1
|
Rawson KB, Neuberger T, Smith TB, Bell IJ, Looper RE, Sebahar PR, Haussener TJ, Kanna Reddy HR, Isaacson BM, Shero J, Pasquina PF, Williams DL. Ex vivo comparison of V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™ loaded with a first-in-class bis-dialkylnorspermidine-terphenyl antibiofilm agent. Biofilm 2023; 6:100142. [PMID: 37484784 PMCID: PMC10359492 DOI: 10.1016/j.bioflm.2023.100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Implementation of negative pressure wound therapy (NPWT) as a standard of care has proven efficacious in reducing both the healing time and likelihood of nosocomial infection among pressure ulcers and traumatic, combat-related injuries. However, current formulations may not target or dramatically reduce bacterial biofilm burden following therapy. The purpose of this study was to determine the antibiofilm efficacy of an open-cell polyurethane (PU) foam (V.A.C.® Granufoam™) loaded with a first-in-class compound (CZ-01179) as the active release agent integrated via lyophilized hydrogel scaffolding. An ex vivo porcine excision wound model was designed to perform antibiofilm efficacy testing in the presence of NPWT. PU foam samples loaded with a 10.0% w/w formulation of CZ-01179 and 0.5% hyaluronic acid were prepared and tested against current standards of care: V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™. We observed statistically significant reduction of methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii biofilms with the CZ-01179 antibiofilm foam in comparison to current standard of care foams. These findings motivate further development of an antibiofilm PU foam loaded with CZ-01179.
Collapse
Affiliation(s)
- Kaden B. Rawson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
| | - Travis Neuberger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, UT, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
| | - Tyler B. Smith
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
| | - Isaac J. Bell
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | - Paul R. Sebahar
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | - Travis J. Haussener
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | | | - Brad M. Isaacson
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - John Shero
- Extremity Trauma and Amputation Center of Excellence, Joint Base San Antonio Fort Sam Houston, San Antonio, TX, USA
| | - Paul F. Pasquina
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Dustin L. Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Rawson KB, Neuberger T, Smith T, Reddy HRK, Haussener TJ, Sebahar PR, Looper RE, Isaacson BM, Shero J, Pasquina PF, Williams DL. Antibiofilm potential of a negative pressure wound therapy foam loaded with a first-in-class tri-alkyl norspermidine-biaryl antibiotic. J Biomed Mater Res B Appl Biomater 2022; 110:1780-1788. [PMID: 35213779 DOI: 10.1002/jbm.b.35035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/18/2022] [Accepted: 02/09/2022] [Indexed: 11/07/2022]
Abstract
Negative-pressure wound therapy (NPWT) is commonly utilized to treat traumatic injuries sustained on the modern battlefield. However, NPWT has failed to decrease the incidence of deep tissue infections experienced by Wounded Warriors, despite attempts to integrate common antimicrobials, like Ag+ nanoparticles, into the wound dressing. The purpose of this study was to incorporate a unique antibiofilm compound (CZ-01179) into the polyurethane matrix of NPWT foam via lyophilized hydrogel scaffolding. Foam samples with 2.5%, 5.0%, and 10.0% w/w CZ-01179 were produced and antibiofilm efficacy was compared to the current standards of care: V.A.C.® GRANUFOAM SILVER™ and V.A.C.® GRANUFOAM™. Gravimetric analysis and elution kinetics testing confirmed that this loading technique was both repeatable and controllable. Furthermore, zone of inhibition and antibiofilm efficacy testing showed that foam loaded with CZ-01179 had significantly increased activity against planktonic and biofilm phenotypes of methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii compared to the clinical standards. These findings motivate additional ex vivo and in vivo work with NPWT foam loaded with CZ-01179 with the overall objective of reducing NPWT-associated infections that complicate battlefield-related and other wounds.
Collapse
Affiliation(s)
- Kaden B Rawson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Travis Neuberger
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Tyler Smith
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | | | | | - Paul R Sebahar
- Curza Global, Salt Lake City, Utah, USA.,Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Ryan E Looper
- Curza Global, Salt Lake City, Utah, USA.,Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| | - Brad M Isaacson
- The Geneva Foundation, Tacoma, Washington, USA.,Department of Physical Medicine and Rehabilitation, Center for Rehabilitation Sciences Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - John Shero
- Department of Physical Medicine and Rehabilitation, Center for Rehabilitation Sciences Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Extremity Trauma and Amputation Center of Excellence, San Antonio, Texas, USA
| | - Paul F Pasquina
- Department of Physical Medicine and Rehabilitation, Center for Rehabilitation Sciences Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dustin L Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,Curza Global, Salt Lake City, Utah, USA.,Department of Physical Medicine and Rehabilitation, Center for Rehabilitation Sciences Research, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
In vivo efficacy of a unique first-in-class antibiofilm antibiotic for biofilm-related wound infections caused by Acinetobacter baumannii. Biofilm 2020; 2:100032. [PMID: 33447817 PMCID: PMC7798455 DOI: 10.1016/j.bioflm.2020.100032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wounds complicated by biofilms challenge even the best clinical care and can delay a return to duty for service members. A major component of treatment in wounded warriors includes infected wound management. Yet, all antibiotic therapy options have been optimized against planktonic bacteria, leaving an important gap in biofilm-related wound care. We tested the efficacy of a unique compound (CZ-01179) specifically synthesized to eradicate biofilms. CZ-01179 was formulated as the active agent in a hydrogel, and tested in vitro and in vivo in a pig excision wound model for its ability to treat and prevent biofilm-related wound infection caused by Acinetobacter baumannii. Data indicated that compared to a clinical standard—silver sulfadiazine—CZ-01179 was much more effective at eradicating biofilms of A. baumannii in vitro and up to 6 days faster at eradicating biofilms in vivo. CZ-01179 belongs to a broader class of newly-synthesized antibiofilm agents (referred to as CZ compounds) with reduced risk of resistance development, specific efficacy against biofilms, and promising formulation potential for clinical applications. Given its broad spectrum and biofilm-specific nature, CZ-01179 gel may be a promising agent to increase the pipeline of products to treat and prevent biofilm-related wound infections.
Collapse
|
4
|
Perevoshchikova KA, Nichugovskiy AI, Isagulieva AK, Morozova NG, Ivanov IV, Maslov MA, Shtil AA. Synthesis of novel lipophilic tetraamines with cytotoxic activity. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
5
|
Ashton NN, Allyn G, Porter ST, Haussener TJ, Sebahar PR, Looper RE, Williams DL. In vitro testing of a first-in-class tri-alkylnorspermidine-biaryl antibiotic in an anti-biofilm silicone coating. Acta Biomater 2019; 93:25-35. [PMID: 30769135 DOI: 10.1016/j.actbio.2019.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/22/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Abstract
Biofilm-related infection is among the worst complication to prosthetic joint replacement procedures; once established on the implant surface, biofilms show strong recalcitrance to clinical antibiotic therapy, frequently requiring costly revision procedures and prolonged systemic antibiotics for their removal. A well-designed active release coating might assist host immunity in clearing bacterial contaminants within the narrow perioperative window and ultimately prevent microbial colonization of the joint prosthesis. A first-in-class compound (CZ-01127) was tested as the active release agent in a silicone (Si) coating using an in vitro dynamic flow model of surgical site contamination and compared with analogous coatings containing clinical gold-standard antibiotics vancomycin and gentamicin; the CZ-01127 coating outperformed both vancomycin and gentamicin coatings and was the only to decrease the methicillin-resistant Staphylococcus aureus (MRSA) inocula below detectable limits for the first 3 days. The antimicrobial activity of CZ-01127, and for comparison vancomycin and gentamicin, were characterized against both planktonic and biofilm MRSA using the minimum inhibitory concentration (MIC) assay, serial passages, and serial dilution tests against established biofilms grown with a CBR 90 CDC biofilm reactor. Despite a similar MIC (1 µg/ml) and behavior in a 25-day serial passage analysis, CZ-01127 displayed much greater bactericidal activity against established biofilms and was the only to decrease biofilm colony forming units (CFUs) below detectable limits at the highest concentration tested (500 µg/ml). Coating release profiles were characterized using ATR-FTIR and displayed burst release kinetics within the decisive period of the perioperative window suggesting the silicon carrier is broadly useful for screening antibiotic compound for local delivery applications. STATEMENT OF SIGNIFICANCE: With an aging population, an increasing number of people are undergoing total joint replacement procedures in which diseased joint tissues are replaced with permanent metallic implants. Some of these procedures are burdened by costly and debilitating infections. A promising approach to prevent infections is the use of an antimicrobial coating on the surface of the implant which releases antibiotics into the surgical site to prevent infection. In this study, we tested a new antibiotic compound formulated in a silicone coating. Data showed that this compound was more effective at killing pathogenic methicillin resistant Staphylococcus aureus (MRSA) bacteria than two clinical gold-standard antibiotics-vancomycin and gentamicin-and could be a promising agent for antimicrobial coating technologies.
Collapse
Affiliation(s)
- Nicholas N Ashton
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Gina Allyn
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Scott T Porter
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Travis J Haussener
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States
| | - Paul R Sebahar
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States
| | - Ryan E Looper
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States; Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Dustin L Williams
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States; Curza Global, LLC, Salt Lake City, UT, United States; Department of Pathology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States; Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
6
|
Williams DL, Epperson RT, Ashton NN, Taylor NB, Kawaguchi B, Olsen RE, Haussener TJ, Sebahar PR, Allyn G, Looper RE. In vivo analysis of a first-in-class tri-alkyl norspermidine-biaryl antibiotic in an active release coating to reduce the risk of implant-related infection. Acta Biomater 2019; 93:36-49. [PMID: 30710710 DOI: 10.1016/j.actbio.2019.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/31/2022]
Abstract
Prosthetic joint infection (PJI) is a well-known and persisting problem. Active release coatings have promise to provide early protection to an implant by eradicating small colony biofilm contaminants or planktonic bacteria that can form biofilm. Traditional antibiotics can be limited as active release agents in that they have limited effect against biofilms and develop resistance at sub-lethal concentrations. A unique first-in-class compound (CZ-01127) was assessed as the active release agent in a silicone (Si)-based coating to prevent PJI in a sheep model of joint space infection. Titanium (Ti) plugs contained a porous coated Ti (PCTi) region and polymer-coated region. Plugs were implanted into a femoral condyle of sheep to assess the effect of the Si polymer on cancellous bone ingrowth, the effect of CZ-01127 on bone ingrowth, and the ability of CZ-01127 to prevent PJI. Microbiological results showed that CZ-01127 was able to eradicate bacteria in the local region of the implanted plugs. Data further showed that Si did not adversely affect bone ingrowth. However, bacteria that reached the joint space (synovium) were not fully eradicated. Outcomes suggested that the CZ-01127 coating provided local protection to the implant system in a challenging model, the design of which could be beneficial for testing future antimicrobial therapies for PJI. STATEMENT OF SIGNIFICANCE: Periprosthetic joint infection (PJI) is now commonplace, and constitutes an underlying problem that patients and physicians face. Active release antibiotic coatings have potential to prevent these infections. Traditional antibiotics are limited in their ability to eradicate bacteria that reside in biofilms, and are more susceptible to resistance development. This study addressed these limitations by testing the efficacy of a unique antimicrobial compound in a coating that was tested in a challenging sheep model of PJI. The unique coating was able to eradicate bacteria and prevent infection in the environment adjacent to the implant. Bacteria that escaped into the joint space still caused infection, yet benchmark data can be used to optimize the coating and translate it toward clinical use.
Collapse
Affiliation(s)
- Dustin L Williams
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States; Department of Pathology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States; Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, United States; Curza Global, LLC, Salt Lake City, UT, United States.
| | - Richard T Epperson
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Nicholas N Ashton
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Nicholas B Taylor
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Brooke Kawaguchi
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Raymond E Olsen
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Travis J Haussener
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States
| | - Paul R Sebahar
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States
| | - Gina Allyn
- George E. Wahlen Department of Veterans Affairs, Salt Lake City, UT, United States; Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States
| | - Ryan E Looper
- Curza Global, LLC, Salt Lake City, UT, United States; Synthetic and Medicinal Chemistry Core, University of Utah, Salt Lake City, UT, United States; Department of Chemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|