1
|
Zou C, Liu X, Wang W, He L, Yin A, Cao Z, Zhu M, Wu Y, Liu X, Ma J, He Y, Wang S, Zhang W, Liu W, Zhang Y, Gu J, Lin W, Zhang K, Li M. Targeting GDF15 to enhance immunotherapy efficacy in glioblastoma through tumor microenvironment-responsive CRISPR-Cas9 nanoparticles. J Nanobiotechnology 2025; 23:126. [PMID: 39979966 PMCID: PMC11843742 DOI: 10.1186/s12951-025-03182-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/01/2025] [Indexed: 02/22/2025] Open
Abstract
Despite the outstanding clinical success of immunotherapy, its therapeutic efficacy in glioblastoma (GBM) is still limited. To identify critical regulators of GBM immunity, we constructed a mouse single-guide RNA (sgRNA) library corresponding to all disease-related immune genes, and performed an in vivo CRISPR knockout (KO) screen in syngeneic GBM mouse models. We demonstrated that the deletion of GDF15 in GBM cells ameliorated the immunosuppressive tumor microenvironment (TME) and enhanced the antitumor efficacy of immune checkpoint blockade (ICB) response. Moreover, we designed unique nanoparticles for efficient encapsulation of CRISPR-Cas9, noninvasive brain delivery and tumor cell targeting, demonstrating an effective and safe strategy for GDF15 gene therapy. The CRISPR-Cas9 nanoparticles, known as ANPSS (Cas9/sgRNA), are easily created by enclosing a single Cas9/sgRNA complex in a polymer shell that is sensitive to glutathione. This shell also contains a dual-action ligand that aids in crossing the blood‒brain barrier, targeting tumor cells, and selectively releasing Cas9/sgRNA. Our encapsulating nanoparticles demonstrated promising GBM targeting, resulting in high GDF15 gene editing efficiency within brain tumors while showing minimal off-target gene editing in high-risk tissues. Treatment with ANPSS (Cas9/sgGDF15) effectively halted tumor growth, reversed immune suppression, and enhanced the efficacy of ICB therapy. These results emphasize the potential role of GDF15 in modulating the immune microenvironment and enhancing the effectiveness of current immunotherapy strategies for GBM.
Collapse
Affiliation(s)
- Cheng Zou
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiao Liu
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Weizhong Wang
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Lei He
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Anan Yin
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Clinic Genetics, Fourth Military Medical University, Xi'an, China
| | - Zhengcong Cao
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Maorong Zhu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yuxin Wu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Xiaolin Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jiying Ma
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Yalong He
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Shuning Wang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Wangqian Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Neurosurgery, Xijing Hospital, Xi'an, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Jintao Gu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Xi'an, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, China.
| | - Kuo Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| | - Meng Li
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Ahmad B, Sieh DJ, Tang JX, Li W, Chen X, Lu J. Evaluation of GFM1 mutations pathogenicity through in silico tools, RNA sequencing and mitophagy pahtway in GFM1 knockout cells. Int J Biol Macromol 2025; 304:140970. [PMID: 39952508 DOI: 10.1016/j.ijbiomac.2025.140970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
GFM1 is a nuclear gene that plays a role in mitochondrial function. In recent decades, various homozygous and compound heterozygous mutations have been identified, leading to significant health issues in patients and often resulting in early death. There is a few experimental research on this gene, particularly regarding its pathogenicity through in silico methods and RNA sequencing and experimental validation in GFM1 knockout cells. This study aims to explore how high-risk pathogenic variants affect protein stability and function using a comprehensive bioinformatics approach. Analyses with Align-GVGD, PolyPhen-2, MupRo, and SIFT indicated that most variants are likely to be highly pathogenic and destabilize the protein structure. The variants were consistently classified as high-risk by Align-GVGD and were deemed "probably damaging" or "possibly damaging" by PolyPhen-2. MupRo analysis suggested a reduction in protein stability, while SIFT indicated functional impacts for all variants. Further analysis with MetaRNN and structural assessments showed that these variants affect protein size, charge, and hydrophobicity, which may disrupt inter-domain interactions and hinder protein function. Differential gene expression analysis in GFM1 knockout HK2 and 293 T cells revealed significant changes in gene expression, particularly in areas related to translation, mitochondrial function, and cellular responses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses indicated that the affected genes are linked to neurodegenerative diseases, cancer, and various signaling pathways. GFM1 knockout cells displayed notable pathway changes, including those related to oxidative phosphorylation and neurodegenerative diseases (e.g., Parkinson's, Alzheimer's, Huntington's). Upregulation of mitochondrial electron transport chain components (COX17, NDUFB1, ATP5MC1) suggests a compensatory mechanism in response to impaired mitochondrial function. Disruptions in proteostasis and protein synthesis were highlighted by dysregulated proteasome and ribosomal pathways. Markers of mitophagy, such as increased HSP90 and decreased TOMM20 levels, along with changes in PINK1 protein, emphasize GFM1's involvement in mitophagy. Protein-protein interaction analysis connected GFM1 to key mitophagy proteins (e.g., OPTN, Park2/Parkin). Functional experiments confirmed increased mitophagy, indicating a protective response. These results highlight the negative impact of high-risk pathogenic variants on protein stability and cellular function, shedding light on their potential roles in disease progression. This study offers valuable insights into the pathogenic mechanisms linked to GFM1 mutations, underscoring its critical role in mitochondrial function and cellular balance. The findings highlight the gene's involvement in mitophagy, oxidative phosphorylation, and neurodegenerative pathways, laying the groundwork for future research into therapeutic approaches targeting GFM1-related dysfunctions.
Collapse
Affiliation(s)
- Bashir Ahmad
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Dumbuya John Sieh
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Chronic Non-Communicable Diseases, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, China.
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Xiuling Chen
- Department of Pediatrics, Haikou Affiliated Hospital of Central South University, Xiangya School of Medicine Address: No. 43 Renmin Avenue, Haikou, Hainan, China.
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China.
| |
Collapse
|
3
|
Ju HH, Lee J, Kim SK, Kim SY, Ahn JH, Skiba N, Rao V, Choi JA. Liver X Receptor-Growth Differentiation Factor 15 Activation Drives Profibrotic Changes in the Aqueous Outflow Tract of Uveitic Glaucoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00039-2. [PMID: 39892779 DOI: 10.1016/j.ajpath.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Cytomegalovirus (CMV)-induced anterior uveitis is linked to increased intraocular pressure, suggesting profibrotic changes in the eye's drainage system. Previous studies on the aqueous humor (AH) of patients with CMV uveitic glaucoma (UG) highlighted the activation of the liver X receptor (LXR) pathway, yet a potential that it has a role in increased intraocular pressure remained unelucidated. Herein, we explored the LXR pathway's role in AH outflow in UG. Global transcriptional analysis revealed that LXR activation primarily induces transforming growth factor-β signaling, with growth differentiation factor 15 (GDF-15), a growth factor in the transforming growth factor-β superfamily, being one of the most up-regulated genes in LXR-agonist-treated trabecular meshwork cells. GDF-15 levels showed a twofold expression in the AH of patients with UG (n = 44) compared with controls (n = 24; P = 0.024) and increased with more anti-glaucoma eyedrops and glaucoma surgeries (P < 0.05). LXRα/β and GDF-15 were found in human outflow tissue and were up-regulated by lipopolysaccharide and CMV infection. In an experimental endotoxin uveitis model, GDF-15 levels were up-regulated by the treatment with LXR agonists and lipopolysaccharide. In human trabecular meshwork cells, LXR agonists triggered actin stress fiber formation and α-smooth muscle actin expression, both reduced by GDF-15 neutralization. These results suggest that the LXR-GDF-15 pathway contributes to profibrotic changes in UG and plays a role in disease pathogenesis.
Collapse
Affiliation(s)
- Hyun Hee Ju
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jiyoung Lee
- Department of Ophthalmology, College of Medicine, Daejeon St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seon-Kyu Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Seon-Young Kim
- Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea; Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Nikolai Skiba
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Jin A Choi
- Department of Ophthalmology, College of Medicine, St. Vincent's Hospital, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Wu Y, Wei Y, He J, Zhou F. Circulating level of growth-differentiation factor 15 and the functional outcome after acute ischemic stroke: a systematic review and meta-analysis. Head Face Med 2024; 20:72. [PMID: 39732689 DOI: 10.1186/s13005-024-00476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/04/2024] [Indexed: 12/30/2024] Open
Abstract
Growth-differentiation factor 15 (GDF-15) is a cytokine involved in cellular stress responses and inflammation. This meta-analysis evaluates the association between circulating GDF-15 levels and functional outcomes in patients with acute ischemic stroke (AIS). A comprehensive search of Medline, Web of Science, Embase, Wanfang, and CNKI was conducted up to July 15, 2024. Observational studies with longitudinal follow-up that measured GDF-15 levels within 24 h of stroke onset and reported functional outcomes, defined as a modified Rankin Scale (mRS) score of ≥ 2, were included. Odds ratios (OR) with 95% confidence intervals (CI) were used to quantify associations. Heterogeneity was evaluated using I² statistics, and a random-effects model was used to pool the results by incorporating the influence of heterogeneity. Ten studies involving 4,231 patients were included. The pooled OR indicated that high circulating GDF-15 levels were associated with a significantly higher risk of poor functional outcomes at 3 months (OR: 2.60, 95% CI: 1.95 to 3.46, p < 0.001). Sensitivity analyses by excluding one study at a time did not significantly change the results. Subgroup analyses revealed stronger associations in studies with GDF-15 cutoff values < 1200 ng/L as compared to ≥ 1200 ng/L, and in those defining poor outcomes as mRS ≥ 3 as compared to those ≥ 2. In conclusion, elevated circulating GDF-15 levels are associated with worse functional outcomes following AIS. These findings support the potential use of GDF-15 as a prognostic biomarker in stroke patients. Further research is warranted to confirm these results and explore clinical applications.
Collapse
Affiliation(s)
- Yulang Wu
- The Second Department of Neurology, The First People's Hospital of Nanning, No. 90, Qixing Road, Nanning, Guangxi Province, 530022, China
| | - Yude Wei
- The Second Department of Neurology, The First People's Hospital of Nanning, No. 90, Qixing Road, Nanning, Guangxi Province, 530022, China
| | - Jinrong He
- The Second Department of Neurology, The First People's Hospital of Nanning, No. 90, Qixing Road, Nanning, Guangxi Province, 530022, China
| | - Fengkun Zhou
- The Second Department of Neurology, The First People's Hospital of Nanning, No. 90, Qixing Road, Nanning, Guangxi Province, 530022, China.
| |
Collapse
|
5
|
Li X, Sun H, Zhang L, Liang H, Zhang B, Yang J, Peng X, Sun J, Zhou Y, Zhai M, Jiang L, Zhu H, Duan W. GDF15 attenuates sepsis-induced myocardial dysfunction by inhibiting cardiomyocytes ferroptosis via the SOCS1/GPX4 signaling pathway. Eur J Pharmacol 2024; 982:176894. [PMID: 39147013 DOI: 10.1016/j.ejphar.2024.176894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Sepsis is a systemic inflammatory response syndrome triggered by infection, presenting with symptoms such as fever, increased heart rate, and low blood pressure. In severe cases, it can lead to multiple organ dysfunction, posing a life-threatening risk. Sepsis-induced cardiomyopathy (SIC) is a critical factor in the poor prognosis of septic patients, leading to myocardial dysfunction characterized by cell death, inflammation, and diminished cardiac function. Ferroptosis, an iron-dependent form of programmed cell death, is a key mechanism causing cardiomyocyte damage in SIC. Growth differentiation factor 15 (GDF15), a member of the TGF-β superfamily, is associated with various cardiovascular diseases and can inhibit oxidative stress, reduce reactive oxygen species (ROS), and suppress ferroptosis. Elevated serum GDF15 levels in sepsis are correlated with organ injuries, suggesting its potential as a therapeutic target. However, its role and mechanisms in SIC remain unclear. Glutathione peroxidase 4 (GPX4), the only enzyme capable of reducing lipid peroxides within cells, protects cells by reducing lipid peroxidation levels and inhibiting ferroptosis. Investigating the regulatory factors of GPX4 may provide a theoretical basis for SIC treatment. In this study, a mouse SIC model revealed that elevated GDF15 exerts a protective effect. Antagonizing GDF15 exacerbates myocardial damage. Through transcriptomic analysis and other methods, we confirmed that GDF15 inhibits the expression of SOCS1 by activating the ALK5-SMAD2/3 pathway, thereby activates the JAK2/STAT3 pathway, promotes the transcription of GPX4, inhibits ferroptosis in cardiomyocytes, and plays a myocardial protective role in SIC.
Collapse
Affiliation(s)
- Xiayun Li
- College of Life Sciences, Northwest University, Xi'an, 710069, China; Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - He Sun
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Liyun Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Hongliang Liang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China; Department of Surgery, The 954th Hospital of the Chinese People's Liberation Army, Shannan, 856100, China
| | - Jiachang Yang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Xiangyan Peng
- School of Medicine, Northwest University, Xi'an, 710069, China
| | - Jingwei Sun
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Yang Zhou
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Mengen Zhai
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Liqing Jiang
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Hanzhao Zhu
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Weixun Duan
- Department of Cardiovascular Surgery, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Han E, Youn S, Kwon KT, Kim SC, Jo HY, Jung I. Disease progression associated cytokines in COVID-19 patients with deteriorating and recovering health conditions. Sci Rep 2024; 14:24712. [PMID: 39433797 PMCID: PMC11494080 DOI: 10.1038/s41598-024-75924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Understanding the immune response to COVID-19 is challenging due to its high variability among individuals. To identify differentially expressed cytokines between the deteriorating and recovering phases, we analyzed the Electronic Health Records (EHR) and cytokine profile data in a COVID-19 cohort of 444 infected patients and 145 non-infected healthy individuals. We categorized each patient's progression into Deterioration Phase (DP) and Recovery Phase (RP) using longitudinal neutrophil, lymphocyte and lactate dehydrogenase levels. A random forest model was built using healthy and severe patients to compute the contribution of each cytokine toward disease progression using Shapley Additive Explanations (SHAP). SHAP values were used for supervised clustering to identify DP and RP-related samples and their associated cytokines. The identified clusters effectively discriminated DP and RP samples, suggesting that the cytokine profiles differed between deteriorating and recovering health conditions. Especially, CXCL10, GDF15, PTX3, and TNFSF10 were differentially expressed between the DP and RP samples, which are involved in the JAK-STAT, NF- κ B, and MAPK signaling pathways contributing to the inflammatory response. Collectively, we characterized the immune response in terms of disease progression of COVID-19 with deteriorating and recovering health conditions.
Collapse
Affiliation(s)
- Eonyong Han
- School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sohyun Youn
- School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ki Tae Kwon
- Kyungpook National University Chilgok Hospital, 807 Hoguk-ro, Buk-gu, Daegu, 41404, Republic of Korea
| | - Sang Cheol Kim
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju-si, 28159, Republic of Korea
| | - Hye-Yeong Jo
- Division of Healthcare and Artificial Intelligence, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju-si, 28159, Republic of Korea.
| | - Inuk Jung
- School of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
7
|
Lu S, Li R, Deng Y, Bai J, Ji B, Chu Y, Xu Y, Qu H, Guo X, Li P, Meng M. GDF15 ameliorates sepsis-induced lung injury via AMPK-mediated inhibition of glycolysis in alveolar macrophage. Respir Res 2024; 25:201. [PMID: 38725041 PMCID: PMC11084091 DOI: 10.1186/s12931-024-02824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Growth differentiation factor 15 (GDF15) as a stress response cytokine is involved in the development and progression of several diseases associated with metabolic disorders. However, the regulatory role and the underlying mechanisms of GDF15 in sepsis remain poorly defined. Our study analyzed the levels of GDF15 and its correlations with the clinical prognosis of patients with sepsis. In vivo and in vitro models of sepsis were applied to elucidate the role and mechanisms of GDF15 in sepsis-associated lung injury. We observed strong correlations of plasma GDF15 levels with the levels of C-reactive protein (CRP), procalcitonin (PCT), lactate dehydrogenase (LDH), and lactate as well as Sequential Organ Failure Assessment (SOFA) scores in patients with sepsis. In the mouse model of lipopolysaccharide-induced sepsis, recombinant GDF15 inhibited the proinflammatory responses and alleviated lung tissue injury. In addition, GDF15 decreased the levels of cytokines produced by alveolar macrophages (AMs). The anti-inflammatory effect of glycolysis inhibitor 2-DG on AMs during sepsis was mediated by GDF15 via inducing the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2α) and the expression of activating transcription factor 4 (ATF4). Furthermore, we explored the mechanism underlying the beneficial effects of GDF15 and found that GDF15 inhibited glycolysis and mitogen-activated protein kinases (MAPK)/nuclear factor-κB (NF-κB) signaling via promoting AMPK phosphorylation. This study demonstrated that GDF15 inhibited glycolysis and NF-κB/MAPKs signaling via activating AMP-activated protein kinase (AMPK), thereby alleviating the inflammatory responses of AMs and sepsis-associated lung injury. Our findings provided new insights into novel therapeutic strategies for treating sepsis.
Collapse
Affiliation(s)
- Shasha Lu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road (No.2), Huangpu District, Shanghai, 200025, P.R. China
- The first rehabilitation hospital of Shandong, Linyi, 276000, Shandong, P.R. China
- Ocean University of China, Qingdao, 266000, Shandong, P.R. China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road (No.2), Huangpu District, Shanghai, 200025, P.R. China.
| | - Yunxin Deng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road (No.2), Huangpu District, Shanghai, 200025, P.R. China
| | - Ju Bai
- Yantai Affiliated Hospital of Binzhou Medical University, Binzhou, 256600, Shandong, P.R. China
| | - Bangqi Ji
- Shandong Rehabilitation Hospital, Jinan, 250109, Shandong, P.R. China
| | - Yufeng Chu
- Department of Critical Care Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, P.R. China
| | - Yan Xu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road (No.2), Huangpu District, Shanghai, 200025, P.R. China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road (No.2), Huangpu District, Shanghai, 200025, P.R. China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250000, P.R. China.
| | - Pibao Li
- The first rehabilitation hospital of Shandong, Linyi, 276000, Shandong, P.R. China.
| | - Mei Meng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin Road (No.2), Huangpu District, Shanghai, 200025, P.R. China.
| |
Collapse
|
8
|
Wang Z, Cuthbertson LF, Thomas C, Sallah HJ, Mosscrop LG, Li H, Talts T, Kumar K, Moffatt MF, Tregoning JS. IL-1α is required for T cell-driven weight loss after respiratory viral infection. Mucosal Immunol 2024; 17:272-287. [PMID: 38382577 PMCID: PMC11009121 DOI: 10.1016/j.mucimm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1β) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.
Collapse
Affiliation(s)
- Ziyin Wang
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | | | - Chubicka Thomas
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Hadijatou J Sallah
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Lucy G Mosscrop
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Haoyuan Li
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK
| | - Tiina Talts
- Virus Reference Department, Public Health Microbiology, United Kingdom Health Security Agency, London, UK
| | - Kartik Kumar
- National Heart and Lung Institute, Imperial College London, UK
| | | | - John S Tregoning
- Department of Infectious Disease, St. Mary's Campus, Imperial College London, UK.
| |
Collapse
|
9
|
Meng H, Wang Y, Zhai Y, Luo W, Wang Y, Hu Y, Liu S, Xiao W, Yang G, Ye F, Chen S, Jie Y, Chen YQ. Unveiling the micronutrient-immunity puzzle in inactivated COVID-19 vaccination: A comprehensive analysis of circulating micronutrient levels and humoral responses in healthy adults. J Med Virol 2024; 96:e29611. [PMID: 38639305 DOI: 10.1002/jmv.29611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
While micronutrients are crucial for immune function, their impact on humoral responses to inactivated COVID-19 vaccination remains unclear. We investigated the associations between seven key micronutrients and antibody responses in 44 healthy adults with two doses of an inactivated COVID-19 vaccine. Blood samples were collected pre-vaccination and 28 days post-booster. We measured circulating minerals (iron, zinc, copper, and selenium) and vitamins (A, D, and E) concentrations alongside antibody responses and assessed their associations using linear regression analyses. Our analysis revealed inverse associations between blood iron and zinc concentrations and anti-SARS-CoV-2 IgM antibody binding affinity (AUC for iron: β = -258.21, p < 0.0001; zinc: β = -17.25, p = 0.0004). Notably, antibody quality presented complex relationships. Blood selenium was positively associated (β = 18.61, p = 0.0030), while copper/selenium ratio was inversely associated (β = -1.36, p = 0.0055) with the neutralizing ability against SARS-CoV-2 virus at a 1:10 plasma dilution. There was no significant association between circulating micronutrient concentrations and anti-SARS-CoV-2 IgG binding affinity. These findings suggest that circulating iron, zinc, and selenium concentrations and copper/selenium ratio, may serve as potential biomarkers for both quantity (binding affinity) and quality (neutralization) of humoral responses after inactivated COVID-19 vaccination. Furthermore, they hint at the potential of pre-vaccination dietary interventions, such as selenium supplementation, to improve vaccine efficacy. However, larger, diverse studies are needed to validate these findings. This research advances the understanding of the impact of micronutrients on vaccine response, offering the potential for personalized vaccination strategies.
Collapse
Affiliation(s)
- Huicui Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Yin Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Wanyu Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Sizhe Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
| | - Weimin Xiao
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, Shenzhen, China
| | - Feng Ye
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Shifeng Chen
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Yusheng Jie
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Guangdong, Shenzhen, China
- Ministry of Education, Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
10
|
Švitek L, Lišnjić D, Grubišić B, Zlosa M, Schönberger E, Vlahović Vlašić N, Smajić P, Sabadi D, Rolić T, Kralik K, Mandić S. GDF-15 Levels and Other Laboratory Findings as Predictors of COVID-19 Severity and Mortality: A Pilot Study. Biomedicines 2024; 12:757. [PMID: 38672113 PMCID: PMC11048158 DOI: 10.3390/biomedicines12040757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a stress-induced cytokine associated with acute and chronic inflammatory states. This prospective observational study aimed to investigate the prognostic roles of GDF-15 and routine clinical laboratory parameters in COVID-19 patients. Upon the admission of 95 adult hospitalized COVID-19 patients in Croatia, blood analysis was performed, and medical data were collected. The patients were categorized based on survival, ICU admission, and hospitalization duration. Logistic regression and ROC curve methods were employed for the statistical analysis. Logistic regression revealed two independent predictors of negative outcomes: CURB-65 score (OR = 2.55) and LDH (OR = 1.005); one predictor of ICU admission: LDH (OR = 1.004); and one predictor of prolonged hospitalization: the need for a high-flow nasal cannula (HFNC) upon admission (OR = 4.75). The ROC curve showed diagnostic indicators of negative outcomes: age, CURB-65 score, LDH, and GDF-15. The largest area under the curve (AUC = 0.767, specificity = 65.6, sensitivity = 83.9) was represented by GDF-15, with a cutoff value of 3528 pg/mL. For ICU admission, significant diagnostic indicators were LDH, CRP, and IL-6. Significant diagnostic indicators of prolonged hospitalization were CK, GGT, and oxygenation with an HFNC upon admission. This study reaffirms the significance of the commonly used laboratory parameters and clinical scores in evaluating COVID-19. Additionally, it introduces the potential for a new diagnostic approach and research concerning GDF-15 levels in this widespread disease.
Collapse
Affiliation(s)
- Luka Švitek
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dubravka Lišnjić
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Barbara Grubišić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Mihaela Zlosa
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ema Schönberger
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Endocrinology, Internal Medicine Clinic, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Nika Vlahović Vlašić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Petra Smajić
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Dario Sabadi
- Clinic for Infectious Diseases, University Hospital Centre Osijek, 31000 Osijek, Croatia
- Department of Infectology and Dermatovenerology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tara Rolić
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
- Institute of Clinical Laboratory Diagnostics, University Hospital Centre Osijek, 31000 Osijek, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Sanja Mandić
- Polyclinic LabPlus, 31000 Osijek, Croatia
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
11
|
Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung diseases and ageing. Mol Cell Biochem 2024; 479:453-466. [PMID: 37093513 PMCID: PMC10123484 DOI: 10.1007/s11010-023-04743-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-beta superfamily, is expressed in several human organs. In particular, it is highly expressed in the placenta, prostate, and liver. The expression of GDF15 increases under cellular stress and pathological conditions. Although numerous transcription factors directly up-regulate the expression of GDF15, the receptors and downstream mediators of GDF15 signal transduction in most tissues have not yet been determined. Glial cell-derived neurotrophic factor family receptor α-like protein was recently identified as a specific receptor that plays a mediating role in anorexia. However, the specific receptors of GDF15 in other tissues and organs remain unclear. As a marker of cell stress, GDF15 appears to exert different effects under different pathological conditions. Cell senescence may be an important pathogenetic process and could be used to assess the progression of various lung diseases, including COVID-19. As a key member of the senescence-associated secretory phenotype protein repertoire, GDF15 seems to be associated with mitochondrial dysfunction, although the specific molecular mechanism linking GDF15 expression with ageing remains to be elucidated. Here, we focus on research progress linking GDF15 expression with the pathogenesis of various chronic lung diseases, including neonatal bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease, and pulmonary hypertension, suggesting that GDF15 may be a key biomarker for diagnosis and prognosis. Thus, in this review, we aimed to provide new insights into the molecular biological mechanism and emerging clinical data associated with GDF15 in lung-related diseases, while highlighting promising research and clinical prospects.
Collapse
Affiliation(s)
- Yang Wan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Sabbatinelli J, Di Rosa M, Giuliani A, Domenichelli M, Bonfigli AR, Sarzani R, Cherubini A, Antonicelli R, Burattini M, Corsonello A, Galeazzi R, Babini L, Moretti M, Procopio AD, Lattanzio F, Olivieri F. Serum levels of soluble suppression of tumorigenicity 2 (sST2) and heart-type fatty acid binding protein (H-FABP) independently predict in-hospital mortality in geriatric patients with COVID-19. Mech Ageing Dev 2023; 216:111876. [PMID: 37802485 DOI: 10.1016/j.mad.2023.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Elevation of cardiac damage biomarkers is associated with adverse clinical outcomes and increased mortality in COVID-19 patients. This study assessed the association of admission serum levels of sST2 and H-FABP with in-hospital mortality in 191 geriatric patients (median age 86 yrs., IQR 82-91 yrs.) with COVID-19 and available measures of hs-cTnT and NT-proBNP at admission. Cox proportional hazards models were utilized to predict in-hospital mortality, considering clinical/biochemical confounders as covariates. A composite cardiac score was calculated to improve predictive accuracy. Patients deceased during their hospital stay (26%) exhibited higher levels of all biomarkers, which demonstrated good discrimination for in-hospital mortality. Addition of sST2 and H-FABP significantly improved the discriminatory power of hs-cTnT and NT-proBNP. The composite cardiac score (AUC=0.866) further enhanced the predictive accuracy. Crude and adjusted Cox regressions models revealed that both sST2 and H-FABP were independently associated with in-hospital mortality (HR for sST2 ≥129 ng/mL, 4.32 [1.48-12.59]; HR for H-FABP ≥18 ng/mL, 7.70 [2.12-28.01]). The composite cardiac score also independently correlated with in-hospital mortality (HR for 1-unit increase, 1.47 [1.14-1.90]). In older patients with COVID-19, sST2 and H-FABP demonstrated prognostic value, improving the predictive accuracy of the routinely assessed biomarkers hs-cTnT and NT-proBNP.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy.
| | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Domenichelli
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | | | | | - Antonio Cherubini
- Geriatria, Accettazione geriatrica e Centro di Ricerca Per l'invecchiamento, IRCCS INRCA, Ancona, Italy
| | | | | | - Andrea Corsonello
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, Ancona, Italy; Geriatric Medicine, IRCCS INRCA, Cosenza, Italy
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Lucia Babini
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Marco Moretti
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | | | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
13
|
Barrozo ER, Seferovic MD, Castro ECC, Major AM, Moorshead DN, Jochum MD, Rojas RF, Shope CD, Aagaard KM. SARS-CoV-2 niches in human placenta revealed by spatial transcriptomics. MED 2023; 4:612-634.e4. [PMID: 37423216 PMCID: PMC10527005 DOI: 10.1016/j.medj.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Functional placental niches are presumed to spatially separate maternal-fetal antigens and restrict the vertical transmission of pathogens. We hypothesized a high-resolution map of placental transcription could provide direct evidence for niche microenvironments with unique functions and transcription profiles. METHODS We utilized Visium Spatial Transcriptomics paired with H&E staining to generate 17,927 spatial transcriptomes. By integrating these spatial transcriptomes with 273,944 placental single-cell and single-nuclei transcriptomes, we generated an atlas composed of at least 22 subpopulations in the maternal decidua, fetal chorionic villi, and chorioamniotic membranes. FINDINGS Comparisons of placentae from uninfected healthy controls (n = 4) with COVID-19 asymptomatic (n = 4) and symptomatic (n = 5) infected participants demonstrated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in syncytiotrophoblasts occurred in both the presence and the absence of maternal clinical disease. With spatial transcriptomics, we found that the limit of detection for SARS-CoV-2 was 1/7,000 cells, and placental niches without detectable viral transcripts were unperturbed. In contrast, niches with high SARS-CoV-2 transcript levels were associated with significant upregulation in pro-inflammatory cytokines and interferon-stimulated genes, altered metallopeptidase signaling (TIMP1), with coordinated shifts in macrophage polarization, histiocytic intervillositis, and perivillous fibrin deposition. Fetal sex differences in gene expression responses to SARS-CoV-2 were limited, with confirmed mapping limited to the maternal decidua in males. CONCLUSIONS High-resolution placental transcriptomics with spatial resolution revealed dynamic responses to SARS-CoV-2 in coordinate microenvironments in the absence and presence of clinically evident disease. FUNDING This work was supported by the NIH (R01HD091731 and T32-HD098069), NSF (2208903), the Burroughs Welcome Fund and the March of Dimes Preterm Birth Research Initiatives, and a Career Development Award from the American Society of Gene and Cell Therapy.
Collapse
Affiliation(s)
- Enrico R Barrozo
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Maxim D Seferovic
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Eumenia C C Castro
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - David N Moorshead
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA; Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Michael D Jochum
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ricardo Ferral Rojas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cynthia D Shope
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kjersti M Aagaard
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
14
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
15
|
Peters JM, Irvine EB, Rosenberg JM, Wadsworth MH, Hughes TK, Sutton M, Nyquist SK, Bromley JD, Mondal R, Roederer M, Seder RA, Darrah PA, Alter G, Flynn JL, Shalek AK, Fortune SM, Bryson BD. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549208. [PMID: 37502895 PMCID: PMC10370046 DOI: 10.1101/2023.07.16.549208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Intradermal (ID) Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine in the world. However, ID-BCG fails to achieve the level of protection needed in adults to alter the course of the tuberculosis epidemic. Recent studies in non-human primates have demonstrated high levels of protection against Mycobacterium tuberculosis ( Mtb ) following intravenous (IV) administration of BCG. However, the protective immune features that emerge following IV BCG vaccination remain incompletely defined. Here we used single-cell RNA-sequencing (scRNAseq) to transcriptionally profile 157,114 unstimulated and purified protein derivative (PPD)-stimulated bronchoalveolar lavage (BAL) cells from 29 rhesus macaques immunized with BCG across routes of administration and doses to uncover cell composition-, gene expression-, and biological network-level signatures associated with IV BCG-mediated protection. Our analyses revealed that high-dose IV BCG drove an influx of polyfunctional T cells and macrophages into the airways. These macrophages exhibited a basal activation phenotype even in the absence of PPD-stimulation, defined in part by IFN and TNF-α signaling up to 6 months following BCG immunization. Furthermore, intercellular immune signaling pathways between key myeloid and T cell subsets were enhanced following PPD-stimulation in high-dose IV BCG-vaccinated macaques. High-dose IV BCG also engendered quantitatively and qualitatively stronger transcriptional responses to PPD-stimulation, with a robust Th1-Th17 transcriptional phenotype in T cells, and augmented transcriptional signatures of reactive oxygen species production, hypoxia, and IFN-γ response within alveolar macrophages. Collectively, this work supports that IV BCG immunization creates a unique cellular ecosystem in the airways, which primes and enables local myeloid cells to effectively clear Mtb upon challenge.
Collapse
|
16
|
Rochette L, Dogon G, Rigal E, Zeller M, Vergely C, Cottin Y. GDF15 : A modulator of immunity and a predictive biomarker of cardiovascular events : A strategy in COVID-19. Ann Cardiol Angeiol (Paris) 2023; 72:41-43. [PMID: 36163282 PMCID: PMC9477966 DOI: 10.1016/j.ancard.2022.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the recently published manuscript entitled "GDF15 a rising modulator of immunity and a strategy in Coronavirus disease 2019 (COVID-19) in relationship with iron metabolism" and we examined the potential properties of Growth and differentiation factor 15 (GDF15) as an emerging modulator of immunity in COVID-19. We commented new aspects of the biology of GDF15 and investigated the potential value of GDF15 as a biomarker. Is GDF15 a biomarker of the inflammatory process and oxidative stress state? Recently, it was reported that 1500 clinical trials related to COVID-19 have been registered, but none have yet found an optimal strategy. In these conditions, more clinical studies are needed before any of these agents can be considered antiviral agents.
Collapse
Affiliation(s)
- Luc Rochette
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France.
| | - Geoffrey Dogon
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | - Eve Rigal
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | - Marianne Zeller
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | - Catherine Vergely
- Pathophysiology and Epidemiology of Cerebro-Cardiovascular Diseases Research Unit (PEC2, EA 7460), University of Burgundy and Franche-Comté, UFR des Sciences de Santé, 21079 Dijon, France
| | | |
Collapse
|
17
|
Sun Y, Tao Q, Cao Y, Yang T, Zhang L, Luo Y, Wang L. Kaempferol has potential anti-coronavirus disease 2019 (COVID-19) targets based on bioinformatics analyses and pharmacological effects on endotoxin-induced cytokine storm. Phytother Res 2023. [PMID: 36726236 DOI: 10.1002/ptr.7740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/03/2023]
Abstract
COVID-19 has infected 272 million patients and caused 5.33 million deaths around the world, and it remains the main global threat. Previous studies revealed that Chinese traditional medicine is an effective treatment for COVID-19 infection. This study aims to reveal the pharmacological effects of kaempferol, which is the active component of Radix Bupleuri and Tripterygii Radix, and potential mechanisms for the treatment of COVID-19. Here, we employed the bioinformatics methods to filter the anti-COVID-19 candidate genes of kaempferol, which mainly enriched in inflammation (TNF, JUN, etc.) and virus infection (AKT1, JNK, etc.). The Transcription levels of AKT1, JNK and JUN were significantly reduced by kaempferol treatment in the LPS-activated macrophages. In addition, kaempferol reduced the secretion of inflammatory factors by LPS-stimulated macrophages, inhibited MAPK/NF-κB signaling and regulated macrophage polarization to M2 type in vitro, and suppressed endotoxin-induced cytokine storm and improved survival in mice. Molecular docking analysis demonstrated that kaempferol was probable to bind the COVID-19 protein 5R84 and formatted hydrogen bond with the residues, the free binding energy of which was lower than the original ligand. In summary, our current work indicates that kaempferol has anti-COVID-19 potential through the reduction of COVID-19-induced body dysfunction and molecule-protein interaction, and bioinformatics results clarify that some of these key target genes might serve as potential molecular markers for detecting COVID-19.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Yang Cao
- College of Arts & Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Tingting Yang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yifeng Luo
- Department of Clinical Laboratory, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Lei Wang
- Department of Clinical Laboratory, Jiangsu Province hospital on Integration of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Mohammadi AH, Behjati M, Karami M, Abari AH, Sobhani-Nasab A, Rourani HA, Hazrati E, Mirghazanfari SM, Hadi V, Hadi S, Milajerdi A. An overview on role of nutrition on COVID-19 immunity: Accumulative review from available studies. CLINICAL NUTRITION OPEN SCIENCE 2023; 47:6-43. [PMID: 36540357 PMCID: PMC9754583 DOI: 10.1016/j.nutos.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
The novel coronavirus infection (COVID-19) conveys a serious global threat to health and economy. A common predisposing factor for development to serious progressive disease is presence of a low-grade inflammation, e.g., as seen in diabetes, metabolic syndrome, and heart failure. Micronutrient deficiencies may also contribute to the development of this state. Therefore, the aim of the present study is to explore the role of the nutrition to relieve progression of COVID-19. According PRISMA protocol, we conducted an online databases search including Scopus, PubMed, Google Scholar and web of science for published literatures in the era of COVID-19 Outbreak regarding to the status of nutrition and COVID-19 until December 2021. There were available studies (80 studies) providing direct evidence regarding the associations between the status of nutrition and COVID-19 infection. Adequate nutritional supply is essential for resistance against other viral infections and also for improvement of immune function and reduction of inflammation. Hence, it is suggested that nutritional intervention which secures an adequate status might protect against the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome - coronavirus-2) and mitigate its course. We also recommend initiation of adequate nutritional supplementation in high-risk areas and/or soon after the time of suspected infection with SARS-CoV-2. Subjects in high-risk groups should have high priority for applying this nutritive adjuvant therapy that should be started prior to administration of specific and supportive medical measures.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Behjati
- Cellular, Molecular and Genetics Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoumeh Karami
- Department of Biochemistry, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Afrouzossadat Hosseini Abari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Sobhani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Amini Rourani
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Ebrahim Hazrati
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Sayid Mahdi Mirghazanfari
- Department of Physiology and Iranian Medicine, School of Medicine, AJA University of Medical Sciences, Iran
| | - Vahid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Saeid Hadi
- Department of Health, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
19
|
Turton N, Millichap L, Hargreaves IP. Potential Biomarkers of Mitochondrial Dysfunction Associated with COVID-19 Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:211-224. [PMID: 37378769 DOI: 10.1007/978-3-031-28012-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Mitochondria play crucial roles in modulating immune responses, and viruses can in turn moderate mitochondrial functioning. Therefore, it is not judicious to assume that clinical outcome experienced in patients with COVID-19 or long COVID may be influenced by mitochondrial dysfunction in this infection. Also, patients who are predisposed to mitochondrial respiratory chain (MRC) disorders may be more susceptible to worsened clinical outcome associated with COVID-19 infection and long COVID. MRC disorders and dysfunction require a multidisciplinary approach for their diagnosis of which blood and urinary metabolite analysis may be utilized, including the measurement of lactate, organic acid and amino acid levels. More recently, hormone-like cytokines including fibroblast growth factor-21 (FGF-21) have also been used to assess possible evidence of MRC dysfunction. In view of their association with MRC dysfunction, assessing evidence of oxidative stress parameters including GSH and coenzyme Q10 (CoQ10) status may also provide useful biomarkers for diagnosis of MRC dysfunction. To date, the most reliable biomarker available for assessing MRC dysfunction is the spectrophotometric determination of MRC enzyme activities in skeletal muscle or tissue from the disease-presenting organ. Moreover, the combined use of these biomarkers in a multiplexed targeted metabolic profiling strategy may further improve the diagnostic yield of the individual tests for assessing evidence of mitochondrial dysfunction in patients pre- and post-COVID-19 infection.
Collapse
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK.
| |
Collapse
|
20
|
Lipid Peroxidation and Iron Metabolism: Two Corner Stones in the Homeostasis Control of Ferroptosis. Int J Mol Sci 2022; 24:ijms24010449. [PMID: 36613888 PMCID: PMC9820499 DOI: 10.3390/ijms24010449] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Regulated cell death (RCD) has a significant impact on development, tissue homeostasis, and the occurrence of various diseases. Among different forms of RCD, ferroptosis is considered as a type of reactive oxygen species (ROS)-dependent regulated necrosis. ROS can react with polyunsaturated fatty acids (PUFAs) of the lipid (L) membrane via the formation of a lipid radical L• and induce lipid peroxidation to form L-ROS. Ferroptosis is triggered by an imbalance between lipid hydroperoxide (LOOH) detoxification and iron-dependent L-ROS accumulation. Intracellular iron accumulation and lipid peroxidation are two central biochemical events leading to ferroptosis. Organelles, including mitochondria and lysosomes are involved in the regulation of iron metabolism and redox imbalance in ferroptosis. In this review, we will provide an overview of lipid peroxidation, as well as key components involved in the ferroptotic cascade. The main mechanism that reduces ROS is the redox ability of glutathione (GSH). GSH, a tripeptide that includes glutamic acid, cysteine, and glycine, acts as an antioxidant and is the substrate of glutathione peroxidase 4 (GPX4), which is then converted into oxidized glutathione (GSSG). Increasing the expression of GSH can inhibit ferroptosis. We highlight the role of the xc- GSH-GPX4 pathway as the main pathway to regulate ferroptosis. The system xc-, composed of subunit solute carrier family members (SLC7A11 and SLC3A2), mediates the exchange of cystine and glutamate across the plasma membrane to synthesize GSH. Accumulating evidence indicates that ferroptosis requires the autophagy machinery for its execution. Ferritinophagy is used to describe the removal of the major iron storage protein ferritin by the autophagy machinery. Nuclear receptor coactivator 4 (NCOA4) is a cytosolic autophagy receptor used to bind ferritin for subsequent degradation by ferritinophagy. During ferritinophagy, stored iron released becomes available for biosynthetic pathways. The dysfunctional ferroptotic response is implicated in a variety of pathological conditions. Ferroptosis inducers or inhibitors targeting redox- or iron metabolism-related proteins and signal transduction have been developed. The simultaneous detection of intracellular and extracellular markers may help diagnose and treat diseases related to ferroptotic damage.
Collapse
|
21
|
Liao J, Gan Y, Peng M, Giri M, Yang S, Gu L, Li A, Xiao R, He C, Li Y, Bai Y, Xu L, Guo S. GDF15 alleviates the progression of benign tracheobronchial stenosis by inhibiting epithelial-mesenchymal transition and inactivating fibroblasts. Exp Cell Res 2022; 421:113410. [PMID: 36336027 DOI: 10.1016/j.yexcr.2022.113410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Benign tracheobronchial stenosis (BTS) is a fatal and incurable disease. Epithelial repair and matrix reconstruction play an important role in the wound repair process. If the interstitial context is not restored and stabilized in time, it can lead to pathological fibrosis. Here we attempted to identify cytokines that are involved in promoting wound repair. Growth differentiation factor 15 (GDF15) is a cytokine secreted by tracheal epithelial cells, which is indispensable for the growth of epithelial cells and inhibits the overgrowth of fibroblasts. GDF15 can counteract transforming growth factor-β (TGFβ1) stimulation of epithelial-mesenchymal transition (EMT) in tracheal epithelial cells and inhibit fibroblast activation via the TGFβ1-SMAD2/3 pathway. In a rat model of tracheal stenosis, GDF15 supplementation alleviated the degree of tracheal stenosis. These results suggest that GDF15 prevents fibroblast hyperactivation and promotes epithelial repair in injured trachea. GDF15 may be a potential therapy to improve benign tracheobronchial stenosis.
Collapse
Affiliation(s)
- Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiling Gan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mingyu Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mohan Giri
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shu Yang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Anmao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chunyan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
22
|
Growth Differentiation Factor 15 (GDF-15) Levels Associate with Lower Survival in Chronic Kidney Disease Patients with COVID-19. Biomedicines 2022; 10:biomedicines10123251. [PMID: 36552007 PMCID: PMC9775159 DOI: 10.3390/biomedicines10123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
A cytokine storm drives the pathogenesis of severe COVID-19 infection and several biomarkers have been linked to mortality. Chronic kidney disease (CKD) emerged as a risk factor for severe COVID-19. We investigated the association between selected biomarkers and mortality in 77 patients hospitalized for COVID-19, and whether they differ in patients with eGFR higher and lower than 45 mL/min. The association between patients’ characteristics, plasma biomarkers and mortality was conducted by univariate logistic regression models and independent predictors of mortality were then used to create a multivariate prediction model through Cox regression. Patients with lower eGFR had a significant increase of GDF-15, CD-25 and RAGE, with higher plasma levels in non-survivors and in patients who needed ventilation. At univariate analysis, low and mid-low GDF-15 quartiles (<4.45 ng/mL) were associated with lower mortality risk, while mid-high and high quartiles (>4.45 ng/mL) were associated with higher mortality risk. Independent association between GDF-15 quartiles and mortality risk was confirmed in the Cox model and adjusted for eGFR, age, fever and dyspnea (HR 2.28, CI 1.53−3.39, p < 0.0001). The strength of the association between GDF-15 quartiles and mortality risk increased in patients with lower compared to higher eGFR (HR 2.53, CI 1.34−4.79 versus HR 1.99, CI 1.17−3.39). Our findings may suggest a further investigation of the effect of GDF-15 signaling pathway inhibition in CKD.
Collapse
|
23
|
Achom A, Das R, Pakray P. An improved Fuzzy based GWO algorithm for predicting the potential host receptor of COVID-19 infection. Comput Biol Med 2022; 151:106050. [PMID: 36334362 PMCID: PMC9404081 DOI: 10.1016/j.compbiomed.2022.106050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and has infected millions worldwide. SARS-CoV-2 spike protein uses Angiotensin-converting enzyme 2 (ACE2) and Transmembrane serine protease 2 (TMPRSS2) for entering and fusing the host cell membrane. However, interaction with spike protein receptors and protease processing are not the only factors determining coronaviruses' entry. Several proteases mediate the entry of SARS-CoV-2 virus into the host cell. Identifying receptor factors helps understand tropism, transmission, and pathogenesis of COVID-19 infection in humans. The paper aims to identify novel viral receptor or membrane proteins that are transcriptionally and biologically similar to ACE2 and TMPRSS2 through a fuzzy clustering technique that employs the Grey wolf optimizer (GWO) algorithm for finding the optimal cluster center. The exploratory and exploitation capability of GWO algorithm is improved by hybridizing mutation and crossover operators of the evolutionary algorithm. Also, the genetic diversity of the grey wolf population is enhanced by eliminating weak individuals from the population. The proposed clustering algorithm's effectiveness is shown by detecting novel viral receptors and membrane proteins associated with the pathogenesis of SARS-CoV-2 infection. The expression profiles of ACE2 protein and its co-receptor factor are analyzed and compared with single-cell transcriptomics profiling using the Seurat R toolkit, mass spectrometry (MS), and immunohistochemistry (IHC). Our advanced clustering method infers that cell that expresses high ACE2 level are more affected by SARS-CoV-infection. So, SARS-CoV-2 virus affects lung, intestine, testis, heart, kidney, and liver more severely than brain, bone marrow, skin, spleen, etc. We have identified 58 novel viral receptors and 816 membrane proteins, and their role in the pathogenicity mechanism of SARS-CoV-2 infection has been studied. Besides, our study confirmed that Neuropilins (NRP1), G protein-coupled receptor 78 (GPR78), C-type lectin domain family 4 member M (CLEC4M), Kringle containing transmembrane protein 1 (KREMEN1), Asialoglycoprotein receptor 1 (ASGR1), A Disintegrin and metalloprotease 17 (ADAM17), Furin, Neuregulin-1,(NRG1), Basigin or CD147 and Poliovirus receptor (PVR) are the potential co-receptors of SARS-CoV-2 virus. A significant finding is that heparin derivative glycosaminoglycans could block the replication of SARS-CoV-2 virus inside the host cytoplasm. The membrane protein N-Deacetylase/N-Sulfotransferase-2 (NDST2), Extostosin protein (EXT1, EXT2, and EXT3), Glucuronic acid epimerase (GLCE), and Xylosyltransferase I, II (XYLT1, XYLT2) could act as the therapeutic target for inhibiting the spread of SARS-CoV-2 infection. Drugs such as carboplatin and gemcitabine are effective in such situations.
Collapse
Affiliation(s)
- Amika Achom
- Department of Computer Science and Engineering, National Institute of Technology, Mizoram, Aizwal, 796001, Mizoram, India.
| | - Ranjita Das
- Department of Computer Science and Engineering, National Institute of Technology, Mizoram, Aizwal, 796001, Mizoram, India.
| | - Partha Pakray
- Department of Computer Science and Engineering, National Institute of Technology, Silchar, Silchar, 788003, Assam, India.
| |
Collapse
|
24
|
Parchwani D, Dholariya S, Katoch CDS, Singh R. Growth differentiation factor 15 as an emerging novel biomarker in SARS-CoV-2 infection. World J Methodol 2022; 12:438-447. [PMID: 36186744 PMCID: PMC9516548 DOI: 10.5662/wjm.v12.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/29/2022] [Accepted: 08/31/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Growth differentiation factor (GDF)-15 is a member of a transforming growth factor-β cytokine superfamily that regulates metabolism and is released in response to inflammation, hypoxia and tissue injury. It has evolved as one of the most potent cytokines for predicting the severity of infections and inflammatory conditions, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
AIM To investigate the utility of GDF-15 in predicting the severity of SARS-CoV-2 infection.
METHODS PubMed, Reference Citation Analysis, CNKI, and Goggle Scholar were explored by using related MeSH keywords and data such as the first author’s name, study duration, type and place of study, sample size and subgroups of participants if any, serum/plasma GDF- 15 level in pg/mL, area under the curve and cut-off value in receiver operating characteristic analysis, method of measurement of GDF-15, and the main conclusion were extracted.
RESULTS In all studies, the baseline GDF-15 level was elevated in SARS-CoV-2-infected patients, and it was significantly associated with severity, hypoxemia, viral load, and worse clinical consequences. In addition, GDF-15 levels were correlated with C-reactive protein, D-dimer, ferritin and procalcitonin, and it had superior discriminatory ability to detect severity and in-hospital mortality of SARS-CoV-2 infection. Hence, GDF-15 might be used to predict the severity and prognosis of hospitalized patients with SARS-CoV-2.
CONCLUSION Serial estimation of GDF-15 levels in hospitalized patients with SARS-CoV-2 infection appeared to have useful prognostic value and GDF-15 can be considered a clinically prominent sepsis biomarker for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| | - CDS Katoch
- Department of Pulmonary Medicine, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, Gujarat, India
| |
Collapse
|
25
|
Babalghith AO, Al-kuraishy HM, Al-Gareeb AI, De Waard M, Sabatier JM, Saad HM, Batiha GES. The Potential Role of Growth Differentiation Factor 15 in COVID-19: A Corollary Subjective Effect or Not? Diagnostics (Basel) 2022; 12:diagnostics12092051. [PMID: 36140453 PMCID: PMC9497461 DOI: 10.3390/diagnostics12092051] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is primarily caused by various forms of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants. COVID-19 is characterized by hyperinflammation, oxidative stress, multi-organ injury (MOI)-like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Different biomarkers are used in the assessment of COVID-19 severity including D-dimer, ferritin, lactate dehydrogenase (LDH), and hypoxia-inducible factor (HIF). Interestingly, growth differentiation factor 15 (GDF15) has recently become a potential biomarker correlated with the COVID-19 severity. Thus, this critical review aimed to determine the critical association between GDF15 and COVID-19. The perfect function of GDF15 remains not well-recognized; nevertheless, it plays a vital role in controlling cell growth, apoptosis and inflammatory activation. Furthermore, GDF15 may act as anti-inflammatory and pro-inflammatory signaling in diverse cardiovascular complications. Furthermore, the release of GDF15 is activated by various growth factors and cytokines including macrophage colony-stimulating factor (M-CSF), angiotensin II (AngII) and p53. Therefore, higher expression of GDF15 in COVID-19 might a compensatory mechanism to stabilize and counteract dysregulated inflammatory reactions. In conclusion, GDF15 is an anti-inflammatory cytokine that could be associated with the COVID-19 severity. Increased GDF15 could be a compensatory mechanism against hyperinflammation and exaggerated immune response in the COVID-19. Experimental, preclinical and large-scale clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriya University, Baghdad P.O. Box 14022, Iraq
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120 Saint-Egrève, France
- L’institut du Thorax, INSERM, CNRS, UNIV NANTES, F-44007 Nantes, France
- LabEx Ion Channels, Science & Therapeutics, Université de Nice Sophia-Antipolis, F-06560 Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), Aix-Marseille Université, CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Mersa Matruh 51744, Egypt
- Correspondence: (H.M.S.); (G.E.-S.B.)
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
- Correspondence: (H.M.S.); (G.E.-S.B.)
| |
Collapse
|
26
|
Prognostic Value of Catestatin in Severe COVID-19: An ICU-Based Study. J Clin Med 2022; 11:jcm11154496. [PMID: 35956112 PMCID: PMC9369405 DOI: 10.3390/jcm11154496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Catestatin is a pleiotropic peptide with a wide range of immunomodulatory effects. Considering that patients with a severe COVID-19 infection have a major immunological dysregulation, the aim of this study was to evaluate catestatin levels in patients with COVID-19 treated in the intensive care unit (ICU) and to compare them between the fatal and non-fatal outcomes. The study included 152 patients with severe COVID-19, out of which 105 had a non-fatal outcome and 47 had a fatal outcome. Serum catestatin levels were estimated by an enzyme-linked immunosorbent assay in a commercially available diagnostic kit. The results show that catestatin levels were significantly lower in the fatal group compared to the non-fatal group (16.6 ± 7.8 vs. 23.2 ± 9.2 ng/mL; p < 0.001). Furthermore, there was a significant positive correlation between serum catestatin levels and vitamin D levels (r = 0.338; p < 0.001) while there was also a significant positive correlation between serum catestatin levels and growth differentiation factor-15 (GDF-15) levels (r = −0.345; p < 0.001). Furthermore, multivariate logistic regression showed that catestatin, GDF-15 and leukocyte count were significant predictors for COVID-19 survival. These findings imply that catestatin could be playing a major immunomodulatory role in the complex pathophysiology of the COVID-19 infection and that serum catestatin could also be a predictor of a poor COVID-19 outcome.
Collapse
|
27
|
Onishi S, Ebihara T, Togami Y, Matsubara T, Matsumoto H, Osuka A, Ogura H, Oda J. Growth Differentiation Factor-15 Correlates with Mortality and Severity in Severe Burns. Shock 2022; 57:211-217. [PMID: 35616608 DOI: 10.1097/shk.0000000000001925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Growth differentiation factor-15 (GDF-15) is expressed in almost all tissues of the body and is necessary for the body's defense response to stress such as inflammation. It has been reported to be associated with incidence and mortality in many diseases, including systemic inflammatory response syndromes. There are no reports on GDF-15 in burns. The purpose of this study was to investigate the trend of GDF-15 in blood in patients with severe burns and to determine its relationship with severity and mortality. METHODS This was a retrospective, observational, single-center study. The level of GDF-15 in the blood was measured and compared with clinical parameters, including prognosis. Time points for sample collection were the day of injury, 4 days after injury, and 1 week after injury. RESULTS Eighty-three patients were enrolled in the study. At all time points, GDF-15 levels in the nonsurvivor group were significantly higher than those in the survivor group. In the analysis using the ROC curve for 28-day survival, the AUC of the GDF-15 value on the day of injury was 0.798, which was higher than those of % total body surface area, burn index, and Sequential Organ Failure Assessment (SOFA) score. GDF-15 levels correlated positively with SOFA score, and the relationship became stronger along with the time course of severe burn. CONCLUSIONS In the acute phase of severe burn, GDF-15 levels were associated with mortality and SOFA scores.
Collapse
Affiliation(s)
- Shinya Onishi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Ebihara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Togami
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tsunehiro Matsubara
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akinori Osuka
- Department of Trauma, Critical Care Medicine and Burn Center, Japan Community Health Care Organization Chukyo Hospital, Nagoya, Aichi, Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Oda
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
28
|
Means RT. Hepcidin, iron, and COVID-19: is there an erythroid connection? J Investig Med 2022; 70:861-862. [PMID: 35410915 DOI: 10.1136/jim-2022-002362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 01/12/2023]
Affiliation(s)
- Robert T Means
- Department of Internal Medicine (Hematology) and Pathology, East Tennessee State University, Johnson City, Tennessee, USA
| |
Collapse
|
29
|
Ni S, Yuan Y, Kuang Y, Li X. Iron Metabolism and Immune Regulation. Front Immunol 2022; 13:816282. [PMID: 35401569 PMCID: PMC8983924 DOI: 10.3389/fimmu.2022.816282] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 12/19/2022] Open
Abstract
Iron is a critical element for living cells in terrestrial life. Although iron metabolism is strictly controlled in the body, disturbance of iron homeostasis under certain type of condition leads to innate and adaptive immune response. In innate immunity, iron regulates macrophage polarizations, neutrophils recruitment, and NK cells activity. In adaptive immunity, iron had an effect on the activation and differentiation of Th1, Th2, and Th17 and CTL, and antibody response in B cells. In this review, we focused on iron and immune regulation and listed the specific role of iron in macrophage polarization, T-cell activation, and B-cells antibody response. In addition, correlations between iron and several diseases such as cancer and aging degenerative diseases and some therapeutic strategies targeting those diseases are also discussed.
Collapse
Affiliation(s)
- Shuo Ni
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanbin Kuang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolin Li
- Department of Orthopedic Surgery and Shanghai Institute of Microsurgery on Extremities, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
30
|
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y, Vergely C. Involvement of Oxidative Stress in Protective Cardiac Functions of Calprotectin. Cells 2022; 11:cells11071226. [PMID: 35406797 PMCID: PMC8997643 DOI: 10.3390/cells11071226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
Calprotectin (CLP) belonging to the S-100 protein family is a heterodimeric complex (S100A8/S100A9) formed by two binding proteins. Upon cell activation, CLP stored in neutrophils is released extracellularly in response to inflammatory stimuli and acts as damage-associated molecular patterns (DAMPs). S100A8 and S100A9 possess both anti-inflammatory and anti-bacterial properties. The complex is a ligand of the toll-like receptor 4 (TLR4) and receptor for advanced glycation end (RAGE). At sites of infection and inflammation, CLP is a target for oxidation due to its co-localization with neutrophil-derived oxidants. In the heart, oxidative stress (OS) responses and S100 proteins are closely related and intimately linked through pathophysiological processes. Our review summarizes the roles of S100A8, S100A9 and CLP in the inflammation in relationship with vascular OS, and we examine the importance of CLP for the mechanisms driving in the protection of myocardium. Recent evidence interpreting CLP as a critical modulator during the inflammatory response has identified this alarmin as an interesting drug target.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
- Correspondence:
| | - Geoffrey Dogon
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Eve Rigal
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Marianne Zeller
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| | - Yves Cottin
- Service de Cardiologie, CHU-Dijon, 21000 Dijon, France;
| | - Catherine Vergely
- Equipe d’Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé, Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (G.D.); (E.R.); (M.Z.); (C.V.)
| |
Collapse
|
31
|
Ahmed DS, Isnard S, Berini C, Lin J, Routy JP, Royston L. Coping With Stress: The Mitokine GDF-15 as a Biomarker of COVID-19 Severity. Front Immunol 2022; 13:820350. [PMID: 35251002 PMCID: PMC8888851 DOI: 10.3389/fimmu.2022.820350] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Growth differentiation factor 15 (GDF-15) is a transforming growth factor (TGF)-β superfamily cytokine that plays a central role in metabolism regulation. Produced in response to mitochondrial stress, tissue damage or hypoxia, this cytokine has emerged as one of the strongest predictors of disease severity during inflammatory conditions, cancers and infections. Reports suggest that GDF-15 plays a tissue protective role via sympathetic and metabolic adaptation in the context of mitochondrial damage, although the exact mechanisms involved remain uncertain. In this review, we discuss the emergence of GDF-15 as a distinctive marker of viral infection severity, especially in the context of COVID-19. We will critically review the role of GDF-15 as an inflammation-induced mediator of disease tolerance, through metabolic and immune reprogramming. Finally, we discuss potential mechanisms of GDF-15 elevation during COVID-19 cytokine storm and its limitations. Altogether, this cytokine seems to be involved in disease tolerance to viral infections including SARS-CoV-2, paving the way for novel therapeutic interventions.
Collapse
Affiliation(s)
- Darakhshan Sohail Ahmed
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Stéphane Isnard
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada
| | - Carolina Berini
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - John Lin
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CONICET - Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (INBIRS), Buenos Aires, Argentina
| | - Léna Royston
- Infectious Disease and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada.,Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada.,CIHR Canadian HIV Trials Network, Vancouver, BC, Canada.,Division of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
32
|
Pence BD. Growth Differentiation Factor-15 in Immunity and Aging. FRONTIERS IN AGING 2022; 3:837575. [PMID: 35821815 PMCID: PMC9261309 DOI: 10.3389/fragi.2022.837575] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
Aging increases susceptibility to and severity of a variety of chronic and infectious diseases. Underlying this is dysfunction of the immune system, including chronic increases in low-grade inflammation (inflammaging) and age-related immunosuppression (immunosenescence). Growth differentiation factor-15 (GDF-15) is a stress-, infection-, and inflammation-induced cytokine which is increased in aging and suppresses immune responses. This mini review briefly covers existing knowledge on the immunoregulatory and anti-inflammatory roles of GDF-15, as well as its potential importance in aging and immune function.
Collapse
|
33
|
Küçük U, Gazi E, Duygu A, Akşit E. Evaluation of Aortic Elasticity Parameters in Survivors of COVID-19 Using Echocardiography Imaging. Med Princ Pract 2022; 31:276-283. [PMID: 35172305 PMCID: PMC9059019 DOI: 10.1159/000522626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE While severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily affects lung tissue, it may cause direct or indirect damage to the cardiovascular system, and permanent damage may occur. Arterial stiffness is an early indicator of cardiovascular disease risk. The aim of our study was to establish the potential effects of SARS-CoV-2 on the vascular system evaluated by transthoracic echocardiographic examination. SUBJECTS AND METHODS This study compared arterial stiffness between the survivors of COVID-19 and those without a history of COVID-19 infection. The difference in aortic diameter was examined using echocardiography. RESULTS The study included 50 patients who survived COVID-19 in the last 3-6 months and 50 age- and gender-matched healthy volunteers. In surviving COVID-19 patients, aortic diastolic diameter in cm ([3.1 ± 0.2] vs. [2.9 ± 0.1], p < 0.001), pulse pressure (PP) ([43.02 ± 14.05] vs. [35.74 ± 9.86], p = 0.004), aortic distensibility ([5.61 ± 3.57] vs. [8.31 ± 3.82], p < 0.001), aortic strain ([10.56 ± 4.91] vs. [13.88 ± 5.86], p = 0.003), PP/stroke volume index ([1.25 ± 0.47] vs. [0.98 ± 0.28], p = 0.001), and aortic stiffness index ([2.82 ± 0.47] vs. [2.46 ± 0.45], p < 0.001) were statistically significant compared to the control group. CONCLUSION SARS-CoV-2 may cause reduced or impaired aortic elasticity parameters linked to impaired arterial wall function in COVID-19 survivors compared with controls.
Collapse
|
34
|
Shi H, Xia Y, Gu R, Yu S. Ginseng adjuvant therapy on COVID-19: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e27586. [PMID: 34713832 PMCID: PMC8556025 DOI: 10.1097/md.0000000000027586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Corona virus disease 2019 (COVID-19) is spreading fast and it brings great pressure to the social economy. Many reports revealed that ginseng can develop immunity for respiratory disease, but there is no evidence to prove its effects on COVID-19. This protocol of systematic review and meta-analysis will clarify the safety and effectiveness of ginseng adjuvant therapy on COVID-19 patients. METHODS Different databases (Web of Science, Cochrane Library, PubMed, Chinese Biomedical Literature Database, Chinese National Knowledge Infrastructure, Chinese Scientific Journal Database, Wan fang Database, ClinicalTrials, World Health Organization Trials, and Chinese Clinical Trial Registry) will be retrieved to search related articles according to pre-defined inclusion and exclusion criteria. Clinical recovery time and effective rates will be assessed as the primary outcomes and any changes of patient's condition will be considered as the secondary outcomes. Subgroup analysis and sensitivity analysis will be conducted to explore sources of heterogeneity. Endnote X9.3 will be used to manage data screening. The statistical analysis will be completed by RevMan5.3 and Stata/SE 15.1 software. RESULTS This study will assess the effects and safety for ginseng adjuvant therapy on COVID-19 patients. CONCLUSION The discussion will be considered to determine whether sufficient evidence exists to prove the effects of ginseng adjuvant therapy for COVID-19 patients. SYSTEMATIC REVIEW REGISTRATION PROSPERO (ID: CRD42021277843).
Collapse
Affiliation(s)
- Hang Shi
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Yawen Xia
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Second Chinese Medicine Hospital, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Shuang Yu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology (SIBET), Chinese Academy of Sciences, Suzhou, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, No. 88 Keling Road, Suzhou New District, Suzhou, China
| |
Collapse
|