA. Nontarget and suspect screening reveals the presence of multiple plastic-related compounds in polar bear, killer whale, narwhal and long-finned pilot whale blubber from East Greenland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124417. [PMID: 38909771 DOI: 10.1016/j.envpol.2024.124417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/17/2024] [Revised: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
The monitoring of legacy contaminants in sentinel northern marine mammals has revealed some of the highest concentrations globally. However, investigations into the presence of chemicals of emerging Arctic concern (CEACs) and other lesser-known chemicals are rarely conducted, if at all. Here, we used a nontarget/suspect approach to screen for thousands of different chemicals, including many CEACs and plastic-related compounds (PRCs) in blubber/adipose from killer whales (Orcinus orca), narwhals (Monodon monoceros), long-finned pilot whales (Globicephala melas), and polar bears (Ursus maritimus) in East Greenland. 138 compounds were tentatively identified mostly as PRCs, and four were confirmed using authentic standards: di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), di(2-propylheptyl) phthalate (DPHP), and one antioxidant (Irganox 1010). Three other PRCs, a nonylphenol isomer, 2,6-di-tert-butylphenol, and dioctyl sebacate, exhibited fragmentation patterns matching those in library databases. While phthalates were only above detection limits in some polar bear and narwhal, Irganox 1010, nonylphenol, and 2,6-di-tert-butylphenol were detected in >50% of all samples. This study represents the first application of a nontarget/suspect screening approach in Arctic cetaceans, leading to the identification of multiple PRCs in their blubber. Further nontarget analyses are warranted to comprehensively characterize the extent of CEAC and PRC contamination within Arctic marine food webs.
Collapse
Affiliation(s)
- Adam F Pedersen
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Rune Dietz
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Christian Sonne
- Department of Ecoscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Aqqalu Rosing-Asvid
- Department of Birds and Mammals, Greenland Institute of Natural Resources, Nuuk GL-3900, Greenland
| | - Steven H Ferguson
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
3
|
Dube N, Smolarz K, Sokołowski A, Świeżak J, Øverjordet IB, Ellingsen I, Wielogórska E, Sørensen L, Walecka D, Kwaśniewski S. Human pharmaceuticals in the arctic - A review. CHEMOSPHERE 2024; 364:143172. [PMID: 39182731 DOI: 10.1016/j.chemosphere.2024.143172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Pharmaceuticals have been deemed as 'contaminants of emerging concern' within the Arctic and are a potentially perennial form of pollution. With recent innovations in detection technology for organic compounds, researchers have been able to find substantial evidence of the presence and accumulation of pharmaceutical pollution within the Arctic marine ecosystem. The pharmaceuticals, which are biologically active substances used in diagnosis, treatment or prevention of diseases, may persist in the Arctic environment and may have an impact on the resident marine biota. Thus, to understand the standing of current research on the origin, transport, bioaccumulation and impacts of pharmaceutical pollution on the Arctic marine ecosystem, this study collates research from the early 2000s to the end of 2023 to act as a baseline for future research. The study highlights the fact that there is an evident threat to the Arctic marine ecosystem due to pharmaceutical pollution. It also shows that the impacts of pharmaceuticals within the Arctic ocean are not well studied.
Collapse
Affiliation(s)
- Neil Dube
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Adam Sokołowski
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Ida Beathe Øverjordet
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ingrid Ellingsen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ewa Wielogórska
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Dominika Walecka
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Sławomir Kwaśniewski
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
5
|
Dürig W, Lindblad S, Golovko O, Gkotsis G, Aalizadeh R, Nika MC, Thomaidis N, Alygizakis NA, Plassmann M, Haglund P, Fu Q, Hollender J, Chaker J, David A, Kunkel U, Macherius A, Belova L, Poma G, Preud'Homme H, Munschy C, Aminot Y, Jaeger C, Lisec J, Hansen M, Vorkamp K, Zhu L, Cappelli F, Roscioli C, Valsecchi S, Bagnati R, González B, Prieto A, Zuloaga O, Gil-Solsona R, Gago-Ferrero P, Rodriguez-Mozaz S, Budzinski H, Devier MH, Dierkes G, Boulard L, Jacobs G, Voorspoels S, Rüdel H, Ahrens L. What is in the fish? Collaborative trial in suspect and non-target screening of organic micropollutants using LC- and GC-HRMS. ENVIRONMENT INTERNATIONAL 2023; 181:108288. [PMID: 37918065 DOI: 10.1016/j.envint.2023.108288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
A collaborative trial involving 16 participants from nine European countries was conducted within the NORMAN network in efforts to harmonise suspect and non-target screening of environmental contaminants in whole fish samples of bream (Abramis brama). Participants were provided with freeze-dried, homogenised fish samples from a contaminated and a reference site, extracts (spiked and non-spiked) and reference sample preparation protocols for liquid chromatography (LC) and gas chromatography (GC) coupled to high resolution mass spectrometry (HRMS). Participants extracted fish samples using their in-house sample preparation method and/or the protocol provided. Participants correctly identified 9-69 % of spiked compounds using LC-HRMS and 20-60 % of spiked compounds using GC-HRMS. From the contaminated site, suspect screening with participants' own suspect lists led to putative identification of on average ∼145 and ∼20 unique features per participant using LC-HRMS and GC-HRMS, respectively, while non-target screening identified on average ∼42 and ∼56 unique features per participant using LC-HRMS and GC-HRMS, respectively. Within the same sub-group of sample preparation method, only a few features were identified by at least two participants in suspect screening (16 features using LC-HRMS, 0 features using GC-HRMS) and non-target screening (0 features using LC-HRMS, 2 features using GC-HRMS). The compounds identified had log octanol/water partition coefficient (KOW) values from -9.9 to 16 and mass-to-charge ratios (m/z) of 68 to 761 (LC-HRMS and GC-HRMS). A significant linear trend was found between log KOW and m/z for the GC-HRMS data. Overall, these findings indicate that differences in screening results are mainly due to the data analysis workflows used by different participants. Further work is needed to harmonise the results obtained when applying suspect and non-target screening approaches to environmental biota samples.
Collapse
Affiliation(s)
- Wiebke Dürig
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Sofia Lindblad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| | - Georgios Gkotsis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Reza Aalizadeh
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Maria-Christina Nika
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikolaos Thomaidis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece.
| | - Nikiforos A Alygizakis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovakia.
| | - Merle Plassmann
- Department of Environmental Science, Stockholm University, 10691 Stockholm, Sweden.
| | - Peter Haglund
- Department of Chemistry, Chemical Biological Centre (KBC), Umeå University, Linnaeus väg 6, 90187 Umeå, Sweden.
| | - Qiuguo Fu
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany.
| | - Juliane Hollender
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland.
| | - Jade Chaker
- Université de Rennes, Inserm, EHESP, Irset - UMR_S, 1085 Rennes, France.
| | - Arthur David
- Université de Rennes, Inserm, EHESP, Irset - UMR_S, 1085 Rennes, France.
| | - Uwe Kunkel
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - André Macherius
- Bavarian Environment Agency, Bürgermeister-Ulrich-Straße 160, 86179 Augsburg, Germany.
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, 44000 Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, 44000 Nantes, France.
| | - Carsten Jaeger
- Bundesanstalt für Materialforschung und -prüfung (BAM), Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Jan Lisec
- Bundesanstalt für Materialforschung und -prüfung (BAM), Analytical Chemistry, Richard-Willstätter-Straße 11, 12489 Berlin, Germany.
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Katrin Vorkamp
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Linyan Zhu
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Francesca Cappelli
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Claudio Roscioli
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Sara Valsecchi
- Water Research Institute, National Research Council of Italy, Via del Mulino 19, 20861 Brugherio MB, Italy.
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milan, Italy.
| | - Belén González
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Ailette Prieto
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Olatz Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Spain.
| | - Ruben Gil-Solsona
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain; Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain.
| | - Pablo Gago-Ferrero
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Institute of Environmental Assessment and Water Research - Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain.
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain.
| | - Hélène Budzinski
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France.
| | - Marie-Helene Devier
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600 Pessac, France.
| | - Georg Dierkes
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| | - Lise Boulard
- Federal Institute of Hydrology, Am Mainzer Tor 1, 56068 Koblenz, Germany; Metabolomics Core Facility, Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France.
| | - Griet Jacobs
- Flemish Institute for Technological Research (VITO), Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| | - Stefan Voorspoels
- Flemish Institute for Technological Research (VITO), Unit Separation and Conversion Technology, Boeretang 200, 2400 Mol, Belgium.
| | - Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Auf dem Aberg 1, 57392 Schmallenberg, Germany.
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007 Uppsala, Sweden.
| |
Collapse
|