1
|
Tejada-Purizaca TR, Garcia-Chevesich PA, Ticona-Quea J, Martínez G, Martínez K, Morales-Paredes L, Romero-Mariscal G, Arenazas-Rodríguez A, Vanzin G, Sharp JO, McCray JE. Heavy Metal Bioaccumulation in Peruvian Food and Medicinal Products. Foods 2024; 13:762. [PMID: 38472875 DOI: 10.3390/foods13050762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
To better query regional sources of metal(loid) exposure in an under-communicated region, available scientific literature from 50 national universities (undergraduate and graduate theses and dissertations), peer-reviewed journals, and reports published in Spanish and English were synthesized with a focus on metal(loid) bioaccumulation in Peruvian food and medicinal products utilized locally. The study considered 16 metal(loid)s that are known to exert toxic impacts on humans (Hg, Al, Sb, As, Ba, Be, Cd, Cr, Sn, Ni, Ag, Pb, Se, Tl, Ti, and U). A total of 1907 individual analyses contained within 231 scientific publications largely conducted by Peruvian universities were analyzed. These analyses encompassed 239 reported species classified into five main food/medicinal groups-plants, fish, macroinvertebrates and mollusks, mammals, and "others" category. Our benchmark for comparison was the World Health Organization (Codex Alimentarius) standards. The organisms most frequently investigated included plants such as asparagus, corn, cacao, and rice; fish varieties like trout, tuna, and catfish; macroinvertebrates and mollusks including crab and shrimp; mammals such as alpaca, cow, chicken eggs, and milk; and other categories represented by propolis, honey, lichen, and edible frog. Bioaccumulation-related research increased from 2 to more than 25 publications per year between 2006 and 2022. The results indicate that Peruvian food and natural medicinal products can have dangerous levels of metal(loid)s, which can cause health problems for consumers. Many common and uncommon food/medicinal products and harmful metals identified in this analysis are not regulated on the WHO's advisory lists, suggesting the urgent need for stronger regulations to ensure public safety. In general, Cd and Pb are the metals that violated WHO standards the most, although commonly non-WHO regulated metals such as Hg, Al, As, Cr, and Ni are also a concern. Metal concentrations found in Peru are on many occasions much higher than what has been reported elsewhere. We conclude that determining the safety of food/medicinal products is challenging due to varying metal concentrations that are influenced not only by metal type but also geographical location. Given the scarcity of research findings in many regions of Peru, urgent attention is required to address this critical knowledge gap and implement effective regulatory measures to protect public health.
Collapse
Affiliation(s)
- Teresa R Tejada-Purizaca
- Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Pablo A Garcia-Chevesich
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Intergubernamental Hydrological Programme, United Nations Educational, Scientific, and Cultural Organization (UNESCO), Montevideo 11200, Uruguay
| | - Juana Ticona-Quea
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Gisella Martínez
- Facultad de Geología, Geofísica y Minas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Kattia Martínez
- Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Lino Morales-Paredes
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Giuliana Romero-Mariscal
- Escuela de Ingeniería Ambiental, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Armando Arenazas-Rodríguez
- Departamento Académico de Biología, Facultad de Ciencias Biológicas, Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru
| | - Gary Vanzin
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Jonathan O Sharp
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - John E McCray
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
2
|
Haghnazar H, Belmont P, Johannesson KH, Aghayani E, Mehraein M. Human-induced pollution and toxicity of river sediment by potentially toxic elements (PTEs) and accumulation in a paddy soil-rice system: A comprehensive watershed-scale assessment. CHEMOSPHERE 2023; 311:136842. [PMID: 36273611 DOI: 10.1016/j.chemosphere.2022.136842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 05/16/2023]
Abstract
This study aimed to assess pollution by potentially toxic elements (PTEs) in the Zarjoub and Goharroud river basins in northern Iran. Due to exposure to various types of pollution sources, these rivers are two of the most polluted rivers in Iran. They also play an important role in irrigation of paddy fields in the study area, increasing concerns about the contamination of rice grains by PTEs. Hence, we analyzed the concentrations of eight PTEs (i.e., As, Co, Cr, Cu, Mn, Ni, Pb, and Zn) at ten channel bed sediment sampling sites in each river, fifteen samples of paddy soils and fifteen co-located rice samples in the relevant watersheds. Results of the index-based assessment indicate moderate to heavy pollution and moderate toxicity for sediments in the Goharroud River, while both pollution and toxicity of the Zarjoub River sediment were characterized as moderate. Paddy soils in the watersheds were found to be moderate to heavily polluted by PTEs, but the values of the rice bioconcentration factor (RBCF) indicated intermediate absorption for Cu, Zn, and Mn, and weak and very weak absorption for Pb/Ni and As/Co/Cr, respectively. The concentration of Zn, Cu, Pb, and Cr was negatively correlated to the corresponding values of RBCF, highlighting the ability of rice grains to control bioaccumulation and regulate concentrations. Industrial/agricultural effluents, municipal wastewater, leachate of solid waste, traffic-related pollution, and weathering of parent materials were found to be responsible for pollution of the Zarjoub and Goharroud watersheds by PTEs. Mn, Cu, and Pb in rice grains might be responsible for non-carcinogenic diseases. Although weak absorption was observed for As and Cr in rice grains, the concentrations of these elements in rice grains indicate a high level of cancer risk if ingested. This study provides insights to control the pollution of sediment, paddy soils, and rice.
Collapse
Affiliation(s)
- Hamed Haghnazar
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Patrick Belmont
- Department of Watershed Sciences, Utah State University, Logan, UT, USA
| | - Karen H Johannesson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Ehsan Aghayani
- Department of Environmental Health Engineering, Abadan University of Medical Sciences, Abadan, Iran
| | | |
Collapse
|
3
|
Khaliq MA, Javed MT, Hussain S, Imran M, Mubeen M, Nasim W, Fahad S, Karuppannan S, Al-Taisan WA, Almohamad H, Al Dughairi AA, Al-Mutiry M, Alrasheedi M, Abdo HG. Assessment of heavy metal accumulation and health risks in okra (Abelmoschus Esculentus L.) and spinach (Spinacia Oleracea L.) fertigated with wastwater. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00097-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractIn many countries like Pakistan, where crops are irrigated by wastewater, the accumulation of heavy metals is a serious problem, especially when such an irrigation is a widespread practice. The focus of this study was to know the highly toxic metals like cadmium (Cd), chromium (Cr), and lead (Pb) in water, agricultural soil, and crops, besides their probable risk to human health in the area of Vehari district. The physicochemical parameters were determined for the samples, including organic matter, organic carbon, pH, and electrical conductivity. Water used for irrigation, samples of vegetables for Cd, Cr, and Pb concentration, as well as transfer factor from soil to plants (TF) were analyzed for calculating the daily intake of metals (DIM) and their health risk index (HRI). The results show that the wastewater used for irrigation was contaminated with Cr (0.07mg/kg), Cd (0.054mg/kg), and Pb (0.38mg/kg). In the tube well, the concentrations of heavy metals were: Cd (0.053mg/kg), Pb (0.01mg/kg), and Cd (0.03mg/kg). Application of wastewater increased heavy metals concentration in soil and vegetables. Heavy metals concentrations in wastewater irrigated soil before sowing vegetables in mg/kg were: Pb (0.91), Cd (0.12), and Cr (0.48). After the application of wastewater, significant enrichment of wastewater was observed in Pb (1.93mg/kg), Cd (0.07mg/kg), and Cr (0.34mg/kg). Our study showed a high-risk index of food crops polluted with heavy metals and resultantly greater health risk to humans and animals. That is why preventive measures should be adopted to reduce heavy metals pollution to irrigation water and soils to protect both humans and animals in the Vehari district.
Collapse
|
4
|
Rastian B, Wilbur C, Curtis DB. Transfer of Metals to the Aerosol Generated by an Electronic Cigarette: Influence of Number of Puffs and Power. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159334. [PMID: 35954690 PMCID: PMC9368615 DOI: 10.3390/ijerph19159334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/05/2023]
Abstract
Electronic cigarettes (e-cigarettes) are increasing in popularity despite uncertainties about their health hazards. Literature studies have shown that e-cigarettes may be a source of toxic heavy metal exposure to the user, but the mechanism by which metals are transferred from the e-cigarette parts into the aerosol plume that is inhaled by the user is poorly understood. The goal of this study was to quantify the potentially harmful heavy metals chromium, nickel, copper, and lead systematically during the simulated use of a mod-type e-cigarette in order to better understand the mechanism of metal transfer from the e-cigarette parts into the aerosol plume and into the liquid in the storage tank. Aerosol was collected and aliquots of the remaining liquid in the storage tank were collected from 0 to 40 puffs in 10 puff increments and analyzed with atomic absorption spectroscopy. It was found that the concentration of metals increased in both the aerosol and tank liquid the more times the e-cigarette was puffed, but at varying rates for each element and depending on the power applied to the heating coil. For copper, lead, and nickel, the concentrations of metals in the aerosol and tank increased with increasing power but for chromium, the concentration varied with power. Additionally, it was observed that chromium and nickel concentrations were greater in the aerosol than in tank liquid, consistent with the direct transfer of those metals to the aerosol from heating of the nichrome coil element used in this study. For copper and lead, the concentrations were similar or greater in the tank compared to the aerosol, consistent with transfer first into the storage tank liquid, followed by vaporization into the aerosol.
Collapse
|