1
|
Gouesbet G, Renault D, Derocles SAP, Colinet H. Strong resistance to β-cyfluthrin in a strain of the beetle Alphitobius diaperinus: a de novo transcriptome analysis. INSECT SCIENCE 2025; 32:209-226. [PMID: 38632693 PMCID: PMC11824889 DOI: 10.1111/1744-7917.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/19/2024]
Abstract
The lesser mealworm, Alphitobius diaperinus, is an invasive tenebrionid beetle and a vector of pathogens. Due to the emergence of insecticide resistance and consequent outbreaks that generate significant phytosanitary and energy costs for poultry farmers, it has become a major insect pest worldwide. To better understand the molecular mechanisms behind this resistance, we studied a strain of A. diaperinus from a poultry house in Brittany that was found to be highly resistant to the β-cyfluthrin. The strain survived β-cyfluthrin exposures corresponding to more than 100 times the recommended dose. We used a comparative de novo RNA-Seq approach to explore genes expression in resistant versus sensitive strains. Our de novo transcriptomic analyses showed that responses to β-cyfluthrin likely involved a whole set of resistance mechanisms. Genes related to detoxification, metabolic resistance, cuticular hydrocarbon biosynthesis and proteolysis were found to be constitutively overexpressed in the resistant compared to the sensitive strain. Follow-up enzymatic assays confirmed that the resistant strain exhibited high basal activities for detoxification enzymes such as cytochrome P450 monooxygenase and glutathione-S-transferase. The in-depth analysis of differentially expressed genes suggests the involvement of complex regulation of signaling pathways. Detailed knowledge of these resistance mechanisms is essential for the establishment of effective pest control.
Collapse
Affiliation(s)
- Gwenola Gouesbet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
| | - David Renault
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
- Institut Universitaire de France, 1 rue Descartes, CEDEX 05ParisFrance
| | - Stéphane A. P. Derocles
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
| | - Hervé Colinet
- CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution)—UMR 6553University of RennesRennesFrance
| |
Collapse
|
2
|
Kreir M, Putri D, Tekle F, Pibiri F, d’Ydewalle C, Van Ammel K, Geys H, Teisman A, Gallacher DJ, Lu HR. Development of a new hazard scoring system in primary neuronal cell cultures for drug-induced acute neuronal toxicity identification in early drug discovery. Front Pharmacol 2024; 15:1308547. [PMID: 38873414 PMCID: PMC11170107 DOI: 10.3389/fphar.2024.1308547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
We investigated drug-induced acute neuronal electrophysiological changes using Micro-Electrode arrays (MEA) to rat primary neuronal cell cultures. Data based on 6-key MEA parameters were analyzed for plate-to-plate vehicle variability, effects of positive and negative controls, as well as data from over 100 reference drugs, mostly known to have pharmacological phenotypic and clinical outcomes. A Least Absolute Shrinkage and Selection Operator (LASSO) regression, coupled with expert evaluation helped to identify the 6-key parameters from many other MEA parameters to evaluate the drug-induced acute neuronal changes. Calculating the statistical tolerance intervals for negative-positive control effects on those 4-key parameters helped us to develop a new weighted hazard scoring system on drug-induced potential central nervous system (CNS) adverse effects (AEs). The weighted total score, integrating the effects of a drug candidate on the identified six-pivotal parameters, simply determines if the testing compound/concentration induces potential CNS AEs. Hereto, it uses four different categories of hazard scores: non-neuroactive, neuroactive, hazard, or high hazard categories. This new scoring system was successfully applied to differentiate the new compounds with or without CNS AEs, and the results were correlated with the outcome of in vivo studies in mice for one internal program. Furthermore, the Random Forest classification method was used to obtain the probability that the effect of a compound is either inhibitory or excitatory. In conclusion, this new neuronal scoring system on the cell assay is actively applied in the early de-risking of drug development and reduces the use of animals and associated costs.
Collapse
Affiliation(s)
- Mohamed Kreir
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Dea Putri
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Fetene Tekle
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Francesca Pibiri
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | | | - Karel Van Ammel
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Helena Geys
- Statistics and Decision Sciences, Global Development, Janssen Research and Development, Beerse, Belgium
| | - Ard Teisman
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - David J. Gallacher
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| | - Hua Rong Lu
- Global Toxicology and Safety Pharmacology, Preclinical Sciences and Translational Safety, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
3
|
van Melis LVJ, Peerdeman AM, Huiberts EHW, van Kleef RGDM, de Groot A, Westerink RHS. Effects of acute insecticide exposure on neuronal activity in vitro in rat cortical cultures. Neurotoxicology 2024; 102:58-67. [PMID: 38599286 DOI: 10.1016/j.neuro.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Exposure to pesticides, such as carbamates, organophosphates, organochlorines and pyrethroids, has been linked to various health problems, including neurotoxicity. Although most in vivo studies use only male rodents, some studies have shown in vivo sex-specific effects after acute exposure. Since in vivo studies are costly and require a large number of animals, in vitro assays that take sex-specific effects into account are urgently needed. We therefore assessed the acute effects of exposure to different carbamates (methomyl, aldicarb and carbaryl), organophosphates (chlorpyrifos (CPF), chlorpyrifos-oxon (CPO) and 3,5,6-trichloropyridinol), organochlorines (endosulfan, dieldrin and lindane) and pyrethroids (permethrin, alpha-cypermethrin and 3-phenoxy-benzoic acid (3-PBA)) on neuronal network function in sex-separated rat primary cortical cultures using micro-electrode array (MEA) recordings. Our results indicate that exposure to the carbamate carbaryl and the organophosphates CPF and CPO decreased neuronal activity, with CPO being the most potent. Notably, (network) burst patterns differed between CPF and CPO, with CPO inducing fewer, but more intense (network) bursts. Exposure to low micromolar levels of endosulfan induced a hyperexcitation, most likely due to the antagonistic effects on GABA receptors. Interestingly, females were more sensitive to endosulfan than males. Exposure to dieldrin and lindane also increased neuronal activity, albeit less than endosulfan and without sex-specific effects. Exposure to type I pyrethroid permethrin increased neuronal activity, while exposure to type II pyrethroid alpha-cypermethrin strongly decreased neuronal activity. The increase seen after permethrin exposure was more pronounced in males than in females. Together, these results show that acute exposure to different classes of pesticides exerts differential effects on neuronal activity. Moreover, it shows that MEA recordings are suited to detect sex-specific neurotoxic effects in vitro.
Collapse
Affiliation(s)
- Lennart V J van Melis
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, TD, Utrecht NL-3508, the Netherlands
| | - Anneloes M Peerdeman
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, TD, Utrecht NL-3508, the Netherlands
| | - Eva H W Huiberts
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, TD, Utrecht NL-3508, the Netherlands
| | - Regina G D M van Kleef
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, TD, Utrecht NL-3508, the Netherlands
| | - Aart de Groot
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, TD, Utrecht NL-3508, the Netherlands
| | - Remco H S Westerink
- Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, TD, Utrecht NL-3508, the Netherlands..
| |
Collapse
|
4
|
Ishibashi Y, Nagafuku N, Kanda Y, Suzuki I. Evaluation of neurotoxicity for pesticide-related compounds in human iPS cell-derived neurons using microelectrode array. Toxicol In Vitro 2023; 93:105668. [PMID: 37633473 DOI: 10.1016/j.tiv.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In vivo evaluations of chemicals in neurotoxicity have certain limitations due to the considerable time and cost required, necessity of extrapolation from rodents to humans, and limited information on toxicity mechanisms. To address this issue, the development of in vitro test methods using new approach methodologies (NAMs) is important to evaluate the chemicals in neurotoxicity. Microelectrode array (MEA) allows the assessment of changes in neural network activity caused by compound administration. However, studies on compound evaluation criteria are scarce. In this study, we evaluated the impact of pesticides on neural activity using MEA measurements of human iPSC-derived neurons. A principal component analysis was performed on the electrical physiological parameters obtained by MEA measurements, and the influence of excessive neural activity due to compound addition was defined using the standard deviation of neural activity with solvent addition as the reference. By using known seizurogenic compounds as positive controls for neurotoxicity in MEA and evaluating pesticides with insufficient verification of their neurotoxicity in humans, we demonstrated that these pesticides exhibit neurotoxicity in humans. In conclusion, our data suggest that the neurotoxicity evaluation method in human iPSC neurons using MEA measurements could be one of the in vitro neurotoxicity test methods that could replace animal experiments.
Collapse
Affiliation(s)
- Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi 982-8577, Japan.
| |
Collapse
|
5
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
6
|
Kang KR, Kim CY, Kim J, Ryu B, Lee SG, Baek J, Kim YJ, Lee JM, Lee Y, Choi SO, Woo DH, Park IH, Chung HM. Establishment of Neurotoxicity Assessment Using Microelectrode Array (MEA) with hiPSC-Derived Neurons and Evaluation of New Psychoactive Substances (NPS). Int J Stem Cells 2022; 15:258-269. [PMID: 35769054 PMCID: PMC9396014 DOI: 10.15283/ijsc21217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives Currently, safety pharmacological tests for the central nervous system depend on animal behavioral analysis. However, due to the subjectivity of behavioral analysis and differences between species, there is a limit to appropriate nervous system toxicity assessment, therefore a new neurotoxicity assessment that can simulate the human central nervous system is required. Methods and Results In our study, we developed an in vitro neurotoxicity assessment focusing on neuronal function. To minimize the differences between species and fast screening, hiPSC-derived neurons and a microelectrode array (MEA) that could simultaneously measure the action potentials of the neuronal networks were used. After analyzing the molecular and electrophysiological characters of our neuronal network, we conducted a neurotoxicity assessment on neurotransmitters, neurotoxicants, illicit drugs, and new psychoactive substances (NPS). We found that most substances used in our experiments responded more sensitively to our MEA-based neurotoxicity assessment than to the conventional neurotoxicity assessment. Also, this is the first paper that evaluates various illicit drugs and NPS using MEA-based neurotoxicity assessment using hiPSC-derived neurons. Conclusions Our study expanded the scope of application of neurotoxicity assessment using hiPSC-derived neurons to NPS, and accumulated evaluation data of various toxic substances for hiPSC-derived neurons.
Collapse
Affiliation(s)
- Kyu-Ree Kang
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - C-Yoon Kim
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea.,Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Seul-Gi Lee
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Jieun Baek
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| | - Ye-Ji Kim
- Drug Abuse Research Group, Research Center of Convergence Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Jin-Moo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Yootmo Lee
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Sun-Ok Choi
- Pharmacological Research Division, Toxicological Evaluation and Research Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Dong Ho Woo
- Drug Abuse Research Group, Research Center of Convergence Toxicology, Korea Institute of Toxicology, Daejeon, Korea
| | - Il Hwan Park
- Departments of Thoracis and Cardiovascular Surgery, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hyung Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
7
|
Tomasello DL, Wlodkowic D. Noninvasive Electrophysiology: Emerging Prospects in Aquatic Neurotoxicity Testing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4788-4794. [PMID: 35196004 DOI: 10.1021/acs.est.1c08471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The significance of neurotoxicological risks associated with anthropogenic pollution is gaining increasing recognition worldwide. In this regard, perturbations in behavioral traits upon exposure to environmentally relevant concentrations of neurotoxic and neuro-modulating contaminants have been linked to diminished ecological fitness of many aquatic species. Despite an increasing interest in behavioral testing in aquatic ecotoxicology there is, however, a notable gap in understanding of the neurophysiological foundations responsible for the altered behavioral phenotypes. One of the canonical approaches to explain the mechanisms of neuro-behavioral changes is functional analysis of neuronal transmission. In aquatic animals it requires, however, invasive, complex, and time-consuming electrophysiology techniques. In this perspective, we highlight emerging prospects of noninvasive, in situ electrophysiology based on multielectrode arrays (MEAs). This technology has only recently been pioneered for the detection and analysis of transient electrical signals in the central nervous system of small model organisms such as zebrafish. The analysis resembles electroencephalography (EEG) applications and provides an appealing strategy for mechanistic explorative studies as well as routine neurotoxicity risk assessment. We outline the prospective future applications and existing challenges of this emerging analytical strategy that is poised to bring new vistas for aquatic ecotoxicology such as greater mechanistic understanding of eco-neurotoxicity and thus more robust risk assessment protocols.
Collapse
Affiliation(s)
- Danielle L Tomasello
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, United States
| | - Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
8
|
Dobreniecki S, Mendez E, Lowit A, Freudenrich TM, Wallace K, Carpenter A, Wetmore BA, Kreutz A, Korol-Bexell E, Friedman KP, Shafer TJ. Integration of toxicodynamic and toxicokinetic new approach methods into a weight-of-evidence analysis for pesticide developmental neurotoxicity assessment: A case-study with DL- and L-glufosinate. Regul Toxicol Pharmacol 2022; 131:105167. [PMID: 35413399 DOI: 10.1016/j.yrtph.2022.105167] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 04/06/2022] [Indexed: 01/13/2023]
Abstract
DL-glufosinate ammonium (DL-GLF) is a registered herbicide for which a guideline Developmental Neurotoxicity (DNT) study has been conducted. Offspring effects included altered brain morphometrics, decreased body weight, and increased motor activity. Guideline DNT studies are not available for its enriched isomers L-GLF acid and L-GLF ammonium; conducting one would be time consuming, resource-intensive, and possibly redundant given the existing DL-GLF DNT. To support deciding whether to request a guideline DNT study for the L-GLF isomers, DL-GLF and the L-GLF isomers were screened using in vitro assays for network formation and neurite outgrowth. DL-GLF and L-GLF isomers were without effects in both assays. DL-GLF and L-GLF (1-100 μM) isomers increased mean firing rate of mature networks to 120-140% of baseline. In vitro toxicokinetic assessments were used to derive administered equivalent doses (AEDs) for the in vitro testing concentrations. The AED for L-GLF was ∼3X higher than the NOAEL from the DL-GLF DNT indicating that the available guideline study would be protective of potential DNT due to L-GLF exposure. Based in part on the results of these in vitro studies, EPA is not requiring L-GLF isomer guideline DNT studies, thereby providing a case study for a useful application of DNT screening assays.
Collapse
Affiliation(s)
| | | | - Anna Lowit
- Office of Pesticide Programs USEPA, Washington, DC, USA
| | - Theresa M Freudenrich
- Center for Computational Toxicology and Exposure, Office of Research and Development. US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kathleen Wallace
- Center for Computational Toxicology and Exposure, Office of Research and Development. US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Amy Carpenter
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development. US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Anna Kreutz
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | | | - Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development. US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development. US Environmental Protection Agency, Research Triangle Park, NC, USA.
| |
Collapse
|
9
|
The effect of cyfluthrin on testis inhibin B in rats and the intervention of Lycium barbarum polysaccharide. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Zhu J, Xia R, Liu Z, Shen J, Gong X, Hu Y, Chen H, Yu Y, Gao W, Wang C, Wang SL. Fenvalerate triggers Parkinson-like symptom during zebrafish development through initiation of autophagy and p38 MAPK/mTOR signaling pathway. CHEMOSPHERE 2020; 243:125336. [PMID: 31734597 DOI: 10.1016/j.chemosphere.2019.125336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Fenvalerate (FEN), one of the most used synthetic pyrethroids, has the potential to interfere with human neural function. However, far too little attention was paid to the mechanism of FEN-induced neurotoxicity. Thus we exposed zebrafish to FEN from 4 to 120 h post fertilization (hpf), and analyzed the morphology and behavior of zebrafish. Our results showed that FEN decreased the survival rate of zebrafish, with increased malformation rates and abnormal behaviors. Furthermore, we found typical parkinson-like symptoms in FEN-exposed zebrafish with increases in parkinson's disease (PD), ubiquitin, and Lewy bodies-relevant genes. We also observed the loss of dopaminergic neurons in both FEN-exposed zebrafish and PC12 cells, which were all associated with PD-like symptoms. Besides, FEN activated autophagy by the enhanced expressions of p-mTOR, and LC3-II but the reduction of p62. Further, FEN initially activated p-p38 MAPK followed by p-mTOR, which triggered the transcription of genes responsible for autophagy process and prompted the Lewy bodies neuron generation leading to the PD-like symptoms. This process was inhibited by both 3-methyladenine (3-MA, an autophagy inhibitor) and SB203580 (a p38 MAPK selective inhibitor) in zebrafish and PC12 cells. These results suggest that FEN might cause parkinson-like symptom during zebrafish development through induction of autophagy and activation of p38 MAPK/mTOR signaling pathway. The study revealed the potential mechanism of FEN-induced neurotoxicity and should give new insights into a significant environmental risk factor of developing parkinson's disease.
Collapse
Affiliation(s)
- Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Zhongwei Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, PO Box 9190, 64 Medical Center Drive, Health Sciences Center(South), Room 3302A, Morgantown, WV, 25606, USA
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Xing Gong
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Hang Chen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, PO Box 9190, 64 Medical Center Drive, Health Sciences Center(South), Room 3302A, Morgantown, WV, 25606, USA
| | - Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, PR China.
| |
Collapse
|
11
|
Kosnik MB, Strickland JD, Marvel SW, Wallis DJ, Wallace K, Richard AM, Reif DM, Shafer TJ. Concentration-response evaluation of ToxCast compounds for multivariate activity patterns of neural network function. Arch Toxicol 2020; 94:469-484. [PMID: 31822930 PMCID: PMC7371233 DOI: 10.1007/s00204-019-02636-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
Abstract
The US Environmental Protection Agency's ToxCast program has generated toxicity data for thousands of chemicals but does not adequately assess potential neurotoxicity. Networks of neurons grown on microelectrode arrays (MEAs) offer an efficient approach to screen compounds for neuroactivity and distinguish between compound effects on firing, bursting, and connectivity patterns. Previously, single concentrations of the ToxCast Phase II library were screened for effects on mean firing rate (MFR) in rat primary cortical networks. Here, we expand this approach by retesting 384 of those compounds (including 222 active in the previous screen) in concentration-response across 43 network activity parameters to evaluate neural network function. Using hierarchical clustering and machine learning methods on the full suite of chemical-parameter response data, we identified 15 network activity parameters crucial in characterizing activity of 237 compounds that were response actives ("hits"). Recognized neurotoxic compounds in this network function assay were often more potent compared to other ToxCast assays. Of these chemical-parameter responses, we identified three k-means clusters of chemical-parameter activity (i.e., multivariate MEA response patterns). Next, we evaluated the MEA clusters for enrichment of chemical features using a subset of ToxPrint chemotypes, revealing chemical structural features that distinguished the MEA clusters. Finally, we assessed distribution of neurotoxicants with known pharmacology within the clusters and found that compounds segregated differentially. Collectively, these results demonstrate that multivariate MEA activity patterns can efficiently screen for diverse chemical activities relevant to neurotoxicity, and that response patterns may have predictive value related to chemical structural features.
Collapse
Affiliation(s)
- Marissa B Kosnik
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
- Science for Life Laboratory, Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Jenna D Strickland
- Axion Biosystems, Atlanta, GA, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Skylar W Marvel
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dylan J Wallis
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kathleen Wallace
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, MD B105-05, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, MD B105-05, Research Triangle Park, NC, 27711, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, MD B105-05, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|
12
|
Shafer TJ. Application of Microelectrode Array Approaches to Neurotoxicity Testing and Screening. ADVANCES IN NEUROBIOLOGY 2019; 22:275-297. [PMID: 31073941 DOI: 10.1007/978-3-030-11135-9_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurotoxicity can be defined by the ability of a drug or chemical to alter the physiology, biochemistry, or structure of the nervous system in a manner that may negatively impact the health or function of the individual. Electrophysiological approaches have been utilized to study the mechanisms underlying neurotoxic actions of drugs and chemicals for over 50 years, and in more recent decades, high-throughput patch-clamp approaches have been utilized by the pharmaceutical industry for drug development. The use of microelectrode array recordings to study neural network electrophysiology is a relatively newer approach, with commercially available systems becoming available only in the early 2000s. However, MEAs have been rapidly adopted as a useful approach for neurotoxicity testing. In this chapter, I will review the use of MEA approaches as they have been applied to the field of neurotoxicity testing, especially as they have been applied to the need to screen large numbers of chemicals for neurotoxicity and developmental neurotoxicity. In addition, I will also identify challenges for the field that when addressed will improve the utility of MEA approaches for toxicity testing.
Collapse
Affiliation(s)
- Timothy J Shafer
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (NHEERL), US EPA, Research Triangle Park, NC, USA.
| |
Collapse
|