1
|
Handlovic TT, Wahab MF, Glass BC, Armstrong DW. On the greenness of separation modes containing compressed fluids. Anal Chim Acta 2024; 1330:343288. [PMID: 39489969 DOI: 10.1016/j.aca.2024.343288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND In the past three decades, liquid chromatography (LC) has been recognized as a significant environmental, health, and safety burden due to its heavy reliance on toxic organic solvents. Various chromatographic modes are in vogue today for complex analyses, such as sub/supercritical fluid chromatography (SFC) and enhanced fluidity liquid chromatography (EFLC). These modes are often advertised as "universally green" compared to the traditional allliquid reversed (RPLC) and normal phases (NPLC). Quantitative greenness evaluations must be done to validate or invalidate this assumption and allow separation scientists to make educated choices when deciding on what mode to use. RESULTS In this work, we modify the Analytical Method Greenness Score (AMGS) to include the cycle time of the instrument, and with the help of the first-order optimality condition (by setting the AMGS gradient = 0), we show that SFC and EFLC are not always the greenest option as they are often thought to be. Most of the greenness metrics have ignored the cycle time of instruments, yet this key component changes the entire AMGS response to flow rate. The complex case of separating tobacco alkaloid enantiomers (nicotine, nornicotine, anabasine, and anatabine) was selected as an illustrative example for comparing and contrasting separation modes using the modified greenness metric. These enantiomers have been selected due to their notorious difficulty in separation over the past 30 years. Using this family of molecules, four unique retention patterns were observed covering a wide variety of retention phenomena seen in small molecule enantioseparations. SIGNIFICANCE The modified AMGS metric will assist practicing analytical chemists in assessing the environmental impact of their separation methods from a single run in a given chromatographic mode. The proposed methodology identifies the minimum AMGS score corresponding to the greenest separation for routine chemical analysis.
Collapse
Affiliation(s)
- Troy T Handlovic
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - M Farooq Wahab
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - Bailey C Glass
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, USA.
| |
Collapse
|
2
|
Salam S, El-Hajj Moussa F, El-Hage R, El-Hellani A, Aoun Saliba N. A Systematic Review of Analytical Methods for the Separation of Nicotine Enantiomers and Evaluation of Nicotine Sources. Chem Res Toxicol 2023; 36:334-341. [PMID: 36897818 PMCID: PMC10031562 DOI: 10.1021/acs.chemrestox.2c00310] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The introduction of synthetic nicotine by the tobacco industry, also promoted as tobacco-free nicotine, presented new challenges for analytical chemists working in tobacco regulatory science to develop and optimize new methods to assess new nicotine parameters, namely enantiomer ratio and source. We conducted a systematic literature review of the available analytical methods to detect the nicotine enantiomer ratio and the source of nicotine using PubMed and Web of Science databases. Methods to detect nicotine enantiomers included polarimetry, nuclear magnetic resonance, and gas and liquid chromatography. We also covered methods developed to detect the source of nicotine either indirectly via determining the nicotine enantiomer ratio or the detection of tobacco-specific impurities or directly using the isotope ratio enrichment analysis by nuclear magnetic resonance (site-specific natural isotope fractionation and site-specific peak intensity ratio) or accelerated mass spectrometry. This review presents an accessible summary of all these analytical methods.
Collapse
Affiliation(s)
- Sally Salam
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Fatima El-Hajj Moussa
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rachel El-Hage
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| | - Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43214, United States
| | - Najat Aoun Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut 1107 2020, Lebanon
- Center for the Study of Tobacco Products, Virginia Commonwealth University, Richmond, Virginia 23220, United States
| |
Collapse
|
3
|
Roy MS, Meng X, Koda K, Shrestha A, Putman JI, Gout D, Armstrong DW, Lovely CJ. Total synthesis of haploscleridamine, villagorgin A and an approach towards lissoclin C. Org Biomol Chem 2023; 21:1422-1434. [PMID: 36723147 DOI: 10.1039/d2ob01908f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An investigation of asymmetric total syntheses of three indole-imidazole alkaloids from histidine are described. A common advanced piperidinone was contructed via a ring-closing metathesis which was then subjected to a modified Fischer indole synthesis. Deprotection of an N-tosyl group via a dissolving metal reduction affords haploscleridamine which upon reaction with aqueous formaldehyde in trifluoroethanol provided villagorgin A. On closer examination, it was found that villagorgin A was produced as a byproduct during the reductive detosylation in the presence of magnesium and methanol. Attempts to obtain the brominated haploscleridamine congener, lissoclin C through use of bromophenyl hydrazone were thwarted by reductive debromination during deprotection efforts. Investigation of the enantiopurity of the synthetic natural products revealed production of almost racemic materials in some batches as the result of partial racemization of an early stage intermediate. A revised approach routinely provided scalemic haploscleridamine and villagorgin in 30% ee. Analysis of the enantiomer composition of all intermediates by HPLC using columns with chiral stationary phases; this analysis revealed several steps where erosion of enantiomer composition occurred.
Collapse
Affiliation(s)
- Moumita Singha Roy
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Xiaofeng Meng
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Karuna Koda
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Andrina Shrestha
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Joshua I Putman
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Delphine Gout
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| | - Carl J Lovely
- Department of Chemistry and Biochemistry, University of Texas Arlington, Arlington, TX76019-0065, USA.
| |
Collapse
|
4
|
Stafford NP, Cheng MJ, Dinh DN, Verboom KL, Krische MJ. Chiral α-Stereogenic Oxetanols and Azetidinols via Alcohol-Mediated Reductive Coupling of Allylic Acetates: Enantiotopic π-Facial Selection in Symmetric Ketone Addition. ACS Catal 2022; 12:6172-6179. [PMID: 37063244 PMCID: PMC10104534 DOI: 10.1021/acscatal.2c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iridium-tol-BINAP-catalyzed reductive coupling of allylic acetates with oxetanones and azetidinones mediated by 2-propanol provides chiral α-stereogenic oxetanols and azetidinols. As illustrated in 50 examples, complex, nitrogen-rich substituents that incorporate the top 10 N-heterocycles found in FDA-approved drugs are tolerated. In addition to 2-propanol-mediated reductive couplings, oxetanols and azetidinols may serve dually as reductant and ketone proelectrophiles in redox-neutral C-C couplings via hydrogen auto-transfer, as demonstrated by the conversion of dihydro-1a and dihydro-1b to adducts 3a and 4a, respectively. The present method delivers hitherto inaccessible chiral oxetanols and azetidinols, which are important bioisosteres.
Collapse
Affiliation(s)
- Nicholas P. Stafford
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Melinda J. Cheng
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Duong Nguyen Dinh
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Katherine L. Verboom
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| | - Michael J. Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Cheetham AG, Plunkett S, Campbell P, Hilldrup J, Coffa BG, Gilliland S, Eckard S. Analysis and differentiation of tobacco-derived and synthetic nicotine products: Addressing an urgent regulatory issue. PLoS One 2022; 17:e0267049. [PMID: 35421170 PMCID: PMC9009602 DOI: 10.1371/journal.pone.0267049] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022] Open
Abstract
There is significant regulatory and economic need to distinguish analytically between tobacco-derived nicotine (TDN) and synthetic nicotine (SyN) in commercial products. Currently, commercial e-liquid and oral pouch products are available that contain tobacco-free nicotine, which could be either extracted from tobacco or synthesized. While tobacco products that contain TDN are regulated by FDA Center for Tobacco Products, those with SyN are currently not in the domain of any regulatory authority. This regulatory difference provides an economic incentive to use or claim the use of SyN to remain on the market without submitting a Premarket Tobacco Product Application. TDN is ~99.3% (S)-nicotine, whereas SyN can vary from racemic (50/50 (R)/(S)) to ≥ 99% (S)-nicotine, i.e., chemically identical to the tobacco-derived compound. Here we report efforts to distinguish between TDN and SyN in various samples by characterizing impurities, (R)/(S)-nicotine enantiomer ratio, (R)/(S)-nornicotine enantiomer ratio, and carbon-14 (14C) content. Only 14C analysis accurately and precisely differentiated TDN (100% 14C) from SyN (35-38% 14C) in all samples tested. 14C quantitation of nicotine samples by accelerator mass spectrometry is a reliable determinate of nicotine source and can be used to identify misbranded product labelled as containing SyN. This is the first report to distinguish natural, bio-based nicotine from synthetic, petroleum-based nicotine across a range of pure nicotine samples and commercial e-liquid products.
Collapse
Affiliation(s)
| | - Susan Plunkett
- Enthalpy Analytical, LLC, Richmond, Virginia, United States of America
- Consilium Sciences, LLC, Richmond, Virginia, United States of America
| | - Preston Campbell
- Consilium Sciences, LLC, Richmond, Virginia, United States of America
| | - Jacob Hilldrup
- Enthalpy Analytical, LLC, Richmond, Virginia, United States of America
| | - Bonnie G. Coffa
- Enthalpy Analytical, LLC, Richmond, Virginia, United States of America
| | - Stan Gilliland
- Consilium Sciences, LLC, Richmond, Virginia, United States of America
| | - Steve Eckard
- Enthalpy Analytical, LLC, Richmond, Virginia, United States of America
| |
Collapse
|
6
|
Moldoveanu SC. Interconversion of nicotine enantiomers during heating and implications for smoke from combustible cigarettes, heated tobacco products, and electronic cigarettes. Chirality 2022; 34:667-677. [PMID: 35088460 DOI: 10.1002/chir.23421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 11/10/2022]
Abstract
Physiological properties of (R)-nicotine have differences compared with (S)-nicotine, and the subject of (S)- and (R)-nicotine ratio in smoking or vaping related items is of considerable interest. A Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) method for the analysis of (S)- and (R)-nicotine has been developed and applied to samples of nicotine from different sources, nicotine pyrolyzates, several types of tobacco, smoke from combustible cigarettes, smoke from heated tobacco products, e-liquids, and particulate matter obtained from e-cigarettes aerosol. The separation was achieved on a Chiracel OJ-3 column, 250 × 4.6 mm with 3-μm particles using a nonaqueous mobile phase. The detection was performed using atmospheric pressure chemical ionization (APCI) in positive mode. The only transition measured for the analysis of nicotine was 163.1 → 84.0. The method has been summarily validated. For the analysis, the samples of tobacco and smoke from combustible cigarettes were subject to a cleanup procedure using solid phase extraction (SPE). It was demonstrated that nicotine upon heating above 450°C for several minutes starts decomposing, and some formation of (R)-enantiomer from a sample of 99% (S)-nicotine is observed. An analogous process takes place when a 99% (R)-nicotine is heated and forms low levels of (S)-nicotine. This interconversion has the effect of slightly increasing the content of (R)-nicotine in smoke compared with the level in tobacco for combustible cigarettes and for heated tobacco products. The (S)/(R) ratio of nicotine enantiomers in e-liquids was identical with the ratio for the particulate phase of aerosols generated by e-cigarette vaping.
Collapse
|
7
|
Berkecz R, Tanács D, Péter A, Ilisz I. Enantioselective Liquid Chromatographic Separations Using Macrocyclic Glycopeptide-Based Chiral Selectors. Molecules 2021; 26:molecules26113380. [PMID: 34205002 PMCID: PMC8199854 DOI: 10.3390/molecules26113380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Numerous chemical compounds of high practical importance, such as drugs, fertilizers, and food additives are being commercialized as racemic mixtures, although in most cases only one of the isomers possesses the desirable properties. As our understanding of the biological actions of chiral compounds has improved, the investigation of the pharmacological and toxicological properties has become more and more important. Chirality has become a major issue in the pharmaceutical industry; therefore, there is a continuous demand to extend the available analytical methods for enantiomeric separations and enhance their efficiency. Direct liquid chromatography methods based on the application of chiral stationary phases have become a very sophisticated field of enantiomeric separations by now. Hundreds of chiral stationary phases have been commercialized so far. Among these, macrocyclic glycopeptide-based chiral selectors have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance. This review focuses on direct liquid chromatography-based enantiomer separations, applying macrocyclic glycopeptide-based chiral selectors. Special attention is paid to the characterization of the physico-chemical properties of these macrocyclic glycopeptide antibiotics providing detailed information on their applications published recently.
Collapse
|
8
|
Deng H, Wang Y, Wang J, Liu S, Ji Y, Fan Z, Li Z, Yang F, Bian Z, Tang G. Separation of N'-nitrosonornicotine isomers and enantiomers by supercritical fluid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1641:461971. [PMID: 33626439 DOI: 10.1016/j.chroma.2021.461971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 10/22/2022]
Abstract
N'-nitrosonornicotine (NNN) is one of the most prevalent and toxic tobacco-specific nitrosoamines. A chiral center at its 2'-position results in R and S enantiomers, the partial double bond character of the NN = O group also results in E and Z isomers, therefore, NNN can form a total of four absolute configurations (E-(R)-NNN, E-(S)-NNN, Z-(R)-NNN, and Z-(S)-NNN). This study investigated the resolution of R/S enantiomers and E/Z isomers of NNN by supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS). The baseline separation of E/Z-(R,S)-NNN isomers/enantiomers was accomplished through the optimization of chiral columns and co-solvents. Due to the lack of single standard of E/Z isomers, only R-NNN (sum of E-(R)-NNN and Z-(R)-NNN) and S-NNN (sum of E-(S)-NNN and Z-(S)-NNN) were further examined. Through the comprehensive optimization of SFC-MS/MS conditions, R-NNN and S-NNN were separated with a run time of 5 min, the developed method was validated, and its applicability to the determination of NNN enantiomers in burley tobacco samples was demonstrated. This study could be applied to preparative separation of single enantiomer and/or isomer of NNN, and could provide potential benefits to biologic activity studies on these enantiomers and isomers.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Jinbang Wang
- Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Yuan Ji
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Zhonghao Li
- Zhengzhou Tobacco Research Institute of CNTC, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, No.6 Cuizhu Street, High and New Technology Industries Development Zone, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Yang YL, Song BQ, Long JY, Fang DH, Hu DB, Song N, Luo JF, Zeng JM, Wang YH. Antifungal constituents from Nicotiana tabacum with the Wz locus infected by Phytophthora nicotianae. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Cai K, Zhao H, Yin R, Lin Y, Lei B, Wang A, Pan W, Cai B, Gao W, Wang F. Chiral determination of nornicotine, anatabine and anabasine in tobacco by achiral gas chromatography with (1S)-(-)-camphanic chloride derivatization: Application to enantiomeric profiling of cultivars and curing processes. J Chromatogr A 2020; 1626:461361. [PMID: 32797840 DOI: 10.1016/j.chroma.2020.461361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 10/24/2022]
Abstract
The alkaloid enantiomers are well-known to have different physiological and pharmacological effects, and to play an important role in enantioselectivity metabolism with enzymes catalysis in tobacco plants. Here, we developed an improved method for simultaneous and high-precision determination of the individual enantiomers of nornicotine, anatabine and anabasine in four tobacco matrices, based on an achiral gas chromatography-nitrogen phosphorus detector (GCNPD) with commonly available Rtx-200 column using (1S)-(-)-camphanic chloride derivatization. The method development consists of the optimization of extraction and derivatization, screening of achiral column, analysis of the fragmentation mechanisms and evaluation of matrix effect (ME). Under the optimized experimental conditions, the current method exhibited excellent detection capability for the alkaloid enantiomers, with coefficients of determination (R2) > 0.9989 and normality test of residuals P > 0.05 in linear regression parameters. The ME can be neglected for the camphanic derivatives. The limit of detection (LOD) and limit of quantitation (LOQ) ranged from 0.087 to 0.24 μg g - 1 and 0.29 to 0.81 μg g - 1, respectively. The recoveries and within-laboratory relative standard deviations (RSDR) were 94.3%~104.2% and 0.51%~3.89%, respectively. The developed method was successfully applied to determine the enantiomeric profiling of cultivars and curing processes. Tobacco cultivars had a significant impact on the nornicotine, anatabine, anabasine concentration and enantiomeric fraction (EF) of (R)-nornicotine, whereas the only significant change induced by the curing processes was an increase in the EF of (R)-anabasine.
Collapse
Affiliation(s)
- Kai Cai
- Guizhou Academy of Tobacco Science, Guiyang 550081, China; College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Huina Zhao
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 55081, China
| | - Yechun Lin
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bo Lei
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological, Environment of Guizhou Province, Guizhou Normal University, Guiyang, Guizhou 550025, China
| | - Wenjie Pan
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Bin Cai
- Haikou Cigar Research Institute, Hainan Provincial Branch of China National Tobacco Corporation, Haikou 571100, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Feng Wang
- Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| |
Collapse
|
11
|
Du S, Readel ER, Wey M, Armstrong DW. Complete identification of all 20 relevant epimeric peptides in β-amyloid: a new HPLC-MS based analytical strategy for Alzheimer's research. Chem Commun (Camb) 2020; 56:1537-1540. [PMID: 31922154 DOI: 10.1039/c9cc09080k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although the underlying cause of Alzheimer's disease (AD) is not known, the extracellular deposition of β-amyloid (Aβ) is considered as a hallmark of AD brains. Evidence has shown the occurrence of d-Asp, isoAsp, and d-Ser residues in Aβ, which may be indicative of and/or contribute to the neurodegeneration in AD patients. Herein, we have developed the first high-throughput profiling technique for all 20 isobaric Aβ peptide epimers containing Asp, isoAsp, and Ser isomers using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). This new analytical strategy allows the direct detection and identification of all possible Asp, isoAsp, and Ser stereoisomers in Aβ, and may contribute to a better understanding of the pathogenesis of AD.
Collapse
Affiliation(s)
- Siqi Du
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | |
Collapse
|
12
|
Folprechtová D, Kozlov O, Armstrong DW, Schmid MG, Kalíková K, Tesařová E. Enantioselective potential of teicoplanin- and vancomycin-based superficially porous particles-packed columns for supercritical fluid chromatography. J Chromatogr A 2019; 1612:460687. [PMID: 31727354 DOI: 10.1016/j.chroma.2019.460687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 11/18/2022]
Abstract
Application of the superficially porous particles (SPPs) grafted with chiral selectors can substantially improve resolution in chromatographic techniques. In this work, we carried out a deeper study on supercritical fluid chromatography systems with 2.7 µm SPPs bonded with teicoplanin and vancomycin. Fast separations of the majority of enantiomers of phytoalexins, substituted tryptophans, and ketamine derivatives, as representatives of important biologically active and structurally diverse chiral compounds have been achieved. The chromatographic behavior of the structurally different analytes served to characterize these separation systems. The influence of separation conditions, namely mobile phase composition, i.e. type of co-solvent and additive on retention, enantioselective resolution and enantioselectivity was examined. The success rate of baseline and partial separations in individual groups of compounds differed with the chiral stationary phase and also with mobile phase composition. The best, baseline separations for the phytoalexins were achieved on the TeicoShell column using methanol as a co-solvent and trifluoroacetic acid as an additive if used. Mostly partial separations were achieved on the vancomycin-based column for all groups of analytes. Complementary separation behavior of these CSPs was confirmed for the majority of the chiral compounds examined in this work.
Collapse
Affiliation(s)
- Denisa Folprechtová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic
| | - Oleksandr Kozlov
- Department of Analytical Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Martin G Schmid
- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Graz, Austria
| | - Květa Kalíková
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic.
| | - Eva Tesařová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843, Prague, Czech Republic
| |
Collapse
|
13
|
Yu RB, Quirino JP. Chiral liquid chromatography and capillary electrochromatography: Trends from 2017 to 2018. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.07.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Roy D, Armstrong DW. Fast super/subcritical fluid chromatographic enantioseparations on superficially porous particles bonded with broad selectivity chiral selectors relative to fully porous particles. J Chromatogr A 2019; 1605:360339. [PMID: 31350029 DOI: 10.1016/j.chroma.2019.06.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 12/24/2022]
Abstract
Superficially porous particles (SPPs) have shown advantages in enantiomeric separations in HPLC by conserving selectivity while providing higher efficiency separations with significantly reduced analysis times. The question arises as to whether the same advantages can be found to the same extent in super/subcritical fluid chromatography. In this work, the low viscosity advantage of carbon dioxide/MeOH mixtures is coupled with high-efficiency 2.7 μm superficially porous particles for enantiomeric separations. Given the fact that the viscosity of the mobile phase is typically ten times lower than liquid mobile phases it is possible to use flow rates as high as 14 mL/min on 5 cm packed columns. Superficially porous particles (SPPs) were grafted with teicoplanin (TeicoShell), a chemically modified macrocyclic glycopeptide (NicoShell), vancomycin (VancoShell), and isopropyl derivatized cyclofructan-6 (LarihcShell-P). One hundred chiral analytes were separated in a very short time frame, as little as 0.2 min (13 s). Even shorter separations can be obtained with advances in SFC instrumentation. The LarihcShell-P is the only chiral crown ether-based selector which showed high selectivity for primary amines. The Teicoshell column offered unique separations for acidic and neutral analytes. The NicoShell and the VancoShell were useful in separating amine (secondary and tertiary) containing pharmaceutical drugs and controlled substances. By chemically modifying a macrocyclic glycopeptide (NicoShell) we report the first enantiomeric separation of nicotine under SFC conditions within 3 min with a resolution of >3. Additionally, van Deemter plots are constructed comparing the fully porous particles and superficially porous particles bonded with the same chiral selectors. In toto the SPP advantages also were found for SFC. However instrumental shortcomings involving extra column effects and pressure limitations need to be addressed by instrument manufacturers to realize the full advantages of SPPs and other smaller particle supports.
Collapse
Affiliation(s)
- Daipayan Roy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, United States
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, TX, United States.
| |
Collapse
|
15
|
Modeling of chiral gas chromatographic separation of alkyl and cycloalkyl 2-bromopropionates using cyclodextrin derivatives as stationary phases. J Chromatogr A 2019; 1596:161-174. [DOI: 10.1016/j.chroma.2019.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/30/2022]
|
16
|
Deng H, Tang G, Fan Z, Liu S, Li Z, Wang Y, Bian Z, Shen W, Tang S, Yang F. Use of autoclave extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze 4-(methylintrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosonornicotine in tobacco. J Chromatogr A 2019; 1595:207-214. [PMID: 30827697 DOI: 10.1016/j.chroma.2019.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023]
Abstract
4-(methylintrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) are the most prevalent and toxic tobacco specific nitrosamines (TSNAs). Due to their carcinogenicity, knowledge of the composition of NNK and NNN in tobacco is necessary. Herein, a sensitive and rapid method, which employs autoclave extraction-supercritical fluid chromatography/tandem mass spectrometry (SFC-MS/MS), has been developed for the analysis of NNK and NNN in tobacco. Both water-soluble and matrix-bound NNK and NNN were extracted with 100 mM ammonium acetate in an autoclave (130 °C, 4 h), and the aqueous extract was subjected to solvent replacement prior to SFC-MS/MS analysis. NNK and NNN were effectively separated within 5 min by using supercritical CO2 as the main mobile phase coupled with a co-solvent of methanol. Excellent linearity was obtained with coefficients of determination (R2) greater than 0.9997 in the range of 1-160 ng/mL and 5-800 ng/mL for NNK and NNN, respectively. The recoveries were in the range of 92.5-110.0% at different spiked levels of real samples. 12 tobacco samples which include 3 typical tobacco varieties of burley, flue-cured, and oriental tobaccos had been analyzed, and the fraction of matrix-bound NNK was determined as well. In addition, a comparison between the proposed SFC-MS/MS method and a validated liquid chromatography tandem mass spectrometry (LC-MS/MS) internal standard method was conducted. Both techniques exhibit comparable analysis results, but peak splitting of NNN was observed by LC-MSMS due to the existence of E/Z isomers, while SFC-MS/MS offers great improvement through elution condition optimization, demonstrating the applicability of SFC-MS/MS as an alternative tool for NNK and NNN analysis.
Collapse
Affiliation(s)
- Huimin Deng
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Gangling Tang
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Ziyan Fan
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Shanshan Liu
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Zhonghao Li
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Ying Wang
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Zhaoyang Bian
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Fei Yang
- China National Tobacco Quality Supervision and Test Center, No.2 Fengyang Street, High and New Technology Industries Development Zone, Zhengzhou, 450001, China.
| |
Collapse
|
17
|
High-Performance Liquid Chromatography Enantioseparations Using Macrocyclic Glycopeptide-Based Chiral Stationary Phases: An Overview. Methods Mol Biol 2019; 1985:201-237. [PMID: 31069737 DOI: 10.1007/978-1-4939-9438-0_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since their introduction by Daniel W. Armstrong in 1994, antibiotic-based chiral stationary phases have proven their applicability for the chiral resolution of various types of racemates. The unique structure of macrocyclic glycopeptides and their large variety of interactive sites (e.g., hydrophobic pockets, hydroxy, amino and carboxyl groups, halogen atoms, aromatic moieties) are the reasons for their wide-ranging selectivity. The commercially available Chirobiotic™ phases, which display complementary characteristics, are capable of separating a broad variety of enantiomeric compounds with good efficiency, good column loadability, high reproducibility, and long-term stability. These are the major reasons for the frequent use of macrocyclic antibiotic-based stationary phases in HPLC enantioseparations.This overview chapter provides a brief summary of general aspects of antibiotic-based chiral stationary phases including their preparation and their application to direct enantioseparations of various racemates focusing on the literature published since 2004.
Collapse
|
18
|
Hellinghausen G, Readel ER, Wahab MF, Lee JT, Lopez DA, Weatherly CA, Armstrong DW. Mass Spectrometry-Compatible Enantiomeric Separations of 100 Pesticides Using Core–Shell Chiral Stationary Phases and Evaluation of Iterative Curve Fitting Models for Overlapping Peaks. Chromatographia 2018. [DOI: 10.1007/s10337-018-3604-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Hellinghausen G, Lopez DA, Lee JT, Wang Y, Weatherly CA, Portillo AE, Berthod A, Armstrong DW. Evaluation of the Edman degradation product of vancomycin bonded to core-shell particles as a new HPLC chiral stationary phase. Chirality 2018; 30:1067-1078. [PMID: 29969166 DOI: 10.1002/chir.22985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022]
Abstract
A modified macrocyclic glycopeptide-based chiral stationary phase (CSP), prepared via Edman degradation of vancomycin, was evaluated as a chiral selector for the first time. Its applicability was compared with other macrocyclic glycopeptide-based CSPs: TeicoShell and VancoShell. In addition, another modified macrocyclic glycopeptide-based CSP, NicoShell, was further examined. Initial evaluation was focused on the complementary behavior with these glycopeptides. A screening procedure was used based on previous work for the enantiomeric separation of 50 chiral compounds including amino acids, pesticides, stimulants, and a variety of pharmaceuticals. Fast and efficient chiral separations resulted by using superficially porous (core-shell) particle supports. Overall, the vancomycin Edman degradation product (EDP) resembled TeicoShell with high enantioselectivity for acidic compounds in the polar ionic mode. The simultaneous enantiomeric separation of 5 racemic profens using liquid chromatography-mass spectrometry with EDP was performed in approximately 3 minutes. Other highlights include simultaneous liquid chromatography separations of rac-amphetamine and rac-methamphetamine with VancoShell, rac-pseudoephedrine and rac-ephedrine with NicoShell, and rac-dichlorprop and rac-haloxyfop with TeicoShell.
Collapse
Affiliation(s)
- Garrett Hellinghausen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | | | | | - Yadi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Choyce A Weatherly
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Abiud E Portillo
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Alain Berthod
- Institute of Analytical Sciences CNRS, University of Lyon 1, Villeurbanne, France
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA.,AZYP, LLC, Arlington, Texas, USA
| |
Collapse
|
20
|
Hellinghausen G, Roy D, Lee JT, Wang Y, Weatherly CA, Lopez DA, Nguyen KA, Armstrong JD, Armstrong DW. Effective methodologies for enantiomeric separations of 150 pharmacology and toxicology related 1°, 2°, and 3° amines with core-shell chiral stationary phases. J Pharm Biomed Anal 2018; 155:70-81. [PMID: 29625259 DOI: 10.1016/j.jpba.2018.03.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
Core-shell particles (superficially porous particles, SPPs) have been proven to provide high-throughput and effective separations of a variety of chiral molecules. However, due to their limited commercialization, many separations have not been reported with these stationary phases. In this study, four SPP chiral stationary phases (CSPs) were utilized for the enantiomeric separation of 150 chiral amines. These amines encompass a variety of structural and drug classes, which are particularly important to the pharmaceutical industry and in forensics. This comprehensive evaluation demonstrates the power of these CSPs and the ease of method development and optimization. The CSPs used in this study included the macrocyclic glycopeptide-based CSPs (VancoShell and NicoShell), the cyclodextrin-based CSP (CDShell-RSP), and the cyclofructan-based CSP (LarihcShell-P). These CSPs offered versatility for a variety of applications and worked in a complementary fashion to baseline separate all 150 amines. The LarihcShell-P was highly effective for separating primary amines. VancoShell, NicoShell, and CDShell-RSP were useful for separating all types of amines. These CSPs are multi-modal and can be utilized with mass spectrometry compatible solvents. Eighteen racemic controlled substances were simultaneously baseline separated in a single liquid chromatography-mass spectrometry (LC-MS) analysis. Details in high-performance liquid chromatography (HPLC) parameters will be discussed as well as the improved chromatographic performance afforded by the SPP CSPs.
Collapse
Affiliation(s)
- Garrett Hellinghausen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Daipayan Roy
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jauh T Lee
- AZYP LLC, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Yadi Wang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Choyce A Weatherly
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Diego A Lopez
- AZYP LLC, 700 Planetarium Place, Arlington, TX 76019, USA
| | - Kate A Nguyen
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - John D Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA; AZYP LLC, 700 Planetarium Place, Arlington, TX 76019, USA.
| |
Collapse
|