1
|
Zhang W, Wu L, Qu R, Liu T, Wang J, Tong Y, Bei W, Guo J, Hu X. Hesperidin activates the GLP-1R/cAMP-CREB/IRS2/PDX1 pathway to promote transdifferentiation of islet α cells into β cells Across the spectrum. Heliyon 2024; 10:e35424. [PMID: 39220963 PMCID: PMC11365324 DOI: 10.1016/j.heliyon.2024.e35424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background and aims In all age, FoShou as a Chinese medicinal herb has been active in various kinds of Traditional Chinese medicine formula to treating diabetes. Hesperidin (HES), the main monomeric component of FoShou, has been extensively investigated for interventions with pathogenic mechanism of diabetes as well as subsequent treatment of associated complications. Islet β-cells have an essential effect on dynamically regulating blood sugar. Functional abnormalities in these cells and their death are strongly associated with the onset of diabetes. Therefore, induction of islet endocrine cell lineage re-editing for damaged βcell replenishment would be a promising therapeutic tool. Previously, it has been found that HES can protect islet β-cells in vivo, But, the regenerative function of HES in islet β cells and its role in promoting differential non-β cells transdifferentiation into β cells and cell fate rewriting associated mechanisms remain unclear.This work focused on investigating whether HES can induce islet α cells transdifferentiation into β cells for achieving damaged β cell regeneration and the causes and possible mechanisms involved in the process. Materials and methods In brief, 60 mg/kg/d streptozotocin (STZ) was administered intraperitoneally in each male C57bL/6J mouse raised by the high-sugar and high-fat diet (HFD) to create a diabetic mouse model with severe β-cell damage. After 28 consecutive days of HES treatment (160 mg/kg; 320 mg/kg; once daily, as appropriate). Tracing the dynamics of α as well as β cell transformation, together with β cells growth and apoptosis levels during treatment by cell lineage tracing. The self-enforcing transcriptional network on which the cell lineage is based is used as a clue to explore the underlying mechanisms. Guangdong Pharmaceutical University's Animal Experiment Ethics Committee (GDPulac2019180) approved all animal experiments. Results Localization by cell lineage we find that transdifferentiated newborn β-cells derived from α cells appeared in the islet endocrine cell mass of DM mice under HES'action. Compared to the model group, expressed by Tunel staining and CXCL10 levels the overall apoptosis rate of β-cells of the pancreas were reduced,the inflammatory infiltration feedback from HE staining were lower.Ki-67 positive cells showed enhanced β-cell proliferation. Decreased HbA1c and blood glucose contents, elevated C-Peptide and insulin contents which respond to ability of nascent beta cells. Also upregulated the mRNA levels of MafA, Ngn3, PDX-1, Pax4 and Arx. Moreover, increased the expression of TGR5/cAMP-CREB/GLP-1 in mouse intestinal tissues and GLP-1/GLP-1R and cAMP-CREB/IRS2/PDX-1 in pancreatic tissues. Conclusions HES directly affects β-cells, apart from being anti-apoptotic and reducing inflammatory infiltration. HES promotes GLP-1 release by intestinal L cells by activating the TGR5 receptor in DM mouse and regulating its response element CREB signaling. GLP-1 then uses the GLP-1/GLP-1R system to act on IRS2, IRS2 as a port to influence α precursor cells to express PDX-1, with the mobilization of Pax4 strong expression than Arx so that α cell lineage is finally reversed for achieving β cell endogenous proliferation.
Collapse
Affiliation(s)
- Wang Zhang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lele Wu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ru Qu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Tianfeng Liu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiliang Wang
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ying Tong
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Weijian Bei
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiao Guo
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xuguang Hu
- Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Zhu J, Zhu X, Xu Y, Chen X, Ge X, Huang Y, Wang Z. The role of noncoding RNAs in beta cell biology and tissue engineering. Life Sci 2024; 348:122717. [PMID: 38744419 DOI: 10.1016/j.lfs.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The loss or dysfunction of pancreatic β-cells, which are responsible for insulin secretion, constitutes the foundation of all forms of diabetes, a widely prevalent disease worldwide. The replacement of damaged β-cells with regenerated or transplanted cells derived from stem cells is a promising therapeutic strategy. However, inducing the differentiation of stem cells into fully functional glucose-responsive β-cells in vitro has proven to be challenging. Noncoding RNAs (ncRNAs) have emerged as critical regulatory factors governing the differentiation, identity, and function of β-cells. Furthermore, engineered hydrogel systems, biomaterials, and organ-like structures possess engineering characteristics that can provide a three-dimensional (3D) microenvironment that supports stem cell differentiation. This review summarizes the roles and contributions of ncRNAs in maintaining the differentiation, identity, and function of β-cells. And it focuses on regulating the levels of ncRNAs in stem cells to activate β-cell genetic programs for generating alternative β-cells and discusses how to manipulate ncRNA expression by combining hydrogel systems and other tissue engineering materials. Elucidating the patterns of ncRNA-mediated regulation in β-cell biology and utilizing this knowledge to control stem cell differentiation may offer promising therapeutic strategies for generating functional insulin-producing cells in diabetes cell replacement therapy and tissue engineering.
Collapse
Affiliation(s)
- Jiaqi Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoren Zhu
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yang Xu
- Center of Gallbladder Disease, Shanghai East Hospital, Institute of Gallstone Disease, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xingyou Chen
- Medical School of Nantong University, Nantong 226001, China
| | - Xinqi Ge
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Zhiwei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
3
|
Spezani R, Reis-Barbosa PH, Mandarim-de-Lacerda CA. Update on the transdifferentiation of pancreatic cells into functional beta cells for treating diabetes. Life Sci 2024; 346:122645. [PMID: 38614297 DOI: 10.1016/j.lfs.2024.122645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
The increasing global prevalence and associated comorbidities need innovative approaches for type 2 diabetes mellitus (T2DM) prevention and treatment. Genetics contributes significantly to T2DM susceptibility, and genetic counseling is significant in detecting and informing people about the diabetic risk. T2DM is also intricately linked to overnutrition and obesity, and nutritional advising is beneficial to mitigate diabetic evolution. However, manipulating pancreatic cell plasticity and transdifferentiation could help beta cell regeneration and glucose homeostasis, effectively contributing to the antidiabetic fight. Targeted modulation of transcription factors is highlighted for their roles in various aspects of pancreatic cell differentiation and function, inducing non-beta cells' conversion into functional beta cells (responsive to glucose). In addition, pharmacological interventions targeting specific receptors and pathways might facilitate cell transdifferentiation aiming to maintain or increase beta cell mass and function. However, the mechanisms underlying cellular reprogramming are not yet well understood. The present review highlights the primary transcriptional factors in the endocrine pancreas, focusing on transdifferentiation as a primary mechanism. Therefore, islet cell reprogramming, converting one cell type to another and transforming non-beta cells into insulin-producing cells, depends, among others, on transcription factors. It is a promising fact that new transcription factors are discovered every day, and their actions on pancreatic islet cells are revealed. Exploring these pathways associated with pancreatic development and islet endocrine cell differentiation could unravel the molecular intricacies underlying transdifferentiation processes, exploring novel therapeutic strategies to treat diabetes. The medical use of this biotechnology is expected to be achievable within a short time.
Collapse
Affiliation(s)
- Renata Spezani
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H Reis-Barbosa
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, Cardiovascular Disease, Institute of Biology, Biomedical Center, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Ashok A, Kalthur G, Kumar A. Degradation meets development: Implications in β-cell development and diabetes. Cell Biol Int 2024; 48:759-776. [PMID: 38499517 DOI: 10.1002/cbin.12155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Pancreatic development is orchestrated by timely synthesis and degradation of stage-specific transcription factors (TFs). The transition from one stage to another stage is dependent on the precise expression of the developmentally relevant TFs. Persistent expression of particular TF would impede the exit from the progenitor stage to the matured cell type. Intracellular protein degradation-mediated protein turnover contributes to a major extent to the turnover of these TFs and thereby dictates the development of different tissues. Since even subtle changes in the crucial cellular pathways would dramatically impact pancreatic β-cell performance, it is generally acknowledged that the biological activity of these pathways is tightly regulated by protein synthesis and degradation process. Intracellular protein degradation is executed majorly by the ubiquitin proteasome system (UPS) and Lysosomal degradation pathway. As more than 90% of the TFs are targeted to proteasomal degradation, this review aims to examine the crucial role of UPS in normal pancreatic β-cell development and how dysfunction of these pathways manifests in metabolic syndromes such as diabetes. Such understanding would facilitate designing a faithful approach to obtain a therapeutic quality of β-cells from stem cells.
Collapse
Affiliation(s)
- Akshaya Ashok
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Guruprasad Kalthur
- Division of Reproductive and Developmental Biology, Department of Reproductive Science, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Javid H, Sajadimajd S, Bahrami M, Bahrami G, Mohammadi B, Khazayel S, Miraghaee SS. Rosa canina extract relieves methylation alterations of pancreatic genes in STZ-induced diabetic rats : Gene methylation in diabetic rats treated with an extract. Mol Biol Rep 2024; 51:711. [PMID: 38824245 DOI: 10.1007/s11033-024-09399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/28/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Diabetes is a chronic metabolic disease that affects many parts of the body. Considering diabetes as a beta cells' defect and loss, the focus is on finding mechanisms and compounds involved in stimulating the function and regeneration of pancreatic β-cells. DNA methylation as an epigenetic mechanism plays a pivotal role in the β-cells' function and development. Considering the regenerative and anti-diabetic effects of Rosa canina extract, this study aimed to assess the methylation levels of Pdx-1, Pax-4, and Ins-1 genes in diabetic rats treated with Rosa Canina extract. METHODS AND RESULTS Streptozotocin-induced diabetic rats were used to evaluate the frequency of Pdx-1, Pax-4, and Ins-1 gene methylation. Treatment groups were exposed to Rosa canina as spray-dried and decoction extracts. Following blood glucose measurement, pancreatic DNA was extracted and bisulfited. Genes' methylation was measured using MSP-PCR and qRT-PCR techniques. Oral administration of Rosa canina extracts significantly reduced blood sugar levels in diabetic rats compared to the control group. The methylation levels of the Pdx-1, Pax-4, and Ins-1 genes promoter in streptozotocin-induced diabetic rats increased compared to the control rats while, the treatment of diabetic rats with Rosa canina extracts, spray-dried samples especially, led to a decreased methylation in these genes. CONCLUSION The results of this study showed that Rosa canina extract as a spray-dried sample could be effective in treating diabetes by regulating the methylation of genes including Pdx-1, Pax-4, and Ins-1 involved in the activity and regeneration of pancreatic islet cells.
Collapse
Affiliation(s)
- Hadis Javid
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Sciences, Razi University, University Blvd, Taghe-Bostan, Kermanshah, 67197346, Iran.
| | - MohammadTaher Bahrami
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- Department of Pharmacology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Biology, Faculty of Sciences, Razi University, University Blvd, Taghe-Bostan, Kermanshah, 67197346, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Bahareh Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Khazayel
- Department of Research and Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Narayan G, Agrawal A, Sen P, Nagotu S, Thummer RP. Production of Bioactive Human PAX4 Protein from E. coli. Protein J 2023; 42:766-777. [PMID: 37552387 DOI: 10.1007/s10930-023-10143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
Paired box 4 (PAX4) is a pivotal transcription factor involved in pancreatogenesis during embryogenesis, and in adults, it is key for β-cell proliferation and survival. Additionally, PAX4 also functions as a tumor suppressor protein in human melanomas. The present study demonstrates the production of bioactive recombinant human PAX4 transcription factor. At first, the inserts (PAX4 protein-coding sequence having tags at either ends) were cloned in an expression vector to give rise to pET28a(+)-HTN-PAX4 and pET28a(+)-PAX4-NTH genetic constructs, and these were then transformed into Escherichia coli (E. coli) for their expression. The HTN-PAX4 and PAX4-NTH fusion proteins produced were purified with a yield of ~ 3.15 mg and ~ 0.83 mg, respectively, from 1.2 L E. coli culture. Further, the secondary structure retention of the PAX4 fusion proteins and their potential to internalize the mammalian cell and its nucleus was demonstrated. The bioactivity of these fusion proteins was investigated using various assays (cell migration, cell proliferation and cell cycle assays), demonstrating it to function as a tumor suppressor protein. Thus, this macromolecule can prospectively help understand the function of human PAX4 in cellular processes, disease-specific investigations and direct cellular reprogramming.
Collapse
Affiliation(s)
- Gloria Narayan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akriti Agrawal
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Plaboni Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
7
|
Park J, An G, You J, Park H, Hong T, Song G, Lim W. Dimethenamid promotes oxidative stress and apoptosis leading to cardiovascular, hepatic, and pancreatic toxicities in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109741. [PMID: 37689173 DOI: 10.1016/j.cbpc.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Dimethenamid, one of the acetamide herbicides, is widely used on soybeans and corns to inhibit weed growth. Although other acetamide herbicides have been reported to have several toxicities in non-target organisms including developmental toxicity, the toxicity of dimethenamid has not yet been studied. In this research, we utilized the zebrafish animal model to verify the developmental toxicity of dimethenamid. It not only led to morphological abnormalities in zebrafish larvae but also reduced their viability. ROS production and inflammation responses were promoted in zebrafish larvae. Also, uncontrolled apoptosis occurred when the gene expression level related to the cell cycle and apoptosis was altered by dimethenamid. These changes resulted in toxicities in the cardiovascular system, liver, and pancreas are observed in transgenic zebrafish models including fli1a:EGFP and L-fabp:dsRed;elastase:GFP. Dimethenamid triggered morphological defects in the heart and vasculature by altering the mRNA levels related to cardiovascular development. The liver and pancreas were also damaged through not only the changes of their morphology but also through the dysregulation in their function related to metabolic activity. This study shows the developmental defects induced by dimethenamid in zebrafish larvae and the possibility of toxicity in other non-target organisms.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
8
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
9
|
Baafi K, March JC. Harnessing gut cells for functional insulin production: Strategies and challenges. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 4:7-13. [PMID: 39416909 PMCID: PMC11446352 DOI: 10.1016/j.biotno.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 10/19/2024]
Abstract
Reprogrammed glucose-responsive, insulin + cells ("β-like") exhibit the potential to bypass the hurdles of exogenous insulin delivery in treating diabetes mellitus. Current cell-based therapies-transcription factor regulation, biomolecule-mediated enteric signaling, and transgenics - have demonstrated the promise of reprogramming either mature or progenitor gut cells into surrogate "β-like" cells. However, there are predominant challenges impeding the use of gut "β-like" cells as clinical replacements for insulin therapy. Reprogrammed "β-like" gut cells, even those of enteroendocrine origin, mostly do not exhibit glucose - potentiated insulin secretion. Despite the exceptionally low conversion rate of gut cells into surrogate "β-like" cells, the therapeutic quantity of gut "β-like" cells needed for normoglycemia has not even been established. There is also a lingering uncertainty regarding the functionality and bioavailability of gut derived insulin. Herein, we review the strategies, challenges, and opportunities in the generation of functional, reprogrammed "β-like" cells.
Collapse
Affiliation(s)
- Kelvin Baafi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | |
Collapse
|
10
|
Insights into Epigenetic Changes Related to Genetic Variants and Cells-of-Origin of Pancreatic Neuroendocrine Tumors: An Algorithm for Practical Workup. Cancers (Basel) 2022; 14:cancers14184444. [PMID: 36139607 PMCID: PMC9496769 DOI: 10.3390/cancers14184444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pancreatic neuroendocrine tumors are composite entities due to their heterogeneity illustrated in clinical behavior, mutational pattern, and site of origin. Pancreatic neuroendocrine tumors display a low mutation burden with frequently epigenetic alterations, such as histone modifications, chromatin remodeling, or DNA methylation status. Using the epigenomic data of the pancreatic neuroendocrine tumors converged to the identification of molecularly distinct subgroups. Furthermore, epigenetic signatures could be used as biomarkers due to their link to cell lineages and genetic driver mutations. We integrated the current knowledge on genetic and epigenetic alterations involved in endocrine lineage associated with these neoplasms to present a pathway-based overview. In this review, we suggest a simplified algorithm on how to manage pancreatic neuroendocrine tumors from a practical perspective based on pathologist ’analysis. Abstract Current knowledge on the molecular landscape of pancreatic neuroendocrine tumors (PanNETs) has advanced significantly. Still, the cellular origin of PanNETs is uncertain and the associated mechanisms remain largely unknown. DAXX/ATRX and MEN1 are the three most frequently altered genes that drive PanNETs. They are recognized as a link between genetics and epigenetics. Moreover, the acknowledged impact on DNA methylation by somatic mutations in MEN1 is a valid hallmark of epigenetic mechanism. DAXX/ATRX and MEN1 can be studied at the immunohistochemical level as a reliable surrogate for sequencing. DAXX/ATRX mutations promote alternative lengthening of telomeres (ALT) activation, determined by specific fluorescence in situ hybridization (FISH) analysis. ALT phenotype is considered a significant predictor of worse prognosis and a marker of pancreatic origin. Additionally, ARX/PDX1 expression is linked to important epigenomic alterations and can be used as lineage associated immunohistochemical marker. Herein, ARX/PDX1 association with DAXX/ATRX/MEN1 and ALT can be studied through pathological assessment, as these biomarkers may provide important clues to the mechanism underlying disease pathogenesis. In this review, we present an overview of a new approach to tumor stratification based on genetic and epigenetic characteristics as well as cellular origin, with prognostic consequences.
Collapse
|
11
|
Tritschler S, Thomas M, Böttcher A, Ludwig B, Schmid J, Schubert U, Kemter E, Wolf E, Lickert H, Theis FJ. A transcriptional cross species map of pancreatic islet cells. Mol Metab 2022; 66:101595. [PMID: 36113773 PMCID: PMC9526148 DOI: 10.1016/j.molmet.2022.101595] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/20/2022] [Accepted: 09/03/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Pancreatic islets of Langerhans secrete hormones to regulate systemic glucose levels. Emerging evidence suggests that islet cells are functionally heterogeneous to allow a fine-tuned and efficient endocrine response to physiological changes. A precise description of the molecular basis of this heterogeneity, in particular linking animal models to human islets, is an important step towards identifying the factors critical for endocrine cell function in physiological and pathophysiological conditions. METHODS In this study, we used single-cell RNA sequencing to profile more than 50'000 endocrine cells isolated from healthy human, pig and mouse pancreatic islets and characterize transcriptional heterogeneity and evolutionary conservation of those cells across the three species. We systematically delineated endocrine cell types and α- and β-cell heterogeneity through prior knowledge- and data-driven gene sets shared across species, which altogether capture common and differential cellular properties, transcriptional dynamics and putative driving factors of state transitions. RESULTS We showed that global endocrine expression profiles correlate, and that critical identity and functional markers are shared between species, while only approximately 20% of cell type enriched expression is conserved. We resolved distinct human α- and β-cell states that form continuous transcriptional landscapes. These states differentially activate maturation and hormone secretion programs, which are related to regulatory hormone receptor expression, signaling pathways and different types of cellular stress responses. Finally, we mapped mouse and pig cells to the human reference and observed that the spectrum of human α- and β-cell heterogeneity and aspects of such functional gene expression are better recapitulated in the pig than mouse data. CONCLUSIONS Here, we provide a high-resolution transcriptional map of healthy human islet cells and their murine and porcine counterparts, which is easily queryable via an online interface. This comprehensive resource informs future efforts that focus on pancreatic endocrine function, failure and regeneration, and enables to assess molecular conservation in islet biology across species for translational purposes.
Collapse
Affiliation(s)
- Sophie Tritschler
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technical University of Munich, School of Life Sciences Weihenstephan, 85354 Freising, Germany
| | - Moritz Thomas
- Technical University of Munich, School of Life Sciences Weihenstephan, 85354 Freising, Germany; Institute of AI for Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Barbara Ludwig
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden of Helmholtz Zentrum München, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Janine Schmid
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Undine Schubert
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Elisabeth Kemter
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Eckhard Wolf
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), Department of Veterinary Sciences, LMU Munich, 85764 Oberschleißheim, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Technical University of Munich, Medical Faculty, 81675 Munich, Germany.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Garching b. Munich, Germany.
| |
Collapse
|
12
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
13
|
Identification and implication of tissue-enriched ligands in epithelial-endothelial crosstalk during pancreas development. Sci Rep 2022; 12:12498. [PMID: 35864120 PMCID: PMC9304391 DOI: 10.1038/s41598-022-16072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Development of the pancreas is driven by an intrinsic program coordinated with signals from other cell types in the epithelial environment. These intercellular communications have been so far challenging to study because of the low concentration, localized production and diversity of the signals released. Here, we combined scRNAseq data with a computational interactomic approach to identify signals involved in the reciprocal interactions between the various cell types of the developing pancreas. This in silico approach yielded 40,607 potential ligand-target interactions between the different main pancreatic cell types. Among this vast network of interactions, we focused on three ligands potentially involved in communications between epithelial and endothelial cells. BMP7 and WNT7B, expressed by pancreatic epithelial cells and predicted to target endothelial cells, and SEMA6D, involved in the reverse interaction. In situ hybridization confirmed the localized expression of Bmp7 in the pancreatic epithelial tip cells and of Wnt7b in the trunk cells. On the contrary, Sema6d was enriched in endothelial cells. Functional experiments on ex vivo cultured pancreatic explants indicated that tip cell-produced BMP7 limited development of endothelial cells. This work identified ligands with a restricted tissular and cellular distribution and highlighted the role of BMP7 in the intercellular communications contributing to vessel development and organization during pancreas organogenesis.
Collapse
|
14
|
Garrido-Utrilla A, Ayachi C, Friano ME, Atlija J, Balaji S, Napolitano T, Silvano S, Druelle N, Collombat P. Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Front Endocrinol (Lausanne) 2022; 13:861922. [PMID: 35573999 PMCID: PMC9103212 DOI: 10.3389/fendo.2022.861922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Anna Garrido-Utrilla
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Chaïma Ayachi
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Marika Elsa Friano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Josipa Atlija
- Department of Cryopreservation, Distribution, Typing and Animal Archiving, Centre National de la Recherche Scientifique-Unité d'Appui à la Recherche (CNRS-UAR) 44 Typage et Archivage d’Animaux Modèles (TAAM), Orléans, France
| | - Shruti Balaji
- PlantaCorp Gesellschaft mit beschränkter Haftung (GmbH), Hamburg, Germany
| | - Tiziana Napolitano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Serena Silvano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Noémie Druelle
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY, United States
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| | - Patrick Collombat
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| |
Collapse
|
15
|
A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochem J 2021; 478:3297-3317. [PMID: 34409981 PMCID: PMC8454712 DOI: 10.1042/bcj20210175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/β-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.
Collapse
|
16
|
Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY) 2021; 13:16786-16803. [PMID: 34162761 PMCID: PMC8266315 DOI: 10.18632/aging.203214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Gastric cancer (GC) is one of the most common aggressive cancers. The discovery of an effective biomarker is necessary for GC diagnosis. In this study, we confirmed that Paired box gene 4 (PAX4) is up-regulated in GC tissues and cells via quantitative real time polymerase chain reaction (qRT-PCR), western blot and immunohistochemical staining. It was also identified that PAX4 contributed to GC cell proliferation, migration and invasion through Cell Counting Kit-8, BrdU, flow cytometry assay, colony formation assay, transwell assays, and wound healing assay. miR-27b-3p was confirmed with the binding site with PAX4 using ChIP assay and served as a tumor suppressor that inhibiting GC cell growth and metastasis, and reversed the effect of PAX4. Bioinformatics prediction and dual luciferase assay results demonstrated that miR-27b-3p targeted Grb2, which could alter the function of miR-27b-3p. Furthermore, the transcriptional control of PAX4-regulated miR-27b-3p activated the Ras-ERK pathway. Taken together, the PAX4/miR-27b-3p/Grb2 loop is known to be involved in GC cell promotion, and can be seen as a promising target for GC therapy.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Li Ding
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Ran Tao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Jun Qin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, PR China
| |
Collapse
|
17
|
Kerry RG, Mahapatra GP, Maurya GK, Patra S, Mahari S, Das G, Patra JK, Sahoo S. Molecular prospect of type-2 diabetes: Nanotechnology based diagnostics and therapeutic intervention. Rev Endocr Metab Disord 2021; 22:421-451. [PMID: 33052523 DOI: 10.1007/s11154-020-09606-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
About ninety percent of all diabetic conditions account for T2D caused due to abnormal insulin secretion/ action or increased hepatic glucose production. Factors that contribute towards the aetiology of T2D could be well explained through biochemical, molecular, and cellular aspects. In this review, we attempt to explain the recent evolving molecular and cellular advancement associated with T2D pathophysiology. Current progress fabricated in T2D research concerning intracellular signaling cascade, inflammasome, autophagy, genetic and epigenetics changes is discretely explained in simple terms. Present available anti-diabetic therapeutic strategies commercialized and their limitations which are needed to be acknowledged are addressed in the current review. In particular, the pre-eminence of nanotechnology-based approaches to nullify the inadequacy of conventional anti-diabetic therapeutics and heterogeneous nanoparticulated systems exploited in diabetic researches are also discretely mentioned and are also listed in a tabular format in the review. Additionally, as a future prospect of nanotechnology, the review presents several strategic hypotheses to ameliorate the austerity of T2D by an engineered smart targeted nano-delivery system. In detail, an effort has been made to hypothesize novel nanotechnological based therapeutic strategies, which exploits previously described inflammasome, autophagic target points. Utilizing graphical description it is explained how a smart targeted nano-delivery system could promote β-cell growth and development by inducing the Wnt signaling pathway (inhibiting Gsk3β), inhibiting inflammasome (inhibiting NLRP3), and activating autophagic target points (protecting Atg3/Atg7 complex from oxidative stress) thereby might ameliorate the severity of T2D. Additionally, several targeting molecules associated with autophagic and epigenetic factors are also highlighted, which can be exploited in future diabetic research.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India
| | | | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi, 221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha, 757003, India
| | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, 10326, Republic of Korea.
| | - Sabuj Sahoo
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha, 751004, India.
| |
Collapse
|
18
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
19
|
Thompson B, Davidson EA, Liu W, Nebert DW, Bruford EA, Zhao H, Dermitzakis ET, Thompson DC, Vasiliou V. Overview of PAX gene family: analysis of human tissue-specific variant expression and involvement in human disease. Hum Genet 2021; 140:381-400. [PMID: 32728807 PMCID: PMC7939107 DOI: 10.1007/s00439-020-02212-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/25/2020] [Indexed: 12/18/2022]
Abstract
Paired-box (PAX) genes encode a family of highly conserved transcription factors found in vertebrates and invertebrates. PAX proteins are defined by the presence of a paired domain that is evolutionarily conserved across phylogenies. Inclusion of a homeodomain and/or an octapeptide linker subdivides PAX proteins into four groups. Often termed "master regulators", PAX proteins orchestrate tissue and organ development throughout cell differentiation and lineage determination, and are essential for tissue structure and function through maintenance of cell identity. Mutations in PAX genes are associated with myriad human diseases (e.g., microphthalmia, anophthalmia, coloboma, hypothyroidism, acute lymphoblastic leukemia). Transcriptional regulation by PAX proteins is, in part, modulated by expression of alternatively spliced transcripts. Herein, we provide a genomics update on the nine human PAX family members and PAX homologs in 16 additional species. We also present a comprehensive summary of human tissue-specific PAX transcript variant expression and describe potential functional significance of PAX isoforms. While the functional roles of PAX proteins in developmental diseases and cancer are well characterized, much remains to be understood regarding the functional roles of PAX isoforms in human health. We anticipate the analysis of tissue-specific PAX transcript variant expression presented herein can serve as a starting point for such research endeavors.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
- Department of Pediatrics and Molecular and Developmental Biology, Cincinnati Children's Research Center, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Elspeth A Bruford
- HUGO Gene Nomenclature Committee, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Hongyu Zhao
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06510, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211, Geneva, Switzerland
- Institute for Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
20
|
Grieco GE, Brusco N, Licata G, Fignani D, Formichi C, Nigi L, Sebastiani G, Dotta F. The Landscape of microRNAs in βCell: Between Phenotype Maintenance and Protection. Int J Mol Sci 2021; 22:ijms22020803. [PMID: 33466949 PMCID: PMC7830142 DOI: 10.3390/ijms22020803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus is a group of heterogeneous metabolic disorders characterized by chronic hyperglycaemia mainly due to pancreatic β cell death and/or dysfunction, caused by several types of stress such as glucotoxicity, lipotoxicity and inflammation. Different patho-physiological mechanisms driving β cell response to these stresses are tightly regulated by microRNAs (miRNAs), a class of negative regulators of gene expression, involved in pathogenic mechanisms occurring in diabetes and in its complications. In this review, we aim to shed light on the most important miRNAs regulating the maintenance and the robustness of β cell identity, as well as on those miRNAs involved in the pathogenesis of the two main forms of diabetes mellitus, i.e., type 1 and type 2 diabetes. Additionally, we acknowledge that the understanding of miRNAs-regulated molecular mechanisms is fundamental in order to develop specific and effective strategies based on miRNAs as therapeutic targets, employing innovative molecules.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Noemi Brusco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giada Licata
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Caterina Formichi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.E.G.); (N.B.); (G.L.); (D.F.); (C.F.); (L.N.); (G.S.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
- Tuscany Centre for Precision Medicine (CReMeP), 53100 Siena, Italy
- Correspondence: ; Tel.: +39-0577-231283
| |
Collapse
|
21
|
Di Domenico A, Pipinikas CP, Maire RS, Bräutigam K, Simillion C, Dettmer MS, Vassella E, Thirlwell C, Perren A, Marinoni I. Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression. Commun Biol 2020; 3:740. [PMID: 33288854 PMCID: PMC7721725 DOI: 10.1038/s42003-020-01479-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Recent data suggest that Pancreatic Neuroendocrine Tumours (PanNETs) originate from α- or β-cells of the islets of Langerhans. The majority of PanNETs are non-functional and do not express cell-type specific hormones. In the current study we examine whether tumour DNA methylation (DNAme) profiling combined with genomic data is able to identify cell of origin and to reveal pathways involved in PanNET progression. We analyse genome-wide DNAme data of 125 PanNETs and sorted α- and β-cells. To confirm cell identity, we investigate ARX and PDX1 expression. Based on epigenetic similarities, PanNETs cluster in α-like, β-like and intermediate tumours. The epigenetic similarity to α-cells progressively decreases in the intermediate tumours, which present unclear differentiation. Specific transcription factor methylation and expression vary in the respective α/β-tumour groups. Depending on DNAme similarity to α/β-cells, PanNETs have different mutational spectra, stage of the disease and prognosis, indicating potential means of PanNET progression.
Collapse
Affiliation(s)
- Annunziata Di Domenico
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010, Bern, Switzerland
| | | | - Renaud S Maire
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Konstantin Bräutigam
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Cedric Simillion
- Bioinformatics and Computational Biology, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Matthias S Dettmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Chrissie Thirlwell
- UCL Cancer Institute, 72, Huntley Street, London, WC1E 6JD, UK
- University of Exeter, College of Medicine and Health, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Aurel Perren
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland
| | - Ilaria Marinoni
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3008, Bern, Switzerland.
| |
Collapse
|
22
|
Brovkina O, Dashinimaev E. Advances and complications of regenerative medicine in diabetes therapy. PeerJ 2020; 8:e9746. [PMID: 33194345 PMCID: PMC7485501 DOI: 10.7717/peerj.9746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid development of technologies in regenerative medicine indicates clearly that their common application is not a matter of if, but of when. However, the regeneration of beta-cells for diabetes patients remains a complex challenge due to the plurality of related problems. Indeed, the generation of beta-cells masses expressing marker genes is only a first step, with maintaining permanent insulin secretion, their protection from the immune system and avoiding pathological modifications in the genome being the necessary next developments. The prospects of regenerative medicine in diabetes therapy were promoted by the emergence of promising results with embryonic stem cells (ESCs). Their pluripotency and proliferation in an undifferentiated state during culture have ensured the success of ESCs in regenerative medicine. The discovery of induced pluripotent stem cells (iPSCs) derived from the patients’ own mesenchymal cells has provided further hope for diabetes treatment. Nonetheless, the use of stem cells has significant limitations related to the pluripotent stage, such as the risk of development of teratomas. Thus, the direct conversion of mature cells into beta-cells could address this issue. Recent studies have shown the possibility of such transdifferentiation and have set trends for regeneration medicine, directed at minimizing genome modifications and invasive procedures. In this review, we will discuss the published results of beta-cell regeneration and the advantages and disadvantages illustrated by these experiments.
Collapse
Affiliation(s)
- Olga Brovkina
- Federal Research Clinical Center for Specialized Types of Health Care and Medical Technologies of Federal Medical and Biology Agency, Moscow, Russia
| | - Erdem Dashinimaev
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
23
|
β-Cell specific transcription factors in the context of diabetes mellitus and β-cell regeneration. Mech Dev 2020; 163:103634. [PMID: 32711047 DOI: 10.1016/j.mod.2020.103634] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
All pancreatic cell populations arise from the standard gut endoderm layer in developing embryos, requiring a regulatory gene network to originate and maintain endocrine lineages and endocrine function. The pancreatic organogenesis is regulated by the temporal expression of transcription factors and plays a diverse role in the specification, development, differentiation, maturation, and functional maintenance. Altered expression and activity of these transcription factors are often associated with diabetes mellitus. Recent advancements in the stem cells and invitro derived islets to treat diabetes mellitus has attracted a great deal of interest in the understanding of factors regulating the development, differentiation, and functions of islets including transcription factors. This review discusses the myriad of transcription factors regulating the development of the pancreas, differentiation of β-islets, and how these factors regulated in normal and disease states. Exploring these factors in such critical context and exogenous or endogenous expression of development and differentiation-specific transcription factors with improved epigenetic plasticity/signaling axis in diabetic milieu would useful for the development of β-cells from other cell sources.
Collapse
|
24
|
Yang Y, Zhang Y, Yang Y, Guo J, Yang L, Li C, Song X. Differential Expression of Long Noncoding RNAs and Their Function-Related mRNAs in the Peripheral Blood of Allergic Rhinitis Patients. Am J Rhinol Allergy 2020; 34:508-518. [PMID: 32168998 DOI: 10.1177/1945892420912164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The mechanism of long noncoding RNAs (lncRNAs) involved in the development of allergic rhinitis (AR) remains unclear. OBJECTIVE We investigated the mechanism by which differentially expressed lncRNAs contribute to pathogenesis of AR. METHODS Expression profiles of lncRNAs and mRNAs were analyzed by microarray detection from the blood samples of 3 AR patients and 3 control subjects, and the main lncRNAs were verified by quantitative real-time polymerase chain reaction (qRT-PCR) in the peripheral blood of 16 AR patients and 18 control subjects. GO (Gene_Ontology), Pathway, and Disease analysis of differentially expressed lncRNAs and mRNAs, and transcription factor prediction analysis were performed to explore synergistic effect of differentially expressed lncRNAs and their function-related mRNAs on AR pathogenesis. RESULTS Thirty-one lncRNAs were differentially expressed in the peripheral blood from AR patients, and 4 of the 5 most differentially expressed lncRNAs had significantly higher levels in AR patients than in control subjects by qRT-PCR analysis. A lncRNA-mRNA coexpression network analysis identified 16 pairs of positive correlations between the 4 lncRNAs and coexpressed mRNAs. GO, Pathway, and Disease analyses indicated that the 4 lncRNAs were correlated with 7 mRNAs enriched in terms of inflammation, immune response, and allergic diseases. Transcription factor prediction results suggested that Oct-1, AP-1, NF-kappaB, and c-Rel play key roles in the pathogenesis of AR mediated by lncRNAs. CONCLUSION Our results provide new insights into how lncRNAs and their function-related mRNAs might contribute to AR.
Collapse
Affiliation(s)
- Yanyan Yang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yujuan Yang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jing Guo
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Liping Yang
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chenglin Li
- Center for Clinical Medicine Innovation, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Xicheng Song
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
25
|
Volume changes of the pancreatic head remnant after distal pancreatectomy. Surgery 2020; 167:455-467. [DOI: 10.1016/j.surg.2019.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
|
26
|
Hou G, Tang Y, Ren L, Guan Y, Hou X, Song G. The ANGPTL8 rs2278426 (C/T) Polymorphism Is Associated with Prediabetes and Type 2 Diabetes in a Han Chinese Population in Hebei Province. Int J Endocrinol 2020; 2020:1621239. [PMID: 33343659 PMCID: PMC7728483 DOI: 10.1155/2020/1621239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Our aim was to investigate the association between the genetics of the angiopoietin protein-like 8 (ANGPTL8) rs2278426 (C/T) polymorphism with prediabetes (pre-DM) and type 2 diabetes (T2DM) in a Han Chinese population in Hebei Province, China. METHODS We enrolled 1,460 participants into this case-control study: healthy controls, n = 524; pre-DM, n = 460; and T2DM: n = 460. Ligase assays on blood samples from all participants were used to identify polymorphisms. Differences in genotype and allele distributions were compared by the chi-square test and one-way analysis of variance, and a post hoc pairwise analysis was performed using the Bonferroni test. The logistic regression technique was adjusted for age, sex, and body mass index. RESULTS The frequency of the TT (10.9%) genotype was significantly higher in pre-DM patients than in controls (odds ratio [OR] = 1.696, 95% confidence interval [CI] = 1.026-2.802, P=0.039). In the T2DM group, the CT (48%) and TT (15%) genotypes were significantly higher compared with those in the control group (CT : OR = 1.384, 95% CI = 1.013-1.890, P=0.041; TT : OR = 2.530, 95% CI = 1.476-4.334, P=0.001). The frequency of the T allele was significantly higher in the pre-DM (32.8%) and T2DM (39%) groups compared with the control group (26.9%) and was significantly associated with an increased risk of pre-DM (OR = 1.253, 95% CI = 1.017-1.544, P=0.034) and T2DM (OR = 1.518, 95% CI = 1.214-1.897, P=0.001). Furthermore, insulin levels in the pre-DM and T2DM groups were significantly decreased in those with the TT genotype compared with the CC and CT genotypes. CONCLUSION ANGPTL8 rs2278426 may be involved in the mechanism of insulin secretion and could lead to an increased risk of pre-DM and T2DM.
Collapse
Affiliation(s)
- Guangsen Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Yong Tang
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Luping Ren
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei 050051, China
| |
Collapse
|
27
|
Xu Y, Chen J, Zhou H, Wang J, Song J, Xie J, Guo Q, Wang C, Huang Q. Effects and mechanism of stem cells from human exfoliated deciduous teeth combined with hyperbaric oxygen therapy in type 2 diabetic rats. Clinics (Sao Paulo) 2020; 75:e1656. [PMID: 32520222 PMCID: PMC7247751 DOI: 10.6061/clinics/2020/e1656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/10/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Mesenchymal stem cells (MSCs) are potentially ideal for type 2 diabetes treatment, owing to their multidirectional differentiation ability and immunomodulatory properties. Here we investigated whether the stem cells from human exfoliated deciduous teeth (SHED) in combination with hyperbaric oxygen (HBO) could treat type 2 diabetic rats, and explored the underlying mechanism. METHODS SD rats were used to generate a type 2 diabetes model, which received stem cell therapy, HBO therapy, or both together. Before and after treatment, body weight, blood glucose, and serum insulin, blood lipid, pro-inflammatory cytokines (tumor necrosis factor-alpha and interleukin-6), and urinary proteins were measured and compared. After 6 weeks, rats were sacrificed and their organs were subjected to hematoxylin and eosin staining and immunofluorescence staining for insulin and glucagon; apoptosis and proliferation were analyzed in islet cells. Structural changes in islets were observed under an electron microscope. Expression levels of Pdx1, Ngn3, and Pax4 mRNAs in the pancreas were assessed by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS In comparison with diabetic mice, those treated with the combination or SHE therapy showed decreased blood glucose, insulin resistance, serum lipids, and pro-inflammatory cytokines and increased body weight and serum insulin. The morphology and structure of pancreatic islets improved, as evident from an increase in insulin-positive cells and a decrease in glucagon-positive cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining of islet cells revealed the decreased apoptosis index, while Ki67 and proliferating cell nuclear antigen staining showed increased proliferation index. Pancreatic expression of Pdx1, Ngn3, and Pax4 was upregulated. CONCLUSION SHED combined with HBO therapy was effective for treating type 2 diabetic rats. The underlying mechanism may involve SHED-mediated increase in the proliferation and trans-differentiation of islet β-cells and decrease in pro-inflammatory cytokines and apoptosis of islets.
Collapse
Affiliation(s)
- Yifeng Xu
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
- Department of Endocrinology, Air Force Hospital of Northern Theater Command of PLA, Shenyang 110042, China
| | - Jin Chen
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Hui Zhou
- Department of Out-patient, Changning retired cadre retreat of Shanghai garrison command, Shanghai 200050, China
| | - Jing Wang
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
- Department of Internal Medcine, Hotan Country People’s Hospital of Xinjiang, Hotan Country 848000, China
| | - Jingyun Song
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Junhao Xie
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Qingjun Guo
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Chaoqun Wang
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, the First Affiliated Hospital of the Naval Medical University, Shanghai 200433, China
- *Corresponding author. E-mail:
| |
Collapse
|
28
|
Molecular Modelling of Islet β-Cell Adaptation to Inflammation in Pregnancy and Gestational Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20246171. [PMID: 31817798 PMCID: PMC6941051 DOI: 10.3390/ijms20246171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus (GDM), a metabolic disease that develops with the increase in insulin resistance during late pregnancy, is currently one of the most common complications affecting pregnancy. The polygenic nature of GDM, together with the interplay between different genetic variants with nutritional and environmental factors has hindered the full understanding of the etiology of this disease. However, an important genetic overlap has been found with type 2 diabetes mellitus (T2DM) and, as in the case of T2DM, most of the identified loci are associated with β-cell function. Early detection of GDM and adequate interventions to control the maternal glycemia are necessary to avoid the adverse outcomes for both the mother and the offspring. The in utero exposure to the diabetic milieu predispose these children for future diseases, among them T2DM, originating a vicious circle implicated in the increased prevalence of both GDM and T2DM. The involvement of inflammatory processes in the development of GDM highlights the importance of pancreatic β-cell factors able to favor the adaptation processes required during gestation, concomitantly with the protection of the islets from an inflammatory milieu. In this regard, two members of the Pax family of transcription factors, PAX4 and PAX8, together with the chromatin remodeler factor HMG20A, have gained great relevance due to their involvement in β-cell mass adaptation together with their anti-inflammatory properties. Mutations in these factors have been associated with GDM, highlighting these as novel candidates for genetic screening analysis in the identification of women at risk of developing GDM.
Collapse
|
29
|
Zhang T, Wang H, Wang T, Wei C, Jiang H, Jiang S, Yang J, Shao J, Ma L. Pax4 synergistically acts with Pdx1, Ngn3 and MafA to induce HuMSCs to differentiate into functional pancreatic β-cells. Exp Ther Med 2019; 18:2592-2598. [PMID: 31572507 PMCID: PMC6755441 DOI: 10.3892/etm.2019.7854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 07/05/2019] [Indexed: 02/05/2023] Open
Abstract
It has been indicated that the combination of pancreatic and duodenal homeobox 1 (Pdx1), MAF bZIP transcription factor A (MafA) and neurogenin 3 (Ngn3) was able to reprogram various cell types towards pancreatic β-like cells (pβLCs). Paired box 4 (Pax4), a transcription factor, has a key role in regulating the maturation of pancreatic β-cells (pβCs). In the present study, it was investigated whether Pax4 is able to synergistically act with Pdx1, Ngn3 and MafA to induce human umbilical cord mesenchymal stem cells (HuMSCs) to differentiate into functional pβCs in vitro. HuMSCs were isolated, cultured and separately transfected with adenovirus (Ad) expressing enhanced green fluorescence protein, Pax4 (Ad-Pax4), Pdx1+MafA+Ngn3 (Ad-3F) or Ad-Pxa4 + Ad-3F. The expression of C-peptide, insulin and glucagon was detected by immunofluorescence. The transcription of a panel of genes was determined by reverse transcription-quantitative PCR, including glucagon (GCG), insulin (INS), NK6 homeobox 1 (NKX6-1), solute carrier family 2 member 2 (SLC2A2), glucokinase (GCK), proprotein convertase subtilisin/kexin type 1 (PCSK1), neuronal differentiation 1 (NEUROD1), ISL LIM homeobox 1 (ISL 1), Pax6 and PCSK type 2 (PCSK2). Insulin secretion stimulated by glucose was determined using ELISA. The results suggested that, compared with Ad-3F alone, cells co-transfected with Ad-Pax4 and Ad-3F expressed higher levels of INS and C-peptide, as well as genes expressed in pancreatic β precursor cells, and secreted more insulin in response to high glucose. Furthermore, the expression of GCG in cells transfected with Ad-3F was depressed by Ad-Pax4. The present study demonstrated that Pax4 was able to synergistically act with the transcription factors Pdx1, Ngn3 and MafA to convert HuMSCs to functional pβLCs. HuMSCs may be potential seed cells for generating functional pβLCs in the therapy of diabetes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Tianyou Wang
- Hematological Tumor Center, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing 100045, P.R. China
| | - Chiju Wei
- Multidisciplinary Research Center, Shantou University, Shantou, Guangdong 515063, P.R. China
| | - Hui Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Shayi Jiang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingwei Yang
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
| | - Jingbo Shao
- Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, P.R. China
- Correspondence to: Dr Jingbo Shao, Department of Hematology and Oncology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Luding Road, Shanghai 200062, P.R. China, E-mail:
| | - Lian Ma
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, P.R. China
- Shenzhen Public Service Platform of Molecular Medicine in Pediatric Hematology and Oncology, Shenzhen, Guangdong 518038, P.R. China
- Dr Lian Ma, Department of Hematology and Oncology, Shenzhen Children's Hospital, 7019 Yitian Road, Shenzhen, Guangdong 518038, P.R. China, E-mail:
| |
Collapse
|
30
|
Lenz A, Lenz G, Ku HT, Ferreri K, Kandeel F. Islets from human donors with higher but not lower hemoglobin A1c levels respond to gastrin treatment in vitro. PLoS One 2019; 14:e0221456. [PMID: 31430329 PMCID: PMC6701795 DOI: 10.1371/journal.pone.0221456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Gastrin is a peptide hormone, which in combination with other factors such as TGFα, EGF or GLP-1, is capable of increasing beta cell mass and lowering blood glucose levels in adult diabetic mice. In humans, administration of a bolus of gastrin alone induces insulin secretion suggesting that gastrin may target islet cells. However, whether gastrin alone is sufficient to exert an effect on isolated human islets has been controversial and the mechanism remained poorly understood. Therefore, in this study we started to examine the effects of gastrin alone on cultured adult human islets. Treatment of isolated human islets with gastrin I for 48 h resulted in increased expression of insulin, glucagon and somatostatin transcripts. These increases were significantly correlated with the levels of donor hemoglobin A1c (HbA1c) but not BMI or age. In addition, gastrin treatment resulted in increased expression of PDX1, NKX6.1, NKX2.2, MNX1 and HHEX in islets from donors with HbA1c greater than 42 mmol/mol. The addition of YM022, an antagonist of the gastrin receptor cholecystokinin B receptor (CCKBR), together with gastrin eliminated these effects, verifying that the effects of gastrin are mediated through CCKBR.CCKBR is expressed in somatostatin-expressing delta cells in islets from all donors. However, in the islets from donors with higher HbA1c (greater than 42 mmol/mol [6.0%]), cells triple-positive for CCKBR, somatostatin and insulin were detected, suggesting a de-differentiation or trans-differentiation of endocrine cells. Our results demonstrate a direct effect of gastrin on human islets from prediabetic or diabetic individuals that is mediated through CCKBR+ cells. Further, our data imply that gastrin may be a potential treatment for diabetic patients.
Collapse
Affiliation(s)
- Ayelet Lenz
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
- * E-mail:
| | - Gal Lenz
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Kevin Ferreri
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, United States of America
| |
Collapse
|
31
|
Zhong F, Jiang Y. Endogenous Pancreatic β Cell Regeneration: A Potential Strategy for the Recovery of β Cell Deficiency in Diabetes. Front Endocrinol (Lausanne) 2019; 10:101. [PMID: 30842756 PMCID: PMC6391341 DOI: 10.3389/fendo.2019.00101] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous pancreatic β cell regeneration is a potential strategy for β cell expansion or neogenesis to treat diabetes. Regeneration can occur through stimulation of existing β cell replication or conversion of other pancreatic cells into β cells. Recently, various strategies and approaches for stimulation of endogenous β cell regeneration have been evaluated, but they were not suitable for clinical application. In this paper, we comprehensively review these strategies, and further discuss various factors involved in regulation of β cell regeneration under physiological or pathological conditions, such as mediators, transcription factors, signaling pathways, and potential pharmaceutical drugs. Furthermore, we discuss possible reasons for the failure of regenerative medicines in clinical trials, and possible strategies for improving β cell regeneration. As β cell heterogeneity and plasticity determines their function and environmental adaptability, we focus on β cell subtype markers and discuss the importance of research evaluating the characteristics of new β cells. In addition, based on the autoimmunologic features of type 1 diabetes, NOD/Lt-SCID-IL2rg null (NSG) mice grafted with human immune cells and β cells are recommended for use in evaluation of antidiabetic regenerative medicines. This review will further understand current advances in endogenous β cell regeneration, and provide potential new strategies for the treatment of diabetes focused on cell therapy.
Collapse
Affiliation(s)
- Fan Zhong
- Department of Gastroenterology, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Jiang
- Institutes of Biomedical Sciences of Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
32
|
van Gurp L, Muraro MJ, Dielen T, Seneby L, Dharmadhikari G, Gradwohl G, van Oudenaarden A, de Koning EJP. A transcriptomic roadmap to alpha- and beta cell differentiation in the embryonic pancreas. Development 2019; 146:dev.173716. [DOI: 10.1242/dev.173716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/24/2019] [Indexed: 12/13/2022]
Abstract
During pancreatic development, endocrine cells appear from the pancreatic epithelium when Neurog3 positive cells delaminate and differentiate into alpha, beta, gamma and delta cells. The mechanisms involved in this process are still incompletely understood. We characterized the temporal, lineage-specific developmental programs during pancreatic development by sequencing the transcriptome of thousands of individual pancreatic cells from embryonic day E12.5 to E18.5 in mice, and identified all known cell types that are present in the embryonic pancreas, but focused specifically on alpha and beta cell differentiation by enrichment of a MIP-GFP reporter. We characterized transcriptomic heterogeneity in the tip domain based on proliferation, and characterized two endocrine precursor clusters marked by expression of Neurog3 and Fev. Pseudotime analysis revealed specific branches for developing alpha- and beta cells, which allowed identification of specific gene regulation patterns. These include some known and many previously unreported genes that appear to define pancreatic cell fate transitions. This resource allows dynamic profiling of embryonic pancreas development at single cell resolution and reveals novel gene signatures during pancreatic differentiation into alpha and beta cells.
Collapse
Affiliation(s)
- Léon van Gurp
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Mauro J. Muraro
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Single Cell Discoveries, Utrecht, the Netherlands
| | - Tim Dielen
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Lina Seneby
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Gitanjali Dharmadhikari
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
| | - Gerard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Alexander van Oudenaarden
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Single Cell Discoveries, Utrecht, the Netherlands
- Oncode Institute, the Netherlands
| | - Eelco J. P. de Koning
- Hubrecht Institute\KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT Utrecht, the Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
33
|
Cheng C, Lu J, Cao X, Yang FY, Liu JY, Song LN, Shen H, Liu C, Zhu XR, Zhou JB, Yang JK. Identification of Rfx6 target genes involved in pancreas development and insulin translation by ChIP-seq. Biochem Biophys Res Commun 2019; 508:556-562. [DOI: 10.1016/j.bbrc.2018.11.133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023]
|
34
|
Study of expression analysis of SIRT4 and the coordinate regulation of bovine adipocyte differentiation by SIRT4 and its transcription factors. Biosci Rep 2018; 38:BSR20181705. [PMID: 30442871 PMCID: PMC6294651 DOI: 10.1042/bsr20181705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/04/2018] [Accepted: 11/15/2018] [Indexed: 11/17/2022] Open
Abstract
Sirtuins, NAD+-dependent deacylases and ADP-ribosyltransferases, are critical regulators of metabolism involved in many biological processes, and are involved in mediating adaptive responses to the cellular environment. SIRT4 is a mitochondrial sirtuin and has been shown to play a critical role in maintaining insulin secretion and glucose homeostasis. As a regulator of lipid homeostasis, SIRT4 can repress fatty acid oxidation and promote lipid anabolism in nutrient-replete conditions. Using real-time quantitative PCR (qPCR) to explore the molecular mechanisms of transcriptional regulation of bovine SIRT4 during adipocyte differentiation, we found that bovine SIRT4 is expressed at high levels in bovine subcutaneous adipose tissue. SIRT4 knockdown led to decreased expression of adipogenic differentiation marker genes during adipocyte differentiation. The core promoter of bovine SIRT4 was identified in the −402/−60 bp region of the cloned 2-kb fragment containing the 5′-regulatory region. Binding sites were identified in this region for E2F transcription factor-1 (E2F1), CCAAT/enhancer-binding protein β (CEBPβ), homeobox A5 (HOXA5), interferon regulatory factor 4 (IRF4), paired box 4 (PAX4), and cAMP responsive element-binding protein 1 (CREB1) by using Electrophoretic mobility shift assay (EMSA) and luciferase reporter gene assay. We also found that E2F1, CEBPβ, and HOXA5 transcriptionally activate SIRT4 expression, whereas, IRF4, PAX4, and CREB1 transcriptionally repress SIRT4 expression. We further verified that SIRT4 knockdown could affect the ability of these transcription factors (TFs) to regulate the differentiation of bovine adipocytes. In conclusion, our results shed light on the mechanisms underlying the transcriptional regulation of SIRT4 expression in bovine adipocytes.
Collapse
|
35
|
Ghasemi H, Karimi J, Khodadadi I, Saidijam M, Tavilani H. Association between rs2278426 (C/T) and rs892066 (C/G) variants of ANGPTL8 (betatrophin) and susceptibility to type2 diabetes mellitus. J Clin Lab Anal 2018; 33:e22649. [PMID: 30191588 DOI: 10.1002/jcla.22649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Angiopoietin-like protein 8 (ANGPTL8) is a hormone that mainly secreted from the liver and adipose tissue and plays an important role in the proliferation of pancreatic beta cells and lipid metabolism. Therefore, we studied the association of ANGPTL8 rs2278426 (C/T) and rs892066 (C/G) polymorphisms with the risk of type 2 diabetes mellitus (T2DM) and their association with biochemical parameters. METHODS Two hundred and eighty-eight subjects (controls; n = 138 and type 2 diabetic patients; n = 150) were enrolled in this study. Direct haplotyping was performed using amplification-refractory mutation system (ARMS)-RFLP-PCR. RESULTS The CT genotype frequency of rs2278426 (C/T) variant was significantly higher in T2DM patients compared to the controls group (P = 0.02), and there was a significant association between this genotype and increased risk of T2DM (OR: 2.41, CI: 1.26-4.59, P = 0.007). In addition, there was a significant relationship between CT genotype of this variant and high-density lipoprotein cholesterol (HDL-C), fasting blood sugar (FBS), insulin, insulin resistance and glycated hemoglobin (P < 0.05). Furthermore, bioinformatics analysis revealed that arginine (Arg) to tryptophan (Trp) substitution at rs2278426 position causes structural instability of ANGPTL8 protein. Genotype and allele distribution of rs892066 (C/G) was not statistically significant in T2DM patients compared to the control group. The distribution of haplotypes had no significant difference between controls and T2DM patients (P = 0.24). CONCLUSION Our results suggest that the rs2278426 (C/T) variant is associated with increased risk of T2DM and may cause dyslipidemia due to its effect on decreasing HDL-C levels.
Collapse
Affiliation(s)
| | - Jamshid Karimi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
36
|
Xu Y, Wang Y, Song Y, Deng J, Chen M, Ouyang H, Lai L, Li Z. Generation and Phenotype Identification of PAX4 Gene Knockout Rabbit by CRISPR/Cas9 System. G3 (BETHESDA, MD.) 2018; 8:2833-2840. [PMID: 29950431 PMCID: PMC6071587 DOI: 10.1534/g3.118.300448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/25/2018] [Indexed: 01/26/2023]
Abstract
Paired-homeodomain transcription factor 4 (PAX4) gene encodes a transcription factor which plays an important role in the generation, differentiation, development, and survival of insulin-producing β-cells during mammalian pancreas development. PAX4 is a key diabetes mellitus (DM) susceptibility gene, which is associated with many different types of DM, including T1DM, T2DM, maturity onset diabetes of the young 9 (MODY9) and ketosis prone diabetes. In this study, a novel PAX4 gene knockout (KO) model was generated through co-injection of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) mRNA/sgRNA into rabbit zygotes. Typical phenotypes of growth retardation, persistent hyperglycemia, decreased number of insulin-producing β cells and increased number of glucagon-producing α cells were observed in the homozygous PAX4 KO rabbits. Furthermore, DM associated phenotypes including diabetic nephropathy, hepatopathy, myopathy and cardiomyopathy were also observed in the homozygous PAX4 KO rabbits but not in the wild type (WT) controls and the heterozygous PAX4 KO rabbits. In summary, this is the first PAX4 gene KO rabbit model generated by CRISPR/Cas9 system. This novel rabbit model may provide a new platform for function study of PAX4 gene in rabbit and gene therapy of human DM in clinical trails.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yong Wang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Yuning Song
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Jichao Deng
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Mao Chen
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Hongsheng Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Liangxue Lai
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| | - Zhanjun Li
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
37
|
Abstract
Islets of Langerhans are islands of endocrine cells scattered throughout the pancreas. A number of new studies have pointed to the potential for conversion of non-β islet cells in to insulin-producing β-cells to replenish β-cell mass as a means to treat diabetes. Understanding normal islet cell mass and function is important to help advance such treatment modalities: what should be the target islet/β-cell mass, does islet architecture matter to energy homeostasis, and what may happen if we lose a particular population of islet cells in favour of β-cells? These are all questions to which we will need answers for islet replacement therapy by transdifferentiation of non-β islet cells to be a reality in humans. We know a fair amount about the biology of β-cells but not quite as much about the other islet cell types. Until recently, we have not had a good grasp of islet mass and distribution in the human pancreas. In this review, we will look at current data on islet cells, focussing more on non-β cells, and on human pancreatic islet mass and distribution.
Collapse
Affiliation(s)
- Gabriela Da Silva Xavier
- Section of Functional Genomics and Cell Biology, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston B15 2TT, UK.
| |
Collapse
|
38
|
Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M. Cellular and molecular mechanisms coordinating pancreas development. Development 2017; 144:2873-2888. [PMID: 28811309 DOI: 10.1242/dev.140756] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreas is an endoderm-derived glandular organ that participates in the regulation of systemic glucose metabolism and food digestion through the function of its endocrine and exocrine compartments, respectively. While intensive research has explored the signaling pathways and transcriptional programs that govern pancreas development, much remains to be discovered regarding the cellular processes that orchestrate pancreas morphogenesis. Here, we discuss the developmental mechanisms and principles that are known to underlie pancreas development, from induction and lineage formation to morphogenesis and organogenesis. Elucidating such principles will help to identify novel candidate disease genes and unravel the pathogenesis of pancreas-related diseases, such as diabetes, pancreatitis and cancer.
Collapse
Affiliation(s)
- Aimée Bastidas-Ponce
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Katharina Scheibner
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany.,Technical University of Munich, Medical Faculty, 81675 Munich, Germany
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany .,Institute of Stem Cell Research, Helmholtz Zentrum München, D-85764 Neuherberg, Germany.,German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| |
Collapse
|
39
|
Napolitano T, Avolio F, Vieira A, Ben-Othman N, Courtney M, Gjernes E, Hadzic B, Druelle N, Navarro Sanz S, Silvano S, Mansouri A, Collombat P. GABA signaling stimulates α-cell-mediated β-like cell neogenesis. Commun Integr Biol 2017; 10:e1300215. [PMID: 28702122 PMCID: PMC5501192 DOI: 10.1080/19420889.2017.1300215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 10/27/2022] Open
Abstract
Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis offering an attractive and innovative approach for diabetes therapeutics.
Collapse
Affiliation(s)
| | - Fabio Avolio
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | | | | | | | | | | | | | | | - Ahmed Mansouri
- Max-Planck Institute for Biophysical Chemistry, Department of Molecular Developmental Biology, Göttingen, Germany.,Department of Clinical Neurophysiology, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
40
|
Lorenzo PI, Juárez-Vicente F, Cobo-Vuilleumier N, García-Domínguez M, Gauthier BR. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes (Basel) 2017; 8:genes8030101. [PMID: 28282933 PMCID: PMC5368705 DOI: 10.3390/genes8030101] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 12/26/2022] Open
Abstract
Paired box 4 (PAX4) is a key factor in the generation of insulin producing β-cells during embryonic development. In adult islets, PAX4 expression is sequestered to a subset of β-cells that are prone to proliferation and more resistant to stress-induced apoptosis. The importance of this transcription factor for adequate pancreatic islets functionality has been manifested by the association of mutations in PAX4 with the development of diabetes, independently of its etiology. Overexpression of this factor in adult islets stimulates β-cell proliferation and increases their resistance to apoptosis. Additionally, in an experimental model of autoimmune diabetes, a novel immunomodulatory function for this factor has been suggested. Altogether these data pinpoint at PAX4 as an important target for novel regenerative therapies for diabetes treatment, aiming at the preservation of the remaining β-cells in parallel to the stimulation of their proliferation to replenish the β-cell mass lost during the progression of the disease. However, the adequate development of such therapies requires the knowledge of the molecular mechanisms controlling the expression of PAX4 as well as the downstream effectors that could account for PAX4 action.
Collapse
Affiliation(s)
- Petra I Lorenzo
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Francisco Juárez-Vicente
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Nadia Cobo-Vuilleumier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Mario García-Domínguez
- Cell differentiation Lab, Department of Cell Signaling and Dynamics, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| | - Benoit R Gauthier
- Pancreatic Islet Development and Regeneration Unit, Department of Cell Regeneration and Advanced Therapies, CABIMER (Junta de Andalucía-CSIC-Universidad de Sevilla-Universidad Pablo de Olavide), Calle Américo Vespucio, 24, 41092 Sevilla, Spain.
| |
Collapse
|
41
|
Corritore E, Lee YS, Sokal EM, Lysy PA. β-cell replacement sources for type 1 diabetes: a focus on pancreatic ductal cells. Ther Adv Endocrinol Metab 2016; 7:182-99. [PMID: 27540464 PMCID: PMC4973405 DOI: 10.1177/2042018816652059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thorough research on the capacity of human islet transplantation to cure type 1 diabetes led to the achievement of 3- to 5-year-long insulin independence in nearly half of transplanted patients. Yet, translation of this technique to clinical routine is limited by organ shortage and the need for long-term immunosuppression, restricting its use to adults with unstable disease. The production of new bona fide β cells in vitro was thus investigated and finally achieved with human pluripotent stem cells (PSCs). Besides ethical concerns about the use of human embryos, studies are now evaluating the possibility of circumventing the spontaneous tumor formation associated with transplantation of PSCs. These issues fueled the search for cell candidates for β-cell engineering with safe profiles for clinical translation. In vivo studies revealed the regeneration capacity of the exocrine pancreas after injury that depends at least partially on facultative progenitors in the ductal compartment. These stimulated subpopulations of pancreatic ductal cells (PDCs) underwent β-cell transdifferentiation through reactivation of embryonic signaling pathways. In vitro models for expansion and differentiation of purified PDCs toward insulin-producing cells were described using cocktails of growth factors, extracellular-matrix proteins and transcription factor overexpression. In this review, we will describe the latest findings in pancreatic β-cell mass regeneration due to adult ductal progenitor cells. We will further describe recent advances in human PDC transdifferentiation to insulin-producing cells with potential for clinical translational studies.
Collapse
Affiliation(s)
- Elisa Corritore
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Yong-Syu Lee
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M. Sokal
- Institut de Recherche Expérimentale et Clinique, Pediatric Research Laboratory, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
42
|
Barbieux C, Parnaud G, Lavallard V, Brioudes E, Meyer J, Alibashe Ahmed M, Berishvili E, Berney T, Bosco D. Asymmetrical distribution of δ and PP cells in human pancreatic islets. J Endocrinol 2016; 229:123-32. [PMID: 26931137 DOI: 10.1530/joe-15-0542] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/01/2016] [Indexed: 01/09/2023]
Abstract
The aim of this study was to evaluate the location of PP and δ cells in relation to the vascularization within human pancreatic islets. To this end, pancreas sections were analysed by immunofluorescence using antibodies against endocrine islet and endothelial cells. Staining in different islet areas corresponding to islet cells adjacent or not to peripheral or central vascular channels was quantified by computerized morphometry. As results, α, PP and δ cells were preferentially found adjacent to vessels. In contrast to α cells, which were evenly distributed between islet periphery and intraislet vascular channels, PP and δ cells had asymmetric and opposite distributions: PP staining was higher and somatostatin staining was lower in the islet periphery than in the area around intraislet vascular channels. Additionally, frequencies of PP and δ cells were negatively correlated in the islets. No difference was observed between islets from the head and the tail of the pancreas, and from type 2 diabetic and non-diabetic donors. In conclusion, the distribution of δ cells differs from that of PP cells in human islets, suggesting that vessels at the periphery and at the centre of islets drain different hormonal cocktails.
Collapse
Affiliation(s)
- Charlotte Barbieux
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Géraldine Parnaud
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Vanessa Lavallard
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Estelle Brioudes
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Jérémy Meyer
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Mohamed Alibashe Ahmed
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Ekaterine Berishvili
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Domenico Bosco
- Department of SurgeryCell Isolation and Transplantation Center, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
43
|
Breitenbuecher C, Belanger JM, Levy K, Mundell P, Fates V, Gershony L, Famula TR, Oberbauer AM. Protein expression and genetic variability of canine Can f 1 in golden and Labrador retriever service dogs. Canine Genet Epidemiol 2016; 3:3. [PMID: 27110374 PMCID: PMC4840867 DOI: 10.1186/s40575-016-0031-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 03/03/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Valued for trainability in diverse tasks, dogs are the primary service animal used to assist individuals with disabilities. Despite their utility, many people in need of service dogs are sensitive to the primary dog allergen, Can f 1, encoded by the Lipocalin 1 gene (LCN1). Several organizations specifically breed service dogs to meet special needs and would like to reduce allergenic potential if possible. In this study, we evaluated the expression of Can f 1 protein and the inherent variability of LCN1 in two breeds used extensively as service dogs. Saliva samples from equal numbers of male and female Labrador retrievers (n = 12), golden retrievers (n = 12), and Labrador-golden crosses (n = 12) were collected 1 h after the morning meal. Can f 1 protein concentrations in the saliva were measured by ELISA, and the LCN1 5' and 3' UTRs and exons sequenced. RESULTS There was no sex effect (p > 0.2) nor time-of-day effect; however, Can f 1 protein levels varied by breed with Labrador retrievers being lower than golden retrievers (3.18 ± 0.51 and 5.35 ± 0.52 μg/ml, respectively, p < 0.0075), and the Labrador-golden crosses having intermediate levels (3.77 ± 0.48 μg/ml). Although several novel SNPs were identified in LCN1, there were no significant breed-specific sequence differences in the gene and no association of LCN1 genotypes with Can f 1 expression. CONCLUSIONS As service dogs, Labrador retrievers likely have lower allergenic potential and, though there were no DNA sequence differences identified, classical genetic selection on the estimated breeding values associated with salivary Can f 1 expression may further reduce that potential.
Collapse
Affiliation(s)
| | - Janelle M Belanger
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Kerinne Levy
- Canine Companions for Independence, Santa Rosa, CA USA
| | - Paul Mundell
- Canine Companions for Independence, Santa Rosa, CA USA
| | - Valerie Fates
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Liza Gershony
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Thomas R Famula
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| | - Anita M Oberbauer
- Department of Animal Science, University of California, One Shields Ave, Davis, CA 95616 USA
| |
Collapse
|