1
|
Lü H, Huang YH, Li QF, Zhao HM, Xiang L, Li H, Li YW, Mo CH, Cai QY. Degradation efficiency for phthalates and cooperative mechanism in synthetic bacterial consortium and its bioaugmentation for soil remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 378:126481. [PMID: 40398803 DOI: 10.1016/j.envpol.2025.126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025]
Abstract
Agricultural soil contamination by phthalates (PAEs) necessitates efficient remediation strategies with microbial degradation. However, microbial cooperation of PAE-degrading consortia and their effectiveness in bioaugmentation through re-colonization remain poorly understood. In this study, synthetic PAE-degrading bacterial consortia were constructed using the 20 isolates derived from maize rhizosphere to explore microbial cooperation and bioaugmentation for PAE removal. Following optimization, five key isolates either with strong individual degradation capacity or beneficial metabolic interactions were co-cultured to form a synthetic consortium SC-5. This consortium demonstrated efficient degradation of di-n-butyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) (each at 200 mg/L), achieving 98.1 %-100 % removal percentages and reduced half-lives compared to the single strain. Metabolic pathway analysis revealed that consortium SC-5 could completely degrade PAEs and their intermediates including monoester, phthalic acid, and protocatechuate through cooperative metabolism. Within the consortium, Mycobacterium sp. R14 exhibited strong PAE-degrading ability, while genera Rhizobium and Paenarthrobacter predominated in mineral salt media supplemented with PAEs or glucose, as confirmed by high-throughput sequencing. These results underscore their differentiated utilization of parent PAEs, degradation intermediates, and metabolites through microbial cooperation. Furthermore, consortium SC-5 could effectively re-colonize maize rhizosphere with significantly higher relative abundances of the genera affiliating to the members of SC-5 than those in bulk soil, thereby significantly facilitating DEHP removal from rhizosphere. The present study highlights the importance of microbial cooperation within synthetic consortium and demonstrates its potential in bioaugmentation-based bioremediation of PAE-polluted soil.
Collapse
Affiliation(s)
- Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qi-Fang Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
2
|
Chmolowska D, Wasak-Sęk K, Chroňáková A, Bahram M, Choczyński M, Tedersoo L. Soil and its microbiome in translocated meadows in the context of habitats in the receptor area. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125714. [PMID: 40378786 DOI: 10.1016/j.jenvman.2025.125714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/01/2025] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Turf translocation, which is undertaken to mitigate the destruction of valuable habitats, can challenge the soil biota. We investigated translocated protected Molinion meadows in the context of the surrounding environments. Soil and soil microorganisms were examined in meadows translocated four years earlier to a habitat garden in recycled land. Neighbouring habitats, comprised of woodland, cropland and fallow, represented the receptor area, while meadows that remained near the donor area were treated as reference areas. The soil moisture, compaction, reactivity and nutrient availability were examined. The microbial properties studied included taxon-specific markers for a quantitative PCR and Fatty Acid Analysis, N transformation (nitrification potential and ammonia oxygenase gene quantification), as well as the composition and diversity of bacteria, archaea, fungi and protists through soil DNA metabarcoding. The translocated soils were more compacted and had smaller water retention, which impacted the soil communities. A switch from N immobilisation to ammonification and a high diversity of fungi, including a greater richness of saprotrophic and symbiotrophic species occurred, with a higher relative abundance of Ascomycota. Amendments in Stramenopila, Chlorophyta and Alveolata communities were present. A low ratio of ammonia oxidising archaea and bacteria (AOA:AOB; 0.4 translocated vs. 4.9 reference) indicated a degradation of the wet meadow status, which created a suitable environment for copiotrophs. The initial increase in biodiversity pointed out habitat deterioration leading to the loss of specific, protected communities. The use of 'omics' was a sensitive indicator of changes that occurred at the level of the microbiome structure rather than the biomass.
Collapse
Affiliation(s)
- Dominika Chmolowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016, Kraków, Poland.
| | - Katarzyna Wasak-Sęk
- Institute of Geography and Spatial Organization, Polish Academy of Sciences, Św. Jana 22, 31-018, Kraków, Poland.
| | - Alica Chroňáková
- Institute of Soil Biology and Biogeochemistry, Biology Centre CAS, Na Sádkách 702/7, CZ-37005, České Budějovice, Czech Republic.
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden; Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Maciej Choczyński
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 7, Kraków, Poland.
| | - Leho Tedersoo
- Mycology and Microbiology Centre, University of Tartu, Liivi 2, 50400, Tartu, Estonia; Institute of Ecology and Earth Sciences, University of Tartu, Liivi 2, Tartu, 50400, Estonia.
| |
Collapse
|
3
|
You T, Liu Q, Chen M, Tang S, Ou L, Li D. Synthetic Microbial Communities Enhance Pepper Growth and Root Morphology by Regulating Rhizosphere Microbial Communities. Microorganisms 2025; 13:148. [PMID: 39858916 PMCID: PMC11767384 DOI: 10.3390/microorganisms13010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Synthetic microbial community (SynCom) application is efficient in promoting crop yield and soil health. However, few studies have been conducted to enhance pepper growth via modulating rhizosphere microbial communities by SynCom application. This study aimed to investigate how SynCom inoculation at the seedling stage impacts pepper growth by modulating the rhizosphere microbiome using high-throughput sequencing technology. SynCom inoculation significantly increased shoot height, stem diameter, fresh weight, dry weight, chlorophyll content, leaf number, root vigor, root tips, total root length, and root-specific surface area of pepper by 20.9%, 36.33%, 68.84%, 64.34%, 29.65%, 27.78%, 117.42%, 35.4%, 21.52%, and 39.76%, respectively, relative to the control. The Chao index of the rhizosphere microbial community and Bray-Curtis dissimilarity of the fungal community significantly increased, while Bray-Curtis dissimilarity of the bacterial community significantly decreased by SynCom inoculation. The abundances of key taxa such as Scedosporium, Sordariomycetes, Pseudarthrobacter, norankSBR1031, and norankA4b significantly increased with SynCom inoculation, and positively correlated with indices of pepper growth. Our findings suggest that SynCom inoculation can effectively enhance pepper growth and regulate root morphology by regulating rhizosphere microbial communities and increasing key taxa abundance like Sordariomycetes and Pseudarthrobacter, thereby benefiting nutrient acquisition, resistance improvement, and pathogen resistance of crops to ensure sustainability.
Collapse
Affiliation(s)
- Tian You
- College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (T.Y.); (M.C.)
- Hunan Provincial Key Laboratory of Agroecological Engineering, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (S.T.)
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Qiumei Liu
- Hunan Provincial Key Laboratory of Agroecological Engineering, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (S.T.)
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Meng Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (T.Y.); (M.C.)
- Hunan Provincial Key Laboratory of Agroecological Engineering, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (S.T.)
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Siyu Tang
- Hunan Provincial Key Laboratory of Agroecological Engineering, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (S.T.)
| | - Lijun Ou
- College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (T.Y.); (M.C.)
| | - Dejun Li
- Hunan Provincial Key Laboratory of Agroecological Engineering, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; (Q.L.); (S.T.)
- Guangxi Key Laboratory of Karst Ecological Processes and Services, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| |
Collapse
|
4
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
5
|
Gao C, Bezemer TM, van Bodegom PM, Baldrian P, Kohout P, Mancinelli R, van der Hagen H, Soudzilovskaia NA. Fungal communities are passengers in community development of dune ecosystems, while bacteria are not. Ecology 2024; 105:e4312. [PMID: 38666421 DOI: 10.1002/ecy.4312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/14/2024] [Indexed: 06/04/2024]
Abstract
An increasing number of studies of above-belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: 'Are soil microorganisms driving plant community functioning or do they adapt to the plant community?' In a field experiment in an early successional dune ecosystem, we manipulated soil communities by adding living (i.e., natural microbial communities) and sterile soil inocula, originating from natural ecosystems, and examined the annual responses of soil and plant communities. The experimental manipulations had a persistent effect on the soil microbial community with divergent impacts for living and sterile soil inocula. The plant community was also affected by soil inoculation, but there was no difference between the impacts of living and sterile inocula. We also observed an increasing convergence of plant and soil microbial composition over time. Our results show that alterations in soil abiotic and biotic conditions have long-term effects on the composition of both plant and soil microbial communities. Importantly, our study provides direct evidence that soil microorganisms are not "drivers" of plant community dynamics. We found that soil fungi and bacteria manifest different community assemblies in response to treatments. Soil fungi act as "passengers," that is, soil microorganisms reflect plant community dynamics but do not alter it, whereas soil bacteria are neither "drivers" nor "passengers" of plant community dynamics in early successional ecosystems. These results are critical for understanding the community assembly of plant and soil microbial communities under natural conditions and are directly relevant for ecosystem management and restoration.
Collapse
Affiliation(s)
- Chenguang Gao
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - T Martijn Bezemer
- Institute of Biology, Above-Belowground Interactions Group, Leiden University, Leiden, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Peter M van Bodegom
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - Petr Baldrian
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Petr Kohout
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Praha, Czech Republic
| | - Riccardo Mancinelli
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | | | - Nadejda A Soudzilovskaia
- Environmental Biology, Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
- Center for Environmental Sciences, Hasselt University, Hasselt, Belgium
| |
Collapse
|
6
|
Barnett SE, Shade A. Arrive and wait: Inactive bacterial taxa contribute to perceived soil microbiome resilience after a multidecadal press disturbance. Ecol Lett 2024; 27:e14393. [PMID: 38430049 DOI: 10.1111/ele.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
Long-term (press) disturbances like the climate crisis and other anthropogenic pressures are fundamentally altering ecosystems and their functions. Many critical ecosystem functions, such as biogeochemical cycling, are facilitated by microbial communities. Understanding the functional consequences of microbiome responses to press disturbances requires ongoing observations of the active populations that contribute to functions. This study leverages a 7-year time series of a 60-year-old coal seam fire (Centralia, Pennsylvania, USA) to examine the resilience of soil bacterial microbiomes to a press disturbance. Using 16S rRNA and 16S rRNA gene amplicon sequencing, we assessed the interannual dynamics of the active subset and the 'whole' bacterial community. Contrary to our hypothesis, the whole communities demonstrated greater resilience than active subsets, suggesting that inactive members contributed to overall structural resilience. Thus, in addition to selection mechanisms of active populations, perceived microbiome resilience is also supported by mechanisms of dispersal, persistence, and revival from the local dormant pool.
Collapse
Affiliation(s)
- Samuel E Barnett
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, USA
| | - Ashley Shade
- Ecologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, Ecole Nationale Véterinaire de Lyon, Universite Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
7
|
Custer GF, Mealor BA, Fowers B, van Diepen LTA. Soil microbiome analysis supports claims of ineffectiveness of Pseudomonas fluorescens D7 as a biocontrol agent of Bromus tectorum. Microbiol Spectr 2024; 12:e0177123. [PMID: 38051051 PMCID: PMC10782950 DOI: 10.1128/spectrum.01771-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cheatgrass is one of North America's most problematic invasive species. Invasion by this annual grass alters ecosystem structure and function and has proven very challenging to remove with traditional approaches. Commercially available bioherbicides, like P. fluorescens D7, are applied with the goal of providing lasting control from a single application. However, experimental results suggest that this bioherbicide has limited efficacy under field conditions. Potential explanations for variable efficacy include a failure of this bioherbicide to establish in the soil microbiome. However, to our knowledge, no data exist to support or refute this hypothesis. Here, we use a deep-sequencing approach to better understand the effects of this bioherbicide on the soil microbiome and screen for P. fluorescens at 18 months post-application.
Collapse
Affiliation(s)
- Gordon F. Custer
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Department of Plant Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
- The One Health Microbiome Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Brian A. Mealor
- Department of Plant Sciences, University of Wyoming, Laramie, Wyoming, USA
- Sheridan Research and Extension Center, Sheridan, Wyoming, USA
- Institute for Managing Annual Grasses Invading Natural Ecosystems, Sheridan, Wyoming, USA
| | - Beth Fowers
- Department of Plant Sciences, University of Wyoming, Laramie, Wyoming, USA
- Sheridan Research and Extension Center, Sheridan, Wyoming, USA
- Institute for Managing Annual Grasses Invading Natural Ecosystems, Sheridan, Wyoming, USA
| | - Linda T. A. van Diepen
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming, USA
- Program in Ecology, University of Wyoming, Laramie, Wyoming, USA
- Institute for Managing Annual Grasses Invading Natural Ecosystems, Sheridan, Wyoming, USA
| |
Collapse
|
8
|
Li G, Liu T, Whalen JK, Wei Z. Nematodes: an overlooked tiny engineer of plant health. TRENDS IN PLANT SCIENCE 2024; 29:52-63. [PMID: 37468419 DOI: 10.1016/j.tplants.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/21/2023]
Abstract
Nematodes are a crucial component of rhizosphere biodiversity, affecting plant health as the most abundant and functionally diverse soil animals. Plant-parasitic nematodes are generally considered harmful, which may overlook their potential benefits to plants when coexisting with free-living nematodes in soil. We provide new insights into nematodes as vital plant partners. Plant root damage by plant-parasitic nematodes creates opportunities for pathogens and beneficial microbiota to colonize the rhizosphere. Free-living nematodes coordinate microbiota to suppress plant diseases, but they are susceptible to mortality from plant pathogens, potentially favoring pathogen release in the root zone. We conclude that the nematode's role in regulating plant pathogens represents a missing link, constraining our ability to predict and control soil-borne diseases in healthy plants.
Collapse
Affiliation(s)
- Gen Li
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Liu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec H9X 3V9, Canada; Chair of Soil Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Zhong Wei
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, National Engineering Research Center for Organic-based Fertilizers, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Topalović O, Geisen S. Nematodes as suppressors and facilitators of plant performance. THE NEW PHYTOLOGIST 2023; 238:2305-2312. [PMID: 37010088 DOI: 10.1111/nph.18925] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/26/2023] [Indexed: 05/19/2023]
Abstract
Plant-nematode interactions are mainly considered from the negative aspect with a focus on plant-parasitic nematodes (PPNs), which is justified considering the agronomic losses caused by PPNs. Despite the fact that PPNs are outnumbered by nonparasitic free-living nematodes (FLNs), the functional importance of FLNs, especially with regard to plant performance, remains largely unknown. Here, we provide a comprehensive overview and most recent insights into soil nematodes by showing direct and indirect links of both PPNs and FLNs with plant performance. We especially emphasize the knowledge gaps and potential of FLNs as important indirect players in driving plant performance such as stimulating the resistance to pests via improving the disease suppressive activity of the rhizobiome. Together, we present a holistic view of soil nematodes as positive and negative contributors to plant performance, accentuating the positive but underexplored role of FLNs.
Collapse
Affiliation(s)
- Olivera Topalović
- Section of Terrestrial Ecology, University of Copenhagen, Copenhagen, DK-2100, Denmark
- Department of Nematology, Wageningen University and Research, Wageningen, 6708PB, the Netherlands
| | - Stefan Geisen
- Department of Nematology, Wageningen University and Research, Wageningen, 6708PB, the Netherlands
| |
Collapse
|
10
|
Silverstein MR, Segrè D, Bhatnagar JM. Environmental microbiome engineering for the mitigation of climate change. GLOBAL CHANGE BIOLOGY 2023; 29:2050-2066. [PMID: 36661406 DOI: 10.1111/gcb.16609] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Environmental microbiome engineering is emerging as a potential avenue for climate change mitigation. In this process, microbial inocula are introduced to natural microbial communities to tune activities that regulate the long-term stabilization of carbon in ecosystems. In this review, we outline the process of environmental engineering and synthesize key considerations about ecosystem functions to target, means of sourcing microorganisms, strategies for designing microbial inocula, methods to deliver inocula, and the factors that enable inocula to establish within a resident community and modify an ecosystem function target. Recent work, enabled by high-throughput technologies and modeling approaches, indicate that microbial inocula designed from the top-down, particularly through directed evolution, may generally have a higher chance of establishing within existing microbial communities than other historical approaches to microbiome engineering. We address outstanding questions about the determinants of inocula establishment and provide suggestions for further research about the possibilities and challenges of environmental microbiome engineering as a tool to combat climate change.
Collapse
Affiliation(s)
- Michael R Silverstein
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
| | - Daniel Segrè
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Biological Design Center, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Department of Physics, Boston University, Boston, Massachusetts, USA
| | - Jennifer M Bhatnagar
- Bioinformatics Program, Boston University, Boston, Massachusetts, USA
- Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Hawxhurst CJ, Micciulla JL, Bridges CM, Shor M, Gage DJ, Shor LM. Soil Protists Can Actively Redistribute Beneficial Bacteria along Medicago truncatula Roots. Appl Environ Microbiol 2023; 89:e0181922. [PMID: 36877040 PMCID: PMC10057870 DOI: 10.1128/aem.01819-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 03/07/2023] Open
Abstract
The rhizosphere is the region of soil directly influenced by plant roots. The microbial community in the rhizosphere includes fungi, protists, and bacteria: all play significant roles in plant health. The beneficial bacterium Sinorhizobium meliloti infects growing root hairs on nitrogen-starved leguminous plants. Infection leads to the formation of a root nodule, where S. meliloti converts atmospheric nitrogen to ammonia, a bioavailable form. In soil, S. meliloti is often found in biofilms and travels slowly along the roots, leaving developing root hairs at the growing root tips uninfected. Soil protists are an important component of the rhizosphere system, able to travel quickly along roots and water films, who prey on soil bacteria and have been known to egest undigested phagosomes. We show that a soil protist, Colpoda sp., can transport S. meliloti down Medicago truncatula roots. Using model soil microcosms, we directly observed fluorescently labeled S. meliloti along M. truncatula roots and tracked the displacement of the fluorescence signal over time. Two weeks after co-inoculation, this signal extended 52 mm farther down plant roots when Colpoda sp. was also present versus treatments that contained bacteria but not protists. Direct counts also showed protists are required for viable bacteria to reach the deeper sections of our microcosms. Facilitating bacterial transport may be an important mechanism whereby soil protists promote plant health. IMPORTANCE Soil protists are an important part of the microbial community in the rhizosphere. Plants grown with protists fare better than plants grown without protists. Mechanisms through which protists support plant health include nutrient cycling, alteration of the bacterial community through selective feeding, and consumption of plant pathogens. Here, we provide data in support of an additional mechanism: protists act as transport vehicles for bacteria in soil. We show that protist-facilitated transport can deliver plant-beneficial bacteria to the growing tips of roots that may otherwise be sparsely inhabited with bacteria originating from a seed-associated inoculum. By co-inoculating Medicago truncatula roots with both S. meliloti, a nitrogen-fixing legume symbiont, and Colpoda sp., a ciliated protist, we show substantial and statistically significant transport with depth and breadth of bacteria-associated fluorescence as well as transport of viable bacteria. Co-inoculation with shelf-stable encysted soil protists may be employed as a sustainable agriculture biotechnology to better distribute beneficial bacteria and enhance the performance of inoculants.
Collapse
Affiliation(s)
- Christopher J. Hawxhurst
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Jamie L. Micciulla
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Charles M. Bridges
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Mikhael Shor
- Department of Economics, University of Connecticut, Storrs, Connecticut, USA
| | - Daniel J. Gage
- Department of Molecular and Cellular Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Leslie M. Shor
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut, USA
- Center for Environmental Sciences & Engineering, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
12
|
King WL, Richards SC, Kaminsky LM, Bradley BA, Kaye JP, Bell TH. Leveraging microbiome rediversification for the ecological rescue of soil function. ENVIRONMENTAL MICROBIOME 2023; 18:7. [PMID: 36691096 PMCID: PMC9872425 DOI: 10.1186/s40793-023-00462-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Global biodiversity losses threaten ecosystem services and can impact important functional insurance in a changing world. Microbial diversity and function can become depleted in agricultural systems and attempts to rediversify agricultural soils rely on either targeted microbial introductions or retaining natural lands as biodiversity reservoirs. As many soil functions are provided by a combination of microbial taxa, rather than outsized impacts by single taxa, such functions may benefit more from diverse microbiome additions than additions of individual commercial strains. In this study, we measured the impact of soil microbial diversity loss and rediversification (i.e. rescue) on nitrification by quantifying ammonium and nitrate pools. We manipulated microbial assemblages in two distinct soil types, an agricultural and a forest soil, with a dilution-to-extinction approach and performed a microbiome rediversification experiment by re-introducing microorganisms lost from the dilution. A microbiome water control was included to act as a reference point. We assessed disruption and potential restoration of (1) nitrification, (2) bacterial and fungal composition through 16S rRNA gene and fungal ITS amplicon sequencing and (3) functional genes through shotgun metagenomic sequencing on a subset of samples. RESULTS Disruption of nitrification corresponded with diversity loss, but nitrification was successfully rescued in the rediversification experiment when high diversity inocula were introduced. Bacterial composition clustered into groups based on high and low diversity inocula. Metagenomic data showed that genes responsible for the conversion of nitrite to nitrate and taxa associated with nitrogen metabolism were absent in the low diversity inocula microcosms but were rescued with high diversity introductions. CONCLUSIONS In contrast to some previous work, our data suggest that soil functions can be rescued by diverse microbiome additions, but that the concentration of the microbial inoculum is important. By understanding how microbial rediversification impacts soil microbiome performance, we can further our toolkit for microbial management in human-controlled systems in order to restore depleted microbial functions.
Collapse
Affiliation(s)
- William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Laura M Kaminsky
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
| | - Brosi A Bradley
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason P Kaye
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
13
|
Aroney STN, Poole PS, Sánchez-Cañizares C. Rhizobial Chemotaxis and Motility Systems at Work in the Soil. FRONTIERS IN PLANT SCIENCE 2021; 12:725338. [PMID: 34512702 PMCID: PMC8429497 DOI: 10.3389/fpls.2021.725338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/06/2021] [Indexed: 05/17/2023]
Abstract
Bacteria navigate their way often as individual cells through their chemical and biological environment in aqueous medium or across solid surfaces. They swim when starved or in response to physical and chemical stimuli. Flagella-driven chemotaxis in bacteria has emerged as a paradigm for both signal transduction and cellular decision-making. By altering motility, bacteria swim toward nutrient-rich environments, movement modulated by their chemotaxis systems with the addition of pili for surface movement. The numbers and types of chemoreceptors reflect the bacterial niche and lifestyle, with those adapted to complex environments having diverse metabolic capabilities, encoding far more chemoreceptors in their genomes. The Alpha-proteobacteria typify the latter case, with soil bacteria such as rhizobia, endosymbionts of legume plants, where motility and chemotaxis are essential for competitive symbiosis initiation, among other processes. This review describes the current knowledge of motility and chemotaxis in six model soil bacteria: Sinorhizobium meliloti, Agrobacterium fabacearum, Rhizobium leguminosarum, Azorhizobium caulinodans, Azospirillum brasilense, and Bradyrhizobium diazoefficiens. Although motility and chemotaxis systems have a conserved core, rhizobia possess several modifications that optimize their movements in soil and root surface environments. The soil provides a unique challenge for microbial mobility, since water pathways through particles are not always continuous, especially in drier conditions. The effectiveness of symbiont inoculants in a field context relies on their mobility and dispersal through the soil, often assisted by water percolation or macroorganism movement or networks. Thus, this review summarizes the factors that make it essential to consider and test rhizobial motility and chemotaxis for any potential inoculant.
Collapse
|